

Branch Brook and Naugatuck River Sediment Investigation Report Envirite RCRA Facility

> Prepared for: Envirite Corporation Chappaqua, New York

Prepared by: ENVIRON International Corporation Portland, Maine

Date: February 2015

Project Number: 0814218G3

Contents

			Page
Execu	ıtive Summar	у	ES-1
1	Introduction	n	1
1.1	Site History		1
1.2	Report Orga	nization	2
2	Physical Se	etting	3
2.1	Site Descrip		3
2.2	Branch Broo	ok and Naugatuck River Description	3
2.3	Groundwate	r Flow Characterization	4
3	Sample Col	lection and Analysis	6
3.1	Sampling M	e t	6
3.2	Sample Ana	lysis	7
4	Investigation		9
4.1	Branch Broo	ok	9
4.1.1	Surface Wat	ter	9
4.1.2	Sediment		9
4.1.3	Physical Par	rameters	10
4.2	Naugatuck F	River	10
4.2.1	Surface Wat	ter	10
4.2.2	Sediment		11
4.2.3	Physical Par	rameters	11
4.3	Data Validat	ion and Usability	12
5	Summary a	nd Conclusions	13
6	References		14
List of	Tables		
	Table 1:	Sample Collection Summary	
	Table 2:	Surface Water Summary Results – VOCs	
	Table 3:	Sediment Summary Results – Metals and VOCs	
	Table 4:	Central Tendency Values and Statistical Comparison for Metals and TOC in	n
		Branch Brook and Naugatuck River	
	Table 5:	Comparison of Sediment Metals Data (1994 versus 2014)	
	Table 6:	Sediment Physical Parameters	
List of	Figures		
	Figure 1:	Site Location	

Figure 2: Site Layout

Figure 3: Local Topography

Figure 4: Surface Water and Sediment Sampling in Branch Brook and Naugatuck River

Figures 5a-5l: Branch Brook and Naugatuck River Sediment Results

Figure 6: Average Sediment Grain Size Distributions from Branch Brook and Naugatuck

River

List of Appendices

Appendix A: Overburden Groundwater Elevation Contours: July 25, 2013 – April 29, 2014

Appendix B: Photographic Log

Appendix C: Laboratory Chain-of-Custody Forms
Appendix D: Level 2 Laboratory Data Reports

Appendix E: Electronic Data Set
Appendix F: Data Validation Report

Appendix G: Raw Laboratory Data Reports for Samples with Trace Ethanol

Acronyms and Abbreviations

cfs: cubic feet per second

COC: constituent of concern

Envirite: Envirite Corporation

ENVIRON: ENVIRON International Inc.

μm: micrometer(s)

mL: milliliter(s)

PEWM: Pre-Envirite Waste Material

PGDZ: potential groundwater discharge zone

PHERE: Public Health and Environmental Risk Evaluation

QAPP: Quality Assurance Project Plan

QA/QC: quality assurance/quality control

RCRA: Resource Conservation and Recovery Act

RFI: RCRA Facility Investigation

SAP: Sampling Analysis Plan

TOC: total organic carbon

USEPA: United States Environmental Protection Agency

VOA: volatile organic analysis

VOC: volatile organic compound

WPCF: water pollution control facility

Executive Summary

Under direction from the United States Environmental Protection Agency (USEPA) and working on behalf of Envirite Corporation (Envirite), ENVIRON International Corporation (ENVIRON) implemented a sediment collection program in Branch Brook and the Naugatuck River adjacent to the former Envirite RCRA facility (Site) in Thomaston, CT in October 2014. The purpose of the study was to assess whether there is any evidence of adverse effects on sediment quality associated with areas of potential groundwater discharge from the Site. Sediment samples were analyzed for volatile organic compounds (VOCs), metals, total organic carbon (TOC), percent solids, and grain size, and surface water samples were analyzed for VOCs. At the time of the investigation, water depth in the middle of the channel of both Branch Brook and the Naugatuck River was seasonally low which is when groundwater effects on sediment quality are expected to be most pronounced (i.e., less dilution upon discharging to the river).

This report documents the following lines of evidence that were evaluated to determine whether there is evidence of detectable effects of groundwater chemicals of concern from the Site in the Naugatuck River and Branch Brook:

- Groundwater monitoring data indicate that groundwater from the Site does not consistently discharge to the Naugatuck River.
- Groundwater elevation contours mapped during 4 gauging events in 2013-2014 suggest that shallow overburden groundwater beneath the landfill appears to be discharging to Branch Brook in a zone south of the landfill adjacent to the Thomaston Water Pollution Control Facility property.
- Conditions in both water bodies in the areas of potential groundwater discharge are not depositional as evident by the relative lack of fine-grained material and low organic carbon content (<1%). Thus, regardless of groundwater discharge in those areas, the habitat is not well suited to benthic organisms.
- With a single exception, VOCs are not detected in sediment and surface water in the areas
 of potential groundwater discharge. Ethanol was detected in a single sample at a
 concentration just above reporting limits in the Naugatuck River. However, it was also
 observed at trace levels (i.e., below reporting limits) in multiple other samples, including
 reference areas and is therefore not likely to be Site related.
- Metals concentrations in the isolated depositional areas of the potential groundwater discharge zones do not differ significantly from those in sediments just upstream of those zones (i.e., reference areas).
- Qualitative comparison of sediment concentrations from Branch Brook and the Naugatuck River collected in 2014 to sediment data collected from the same areas in 1994 indicate that current concentrations are similar to or less than the metals concentrations from 20 years prior.

Based on these multiple lines of evidence, this report concludes that there is no evidence of detectable effects to sediments and surface water of Branch Brook and the Naugatuck River resulting from contaminated groundwater discharge from the Site.

1 Introduction

On behalf of Envirite Corporation (Envirite), ENVIRON International Corporation (ENVIRON) conducted a sediment and surface water investigation of Branch Brook and the Naugatuck River in the area surrounding the Envirite Resource Conservation and Recovery Act (RCRA) facility (the Site) in Thomaston, Connecticut, in October 2014. The purpose of this investigation was to assess whether there is any evidence of adverse effects on sediment quality in areas where groundwater from the Site may discharge to Branch Brook and the Naugatuck River and whether further evaluation is warranted to understand the likelihood, magnitude or spatial extent of any predicted adverse effects. This report documents and summarizes the results of the investigation.

1.1 Site History

Envirite operated an industrial waste treatment and disposal facility at the Site from 1975 until 1990. Prior to the construction of the Envirite facility in 1975, a site investigation discovered an "oily sludge" material that contained volatile organic compounds (VOCs) located in the subsurface in the northeastern area of the Site. The majority of the oily sludge, termed "Pre-Envirite Waste Material" (PEWM), was reportedly excavated and removed in 1975, and the Envirite facility was subsequently constructed, accepting inorganic liquid waste throughout operation. Liquid waste, primarily consisting acidic, alkaline, and neutral wastes from a variety of industrial clients, was treated and filtered to produce wastewater and residual solids. The wastewater was discharged to the Town of Thomaston's Water Pollution Control Facility (WPCF) and the non-hazardous residual solids were placed in an on-Site solid waste landfill.

In 1982, consistent with Connecticut's solid waste and hazardous waste regulations, Envirite submitted a groundwater monitoring program to the Connecticut Department of Environmental Protection, now the Department of Energy and Environmental Protection. The monitoring program was designed to monitor releases from the portion of the landfill which was being managed as a RCRA-regulated hazardous waste unit. In November 1990, in conjunction with the Facility's RCRA-status, Envirite and the United States Environmental Protection Agency (USEPA) Region I entered into a Consent Agreement issued under Section 3008(h) of RCRA, which required Envirite to evaluate the nature and extent of any releases of hazardous waste or hazardous constituents from the solid waste management units at the facility, including how such releases may affect Branch Brook and Naugatuck River.

In 1995, a RCRA Facility Investigation (RFI) was conducted to characterize the Site and surrounding area (GZA 1995). RFI field investigation activities included geophysical investigations, monitoring well drilling and installation, collection of soil and groundwater for chemical characterization, and aquifer testing. Sediment and surface water samples were also collected from Branch Brook and the Naugatuck River in 1994. The RFI indicated that PEWM remained in two distinct areas beneath the northeastern corner of the Site and beneath the Old Waterbury Road (GZA 1995). After an initial Public Health and Environmental Risk Evaluation (PHERE) was submitted to USEPA in 1997, a revised PHERE was submitted in 2008 to identify the human population and environmental systems that may be exposed to hazardous constituents released from the Site and to assess potential risks to currently exposed populations and potential future populations (ENVIRON 2008).

constituents released from the Site and to assess potential risks to currently exposed populations and potential future populations (ENVIRON 2008).

In 2010, USEPA provided comments regarding the RFI and PHERE and requested additional sampling and analysis of surface water and sediments in the Naugatuck River because concentrations from some constituents in groundwater appeared to have increased since sediment samples were initially collected in the 1990s. In response to USEPA's comments, ENVIRON developed a sediment and surface water investigation plan and submitted to USEPA on October 13, 2013 as the Revised Scope of Work for Supplemental Investigation Activities (ENVIRON 2013a). The proposed sampling methodologies were documented in the Quality Assurance Project Plan and Sampling Analysis Plan (QAPP/SAPP) submitted to USEPA on December 3, 2013 (ENVIRON 2013b). Under the original sediment and surface water investigation scope of work, ENVIRON proposed that sediment sampling locations in Branch Brook and the Naugatuck River take into account the most likely areas of groundwater discharge determined during groundwater and surface water gauging events. Following discussions with USEPA, ENVIRON revised the sediment and surface water investigation plan and submitted a memorandum titled "Revised Scope of Work for Sediment Sampling in Naugatuck River and Branch Brook", dated July 11, 2014 (ENVIRON 2014a). The revised plan was approved by USEPA on September 16, 2014.

Under the approved plan, ENVIRON conducted a sediment and surface water sampling program in October 2014 to assess whether there is any evidence of adverse effects on sediment quality in areas where groundwater from the Site may discharge to the Naugatuck River and Branch Brook and whether further evaluation is warranted.

The ultimate goal of the Site investigations conducted to date is for USEPA to issue a Statement of Basis with CA-400 (final remedy) and CA-550 (Construction Complete) milestones.

1.2 Report Organization

This report presents the results from that sediment and surface water sampling program and is organized as follows:

- Section 2 presents the physical setting, including a Site description, groundwater flow characterization, and a description of Branch Brook and the Naugatuck River.
- Section 3 describes sample collection methods and chemical analyses.
- Section 4 summarizes the results of the sediment and surface water investigation as well as a summary of data validation and usability.
- Section 5 presents the conclusions of the sediment investigation and recommendations moving forward.
- Section 6 lists the references used in support of this report.

2 Physical Setting

This section describes the physical setting of the Site, physical characteristics of Branch Brook and the Naugatuck River, and groundwater flow characteristics.

2.1 Site Description

The Site is located in Litchfield County, Connecticut. The majority of the Site is within the town of Thomaston but the southwest portion is within the town of Watertown (Figure 1). The Site consists of an approximately five-acre solid waste monofill, of which one-acre is designated for hazardous waste although it contains the same material as the rest of the monofill (i.e., non-hazardous waste) (Figure 2). A 12,000-square-foot waste treatment and storage building was located in the center of the Site, which was dismantled in 2008. The monofill forms a horseshoe-shaped ridge around the former building, ranging from 15 to 30 feet above grade and approximately 150 to 200 feet wide. The monofill surface is completely vegetated.

PEWM has been delineated in two areas in the northeastern portion of the Site. One area is below monofill Cell 1 and the second, larger area, is beneath the driveway entering the Site and the Old Waterbury Road (Figure 2). GZA concluded that more than half of the known volume of the PEWM is located off the Site property (GZA 1995).

The land surrounding the Site is primarily industrial. The town of Thomaston's WPCF, a mixed solid waste transfer station, and the Thomaston animal control facility are located immediately south of the Site. Properties to the north, along Old Waterbury Road, contain a number of light industries, including Summit Metals, Eyelets for Industry, and the T.A.D. Corporation. On the opposite (eastern) bank of the Naugatuck River across from the WPCF lies a metal plating operation (Whyco Chromium Company) and residential properties. The land to the west of the Site is mostly part of the Mattatuck State Forest.

The Site is located approximately one-half mile north of the confluence of Branch Brook and the Naugatuck River. Branch Brook flows along the western edge of the Site, and Old Waterbury Road is situated to the east. The Naugatuck River is located immediately east of Old Waterbury Road. The general topography of the area surrounding the Site consists of rolling hills with occasional steep valleys associated with the Naugatuck River and its tributaries (Figure 3). The Site is situated in a valley, and conditions include a bedrock highland that outcrops along the northern end of the Site and a sand and gravel aquifer that thickens from the bedrock outcrops to 60 feet thick in the south and southeast portions of the Site.

2.2 Branch Brook and Naugatuck River Description

Branch Brook and the Naugatuck River run along the western and eastern boundaries of the Site, respectively. In the area surrounding the Site, surface water flow within Branch Brook and the Naugatuck River is from north to south. Discharge varies seasonally.

Branch Brook originates approximately 3 miles upstream of the Site, discharging from the Wigwam Reservoir. The area of Branch Brook characterized in this report is immediately upstream of the confluence with the Naugatuck River and is approximately 400 meters long, 10-20 meters wide, and at the time of the investigation, approximately 0.5-5 feet deep in the middle

of the channel. The nearest flow measurements are from the United States Geologic Survey (USGS) gage located approximately 1 mile upstream of the Site (USGS 01208013). The median flow rate from 1984 through 2014 is approximately 20 cubic feet per second (cfs) with maximum observed flows in excess of 500 cfs.

The area of Naugatuck River characterized in this report is approximately 450 meters long, 10-30 meters wide, and at the time of the investigation, approximately 0.5-4 feet deep in the middle of the channel. The nearest USGS gage in the Naugatuck River is located approximately 2 miles upstream of the Site (USGS 01206900).² The median daily flow rate reported at the USGS gage over the past 53 years ranges from approximately 400 cfs in the spring to approximately 30 cfs in the late summer. The maximum reported flow rates in the Naugatuck River from 2007 through 2014 are in excess of 2,000 cfs.

2.3 Groundwater Flow Characterization

As presented in the *Interim Semi-Annual Post-Closure Monitoring Event Report* (ENVIRON 2014b), the following general observations can be made based on the inferred groundwater flow patterns depicted on the July and October 2013 and February and April 2014 overburden and bedrock groundwater elevation contour plans. (Appendix A):

- In general, the predominant direction of shallow overburden groundwater beneath the landfill is toward the south-southwest.
- Overall, the groundwater elevation contours for all four gauging events suggest that shallow overburden groundwater beneath the landfill appears to be discharging to Branch Brook in a zone south of the landfill adjacent to the WPCF property.
- The reach of the Naugatuck River adjacent to the landfill appeared to be a losing reach (i.e., net movement of water is from the river to the groundwater) during the July and October 2013 and February 2014 gauging events based on the southwesterly direction of groundwater flow in this area. However, the April 2014 overburden contours shows a southeasterly component of flow toward the Naugatuck River beneath the northeast quadrant of the landfill in the vicinity of the PEWM beneath the landfill and the northeast driveway area, suggesting the potential for episodic groundwater discharge to the Naugatuck River in this area (Figure 4).
- In general, shallow overburden groundwater along Branch Brook adjacent to the landfill appears to flow generally parallel with the Brook until south of the landfill where overburden groundwater may be discharging to Branch Brook. The notable exception to this pattern was in October 2013 when the gauging data and associated groundwater surface contours suggest that Branch Brook was a losing reach along the western perimeter of the landfill in this zone during the gauging event.
- With the exception of the July 2013 bedrock groundwater flow patterns, bedrock groundwater appears to flow in a general southwest direction beneath the landfill.

¹ http://waterdata.usgs.gov/nwis/inventory/?site_no=01208013

² http://waterdata.usgs.gov/nwis/uv/?site_no=01206900&agency_cd=USGS

In summary, the results from the July 2013 through April 2014 groundwater and surface water gauging events indicate that shallow overburden groundwater beneath the landfill is discharging to Branch Brook south of the landfill and adjacent to the town of Thomaston's WPCF property. Although the reach of the Naugatuck River adjacent to the landfill appears to be recharging groundwater, results of the April 2014 gauging event suggest a periodic southeasterly component of flow towards the river in the vicinity of the PEWM (Figure 4), indicating that overburden groundwater could be occasionally discharging to the Naugatuck River in this area. Based on these observations, the sediment sampling program was designed to target the areas of potential groundwater discharge, as described in the following section.

3 Sample Collection and Analysis

As stated in the Revised Scope of Work for Sediment Sampling in Naugatuck River and Branch Brook memorandum (ENVIRON 2014a), surface water and sediment samples were collected from upstream areas (reference) and adjacent/downstream areas (potential groundwater discharge zones) in both Branch Brook and the Naugatuck River (Figure 4). The sampling areas were selected based on the results of the July 2013 through April 2014 groundwater and surface water gauging events and in consultation with USEPA. For the purpose of this investigation, a reference sampling area was selected to be a zone most representative of an area not affected by groundwater discharge from the Site, and was used to compare sediment chemical concentrations within PGDZ sampling areas to upstream "background" concentrations.

As described in the QAPP/SAP (ENVIRON 2013b), eight samples were collected in each of the sampling areas within Branch Brook and Naugatuck River. Depositional areas were targeted because they provide the most suitable habitat for benthic invertebrates. As such, they are the most appropriate areas to evaluate for adverse effects to aquatic organisms from groundwater discharging to the river and brook. Sediment samples were analyzed for VOCs, metals, total organic carbon, percent solids, and grain size. Surface water samples were collected in support of the sediment investigation and were co-located to evaluate whether there is any evidence that VOCs are being released to the water column from groundwater or the sediments at these locations.

3.1 Sampling Methodology

Sampling and analyses was conducted as described below. These methodologies are consistent with the QAPP/SAP submitted in December 2013 (ENVIRON 2013b) and the Revised Scope of Work submitted in July 2014 (ENVIRON 2014a):

- Surface water and sediment sampling was conducted on October 14th and 15th, 2014.
- Within Branch Brook, the target reference and potential groundwater discharge zones (PGDZ) sampling areas were similar to those proposed within the July 2014 memorandum to USEPA. Samples taken within the reference area were collected both upstream and downstream of the most upstream Route 8 outfall (Figure 4). The most downstream sample collected within the PGDZ was taken immediately upstream of where water was pooled upstream of a beaver dam (Appendix B/Photo 1, Figure 4). All samples taken from the PGDZ sampling area were collected from the downstream portion of the area due to downed trees and brush making sample collection in the upper part of the area unfeasible. Although this adds some uncertainty regarding the potential impacts to sediment in the immediate upstream portion of the PGDZ, the sediment samples from the remaining portion of the PGDZ should integrate any potential impacts from groundwater discharge and transport within Branch Brook. In other words, if metals are discharged via groundwater to the upstream portions of the PGDZ, they would immediately be transported downstream to where all of the PGDZ sediment samples were collected.
- Within Naugatuck River, the reference and PGDZ sampling areas were similar to those proposed in the July 2014 memorandum to USEPA (ENVIRON 2014a). The most downstream sample collected from the Naugatuck River was within the PGDZ sampling

area and was located 50 feet upstream of the most upstream WPCF outfall (Figure 4). At the time of the sampling event (October 2014), water level in the Naugatuck River was very low, such that the west bank extended in to the middle of the channel at several locations along the river (e.g., Appendix B/Photos 26, 27). Much of the area shaded as the PGDZ in the Naugatuck River in Figure 4 was above the water line. Because of the very low water level and the goal of targeting depositional areas that provide suitable benthic invertebrate habitat, samples from within the PGDZ were collected from anywhere suitable fine-grained sediment was found in the channel (below the water-line). The low water levels provide a conservative basis for evaluating potential groundwater impacts on sediment because dilution upon entering the river would be the lowest when flows are low.

- As described in the QAPP/SAP, samples were collected from eight locations in each of the sampling areas within Branch Brook (Figure 4, Table 1). Within the Naugatuck River, seven samples were collected from the PGDZ sampling area and nine samples were collected from the reference area. Sample NR-DS-08 was collected in line with the northern Envirite property boundary. However, this sample location is within the zone most representative of areas in the Naugatuck River not affected by groundwater discharge from the Site and therefore is considered a reference area sample (Figure 4, Table 1) rather than a PGDZ sample.
- As referenced above, surface water sample locations were co-located with sediment sample locations. Once depositional areas were identified, the overlying surface water sample designated for VOC analysis was collected by using a plastic sampling syringe to collect 50 mL of surface water from just above the sediment-water interface. Following the collection of the surface water sample, surface sediment was collected using a direct push sampler (Appendix B, Photo 7). The direct push sampler was lowered through the water and penetrated into the sediment until refusal. Fitted rubber caps were placed on either end of the sampler, and the sampler was brought to the surface for processing. The top fitted cap was removed, and water overlying the sample was carefully decanted in order to avoid disturbing the sediment sample. The bottom fitted cap was then removed and approximately 3 grams of sediment were transferred to a VOA vial for VOC analysis. Sufficient sediment weight for analytical requirements was achieved by displacing the 3 mL of solvent (1 mL methanol, 2 mL distilled water) included in the prepared VOA vial. The remaining sediment was placed in an aluminum tray, photographed, homogenized, and transferred to labeled jars for metals analysis using plastic spoons.

3.2 Sample Analysis

The overlying surface water samples were submitted to Spectrum Analytical, Inc. (Spectrum) of Agawam, Massachusetts for the following chemical analysis (Table 1):

VOCs: (USEPA Method SW846 8260C)

The sediment samples were submitted to Spectrum for the following chemical analyses (Table 1):

VOCs: (USEPA Method SW846 8260C)

- Total Metals: arsenic, barium, cadmium, chromium, copper, iron, lead, manganese, nickel, sodium, and zinc (USEPA Method SW846 6010C)
- General Chemistry: TOC (SM 2540G modified), percent solids (Lloyd Kahn)
- Grain Size: (ASTM D422)

Sample chain-of-custody forms documenting names of sampling personnel, date and time of collection, requested laboratory analysis, sample containers and preservatives, and analytical reporting requirements are included in Appendix C.

4 Investigation Results

This section summarizes the results of the sampling program including summary statistics (frequency of detection, and minimum, maximum, and central tendency values³) for chemistry and physical (grain size) analysis as well as observations regarding locations of depositional areas in the vicinity of the Site. Additionally, historical metals data (1994), as summarized in the 1995 RFI (GZA 1995), are compared to October 2014 Branch Brook and Naugatuck River analytical results. Laboratory data packages, including chemical and physical analysis results, are included in Appendix D. Appendix E presents the complete database developed from the October 2014 surface water and sediment sampling program.

4.1 Branch Brook

Surface water and sediment samples were collected from reference and PGDZ areas within Branch Brook in order to evaluate if chemical concentrations are greater in the PGDZ compared to the reference area, and therefore potentially affected by groundwater discharge from the Site.

4.1.1 Surface Water

Surface water samples collected from Branch Brook were analyzed for 77 VOCs (Table 2). VOCs were not detected above detection limits in surface water samples collected from either the reference or the PGDZ sampling areas in October 2014⁴. Because VOCs were not detected in surface water samples from Branch Brook, statistical comparisons were not made between reference and PGDZ areas. These results are consistent with the surface water VOC samples collected during the post-closure monitoring events in December 2013, April 2014, and October 2014 (ENVIRON 2014b, 2014c, 2015) where no VOCs were detected in surface water.

4.1.2 Sediment

Sediment samples collected from Branch Brook were analyzed for 77 VOCs and 11 metals (Table 3). **VOCs were not detected in sediment samples collected from Branch Brook in October 2014**, and therefore, statistical comparisons were not made for VOC sediment concentrations between reference and PGDZ sampling areas.

Nine metals were detected in both reference and PGDZ sediment samples collected from Branch Brook (arsenic and cadmium were not detected at either sampling area) (Table 3). Figures 5a-k present box plots for Branch Brook sediment results. The line within the box represents the median (or 50th percentile) value and the lower and upper box boundaries represent the 25th and 75th percentile, respectively. Individual data points are also graphed to show distribution of individual samples. Statistical comparisons were made using SigmaPlot (v12) for detected metals using central tendency values⁵ to evaluate if metals concentrations differed between the PGDZ and the reference area (Table 4). **Statistical results indicate that**

³ Duplicate sample results were averaged with parent sample results.

⁴ Analytical detection limits are below available published surface water protection criteria (e.g., Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (RSRs) (CT DEEP 2013), Buchman 2008, USEPA Region 3 BTAG screening benchmarks (USEPA 1995)).

⁵ If data was normally distributed, a one-tailed t-test was performed on the average value. If normality test failed, a Mann-Whitney test was performed on the median value.

metals concentrations in the PGDZ sampling area are not significantly greater than the metals concentrations in the reference area of Branch Brook. The average concentration of one metal (manganese) is significantly greater in the Branch Brook reference area than the PGDZ (p=0.018), likely reflecting a localized area of elevated but naturally occurring manganese.⁶

A qualitative comparison of 2014 and 1994 metals data collected from Branch Brook was conducted in order to evaluate if perceived increases of some constituent concentrations in groundwater since the 1990s translate to higher concentrations in sediment in 2014. Sediment samples in 1994 were not analyzed for iron, manganese, or sodium, but direct comparisons can be made for the remaining nine metals. **Table 5 shows that maximum and average concentrations of metals in Branch Brook sediment in 2014 are similar to, or lower, than sediment concentrations from 1994**.

4.1.3 Physical Parameters

At the time of the investigation, water depth in the middle of the channel of Branch Brook varied from approximately 2 feet to 5 feet in the PGDZ sampling area and approximately 0.5 feet to 4 feet in the reference sampling area. Overall substrate was similar in organic carbon content between the reference and PGDZ sampling areas, with similarly low levels of organic carbon in sediment from both reaches (<0.2%, Figure 5l). The few observed depositional areas on either side of the channel typically occurred behind large woody debris or small backwater areas.

Grain size was also similar between sampling areas, with the majority of sediment falling into larger grain size categories (Table 6, Figure 6). On average, sediment from both the PGDZ and reference areas in Branch Brook were mostly comprised of medium to very coarse sand (250 – 2,000 micrometer [µm]). Even though sample collection targeted depositional areas, fine sands, silt, and clay (indicators of depositional environments), made up a relatively small percentage of the substrate in both reaches of Branch Brook (Figure 6). Pictures of individual sample composition are included in Appendix B.

4.2 Naugatuck River

Surface water and sediment samples were collected from reference and PGDZ sampling areas within the Naugatuck River to evaluate if chemical concentrations are greater in the PGDZ compared to the reference area, and therefore potentially affected by groundwater discharge from the Site.

4.2.1 Surface Water

Surface water samples collected from the Naugatuck River were analyzed for 77 VOCs (Table 2). **VOCs were not detected in surface water samples collected from either the reference or the PGDZ sampling areas in October 2014**. Because VOCs were not detected in any surface water samples from the Naugatuck River, statistical comparisons were not made

⁶ The maximum detected manganese value from the reference area was well below the published effects-based screening level.

Analytical detection limits are below available published surface water protection criteria (e.g., Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (RSRs) (CT DEEP 2013), Buchman 2008, USEPA Region 3 BTAG screening benchmarks (USEPA 1995)).

between reference and PGDZ areas. These results are consistent with the surface water VOC samples collected during the annual post-closure monitoring event conducted in December 2013 (ENVIRON 2014b) where no VOCs were detected in surface water.

4.2.2 Sediment

Sediment samples collected from the Naugatuck River were analyzed for 77 VOCs and 11 metals (Table 3). VOCs were not detected in any sediment sample collected from the Naugatuck River in October 2014 with one exception. Ethanol was detected at just above detection limits in a single duplicate sediment sample collected from the PGDZ area (location NR-DS-03; Appendix E). Ethanol was not detected in the parent sample from this location or any other sediment or surface water sample or in any surface water or groundwater sample during previous post-closure environmental monitoring events (December 2013, April 2014, October 2014) (ENVIRON 2014b, 2014c, 2015) at concentrations above laboratory reporting limits. Upon closer evaluation of the raw analytical data (Appendix G), the analytical laboratory concluded that ethanol was present at trace levels, but below the reported detection limit, in multiple sediment samples including some from the reference areas⁸. Combined with the fact that ethanol is not a Site constituent of concern (COC), this evidence suggests that the single ethanol detect is not likely to be Site-related. Because no other VOCs were detected in sediment collected from the Naugatuck River, statistical comparisons were not made between reference and PGDZ areas.

Ten of the 11 metals were detected in Naugatuck sediment (arsenic was not detected in either the reference of PGDZ sampling areas) (Table 3). Figures 5a–5k present box plots for Branch Brook sediment results. The same statistical methods used to evaluate Branch Brook sediment concentrations were used for the Naugatuck River samples (Table 4). The statistical analyses demonstrate that metals concentrations in the PGDZ sampling area are not significantly greater than sediment metals concentrations in the references area. The average concentration of one detected metal (lead) is significantly greater in the Naugatuck River reference area than the PGDZ (p=0.017).9

As described in Section 4.1.2, a qualitative comparison of 2014 and 1994 metals data collected from the Naugatuck River was conducted in order to evaluate if perceived increases of some constituent concentrations in groundwater since the 1990s translate to higher concentrations in sediment in 2014. Sediment samples in 1994 were not analyzed for iron, manganese, or sodium, but direct comparison can be made for the remaining nine metals. **Table 5 shows that maximum and average concentrations of metals in Branch Brook sediment in 2014 are similar to or lower than sediment concentrations from 1994**.

4.2.3 Physical Parameters

At the time of the investigation, water depth in the middle of the channel of Naugatuck River varied from approximately 0.5 feet to 4 feet in both the PGDZ and reference sampling areas. In shallow water areas, riverbanks extended to the middle of the channel and river bottom

⁸ Trace levels of ethanol were identified sediment from 12 additional locations, 8 of which were from upstream reference areas (BB-US-01, BB-US-07, BB-US-08, NR-US-01, NR-US-05, NR-US-06, NR-US-08, and NR-DS-08).

⁹ The maximum detected lead value from the reference area was well below the published effects-based screening level.

substrate was exposed. The organic content in sediments from both sampling areas were relatively low (<1%) which is consistent with type of substrate found in both areas (Table 3, Figure 5I).

Depositional areas with fine-grained sediment were scarcely observed in the PGDZ sampling area. The majority of PGDZ sediment was coarse sand or larger (>425 µm) with half of the material classified as either coarse or very coarse sand (Table 6). A few depositional areas were observed in the Naugatuck River reference sampling area, as indicated by the greater composition of fine sands in samples collected from that reach (Figure 6). This is consistent with the slightly higher TOC content observed the sediment from the reference areas (Figure 5I). The depositional zones were typically located along the banks of the river behind large woody debris. Pictures of individual sample composition are included in Appendix B.

4.3 Data Validation and Usability

ENVIRON assessed the validity and usability of laboratory analytical data generated from samples collected during the sampling event at the Site and prepared a data validation report (Appendix F). The data validation provides a quantitative and qualitative assessment of the data and identifies potential sources of error, uncertainty, and bias that may affect the overall usability of the data. The analytical data were evaluated for quality assurance and quality control (QA/QC) based on the following documents:

- Quality Assurance Project Plan/Sampling Analysis Plan for the Envirite RCRA Facility, Old Waterbury Road, Thomaston, Connecticut (ENVIRON 2013b)
- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA 2008)
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, (USEPA 2010)

Per the December 2013 QAPP/SAP, a USEPA Tier I data validation was performed on all laboratory data. The QAPP/SAP indicated that a minimum of 10% of the data would undergo USEPA Tier II data validation. Data package SDG SB98028 (sediment and surface water chemical and physical analysis for Branch Brook PGDZ) was selected for Tier II analysis to meet validation requirements.

The data validation report concluded that the data are usable for its intended purpose based on an evaluation of the QC parameters, and no qualification of data was required. The data validator also assessed the precision and accuracy of the data (Appendix D, Attachment A) and concluded that no additional qualification of the data was required.

5 Summary and Conclusions

In October 2014, ENVIRON collected sediment and surface water samples from reference and PGDZ areas within Branch Brook and the Naugatuck River in order to assess whether there is any evidence of adverse effects on sediment quality associated with areas of potential groundwater discharge from the Site. Sediment samples were analyzed for VOCs, metals, TOC, percent solids, and grain size, and surface water samples were analyzed for VOCs. At the time of the investigation, water depth in the middle of the channel of both Branch Brook and the Naugatuck River was seasonally low which is when groundwater effects on sediment quality are expected to be most pronounced (i.e., less dilution upon discharging to the river).

Overall, the following lines of evidence support the conclusion that groundwater COCs from the Site are not detectable in surface water or sediment of the Naugatuck River and Branch Brook:

- Groundwater monitoring data indicate that groundwater from the Site does not consistently discharge to the Naugatuck River.
- Overall, the groundwater elevation contours for 2013-2014 groundwater gauging events suggest that shallow overburden groundwater beneath the landfill appears to be discharging to Branch Brook in a zone south of the landfill adjacent to the WPCF property.
- Conditions in both water bodies in the areas of potential groundwater discharge are not depositional as evident by the relative lack of fine-grained material and low organic carbon content (<1%). Thus, regardless of groundwater discharge in those areas, the habitat is not well suited to benthic organisms.
- With a single exception, VOCs are not detected in sediment and surface water samples from the areas of potential groundwater discharge. Ethanol was detected in a single sample at a concentration just above laboratory reporting limits in the Naugatuck River. However, it was also detected at trace levels (i.e., below reporting limits) at multiple other samples, including reference areas. Combined with the fact that ethanol is not a Site COC, this evidence suggests that the single ethanol detect is not likely to be Site-related.
- Metals concentrations in the isolated depositional areas of the PGDZs do not differ significantly from those in sediments just upstream of those zones (i.e., reference areas).
- Qualitative comparison of sediment concentrations from Branch Brook and the Naugatuck River collected in 2014 to sediment data collected from the same areas in 1994 indicate that current concentrations are similar to or less than the metals concentrations from 20 years prior.

For these reasons, we conclude that there is no evidence of detectable effects of contaminated groundwater discharge to sediments and surface water of Branch Brook and the Naugatuck River. In addition, we conclude that because there is no evidence of increases in sediment metals concentrations adjacent to the Site since 1994, the environmental risk evaluation of sediments conducted as part of the RFI is protective of current conditions and does not warrant updating. No further evaluation of Branch Brook or Naugatuck River in conjunction with the final closure of the Site is necessary.

6 References

- CTDEEP 2013. Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (RSRs), Section 22a-133k-1 through 22a-133k-3. June 2013.
- Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pages.
- ENVIRON 2008. Public Health and Environmental Risk Evaluation (PHERE). Envirite Corporation, Thomaston, Connecticut. November 2008.
- ENVIRON 2013a. Revised Scope of Work for Supplemental Investigation Activities Envirite RCRA Facility, Old Waterbury Road, Thomaston, CT. October, 2013.
- ENVIRON 2013b. Quality Assurance Project Plan/Sampling Analysis Plan. Envirite RCRA Facility, Old Waterbury Road, Thomaston, Connecticut. December 2013.
- ENVIRON 2014a. Revised Scope of Work for Sediment Sampling in Naugatuck River and Branch Brook. Memorandum to USEPA Region 1. July 2014.
- ENVIRON 2014b. Interim Semi-Annual Post-Closure Monitoring Event Report. Envirite RCRA Facility, Old Waterbury Road, Thomaston, Connecticut. July 2014.
- ENVIRON 2014c. Expanded Environmental Monitoring Event Report, Envirite RCRA Facility, Old Waterbury Road, Thomaston, Connecticut. March 2014.
- ENVIRON 2015. Semiannual Post Closure Environmental Monitoring Event Report October 2014 Event, Envirite RCRA Facility, Old Waterbury Road, Thomaston, Connecticut. January 2015.
- GZA GeoEnvironmental, Inc. (GZA). 1995. RCRA Facility Investigation Phase I Report, Envirite Corporation, Thomaston, Connecticut. Volumes I-X. Prepared for Envirite Corporation, Thomaston, CT. March 1995.
- USEPA 1995. Region III BTAG Screening Benchmark tables. http://www.epa.gov/reg3hwmd/risk/eco/faqs/screenbench.htm (last accessed January 21, 2015).
- USEPA 2008. USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (SOMO1.2). EPA-540-R-08-01. June 2008.
- USEPA 2010. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review. EPA 540-R-10-011. January 2010.

Tables

Table 1. Sample Collection Summary

Waterbody	Reach	Matrix	Number of Samples	Chemical Analysis	Analytical Method	Preparation Method
Branch Brook	Potential GW Discharge Zone	Surface Water	8	VOC	SW846 8260C	SW846 5030 Water MS
	2.00.1a.go 20.10	Sediment	8	VOC	SW846 8260C	SW846 5035A Soil (low level)
				Total Metals	USEPA 6000/7000 Series Methods	NA
				TOC	SM 2540G modified	NA
				Percent Solids	Lloyd Kahn	NA
				Grain Size	ASTM D422	NA
	Upstream	Surface Water	8	VOC	SW846 8260C	SW846 5030 Water MS
I		Sediment	8	VOC	SW846 8260C	SW846 5035A Soil (low level)
				Total Metals	USEPA 6000/7000 Series Methods	NA
				TOC	SM 2540G modified	NA
				Percent Solids	Lloyd Kahn	NA
				Grain Size	ASTM D422	NA
Naugatuck River	Potential GW Discharge Zone	Surface Water	7	VOC	SW846 8260C	SW846 5030 Water MS
	gu	Sediment	7	VOC	SW846 8260C	SW846 5035A Soil (low level)
				Total Metals	USEPA 6000/7000 Series Methods	NA
				TOC	SM 2540G modified	NA
				Percent Solids	Lloyd Kahn	NA
				Grain Size	ASTM D422	NA
	Upstream	Surface Water	9	VOC	SW846 8260	SW846 5030 Water MS
		Sediment	9	VOC	SW846 8260	SW846 5035A Soil (low level)
				Total Metals	USEPA 6000/7000 Series Methods	NA ()
				TOC	SM 2540G modified	NA
				Percent Solids	Lloyd Kahn	NA
				Grain Size	ASTM D422	NA

ASTM: American Society for Testing and Materials

GW: groundwater MS: mass spectroscopy NA: not applicable SM: standard method TOC: total organic carbon

USEPA: United States Environmental Protection Agency

VOC: volatile organic compounds

Table 2. Surface Water Summary Results - VOCs

Chemical Name		nch Bro		otential Zone	Up		ch Broo				River - charge	Potential Zone		Naugatuck River - ostream (Reference)			
	FoD	Min	Max	Average	FoD	Min	Max	Average	FoD	Min	Max	Average	FoD	Min	Max	Average	
1,1,1,2-Tetrachloroethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,1,1-Trichloroethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,1,2,2-Tetrachloroethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,1,2-Trichloro-1,2,2-trifluoroethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,1,2-Trichloroethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,1-Dichloroethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,1-Dichloroethene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,1-Dichloropropene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,2,3-Trichlorobenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,2,3-Trichloropropane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,2,4-Trichlorobenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,2,4-Trimethylbenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,2-Dibromo-3-chloropropane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,2-Dibromoethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,2-Dichlorobenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,2-Dichloroethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,2-Dichloropropane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,3,5-Trichlorobenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,3,5-Trimethylbenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,3-Dichlorobenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,3-Dichloropropane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,4-Dichlorobenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
1,4-Dioxane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
2,2-Dichloropropane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
2-Butanone	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
2-Chlorotoluene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
2-Hexanone	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
4-Chlorotoluene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
4-Isopropyltoluene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
4-Methyl-2-pentanone	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Acetone	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Acrylonitrile	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Benzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Bromobenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Bromochloromethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Bromodichloromethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Bromoform	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Bromomethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Carbon disulfide	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Carbon tetrachloride	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Chlorobenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Chloroethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Chloroform	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	

Table 2. Surface Water Summary Results - VOCs

Chemical Name		nch Bro W Disc		otential Zone	Up		h Broo n (Refe		Ğ		River -	Potential Zone	Up	Naugatuck River - Upstream (Reference)			
	FoD	Min	Max	Average	FoD	Min	Max	Average	FoD	Min	Max	Average	FoD	Min	Max	Average	
Chloromethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
cis-1,2-Dichloroethene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
cis-1,3-Dichloropropene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Dibromochloromethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Dibromomethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Dichlorodifluoromethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Diethyl ether	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Ethanol	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Ethyl tertiary-butyl ether	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Ethylbenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Hexachlorobutadiene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Isopropylether	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Isopropylbenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Methyl tert-butyl ether	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Methylene chloride	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Naphthalene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
n-Butylbenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
n-Propylbenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
o-Xylene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
sec-Butylbenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Styrene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Tert-Butyl alcohol	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
tert-Butylbenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Tertiary-amyl methyl ether	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Tetrachloroethene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Tetrahydrofuran	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Toluene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
trans-1,2-Dichloroethene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
trans-1,3-Dichloropropene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
trans-1,4-Dichloro-2-butene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Trichloroethene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Trichlorofluoromethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Vinyl chloride	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	
Xylene, M&P-	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	

FoD: frequency of detection

GW: groundwater

Max: maximum concentration
Min: minimum concentration

ND: not detected above reporting limits VOCs: volatile organic compounds

Page 2 of 2 ENVIRON

Table 3. Sediment Summary Results - Metals and VOCs^a

Туре	Chemical Name ^b	Branch Brook - Potential GW Discharge Zone						ich Brook m (Refere		Naug		iver - Pote harge Zon	ential GW e	Naugatuck River - Upstream (Reference)				
Ī		FoD	Min	Max	Average	FoD	Min	Max	Average	FoD	Min	Max	Average	FoD	Min	Max	Average	
Metals	Arsenic	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
Metals	Barium	8 / 8	23	33	29	8 / 8	18	35	25	7 / 7	13	30	21	9 / 9	19	48	27	
Metals	Cadmium	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	1 / 7	0.27	0.49	0.33	0 / 9	ND	ND	ND	
Metals	Chromium	8 / 8	6.2	9.0	7.9	8 / 8	5.0	12	8.5	7 / 7	6.0	69	17	9 / 9	9.3	19	13	
Metals	Copper	8 / 8	6.1	9.6	8.2	8 / 8	6.8	20	10	7 / 7	12	41	21	9 / 9	17	53	25	
Metals	Iron	8 / 8	7790	9670	8923	8 / 8	6820	14500	9458	7 / 7	4955	14500	8026	9 / 9	5860	10500	7592	
Metals	Lead	8 / 8	2.8	6.6	4.5	8 / 8	4.0	8.6	5.6	7 / 7	5.2	10	7.6	9 / 9	6.1	18	11	
Metals	Manganese	8 / 8	94	239	170	8 / 8	130	419	256	7 / 7	99	465	206	9 / 9	82	236	149	
Metals	Nickel	8 / 8	7.7	10	9.2	8 / 8	7.7	12	9.2	7 / 7	5.7	12	8.0	9 / 9	6.1	13	8.2	
Metals	Sodium	8 / 8	65	88	77	8 / 8	44	150	81	7 / 7	55	106	68	9 / 9	55	129	85	
Metals	Zinc	8 / 8	24	35	31	8 / 8	23	55	34	7 / 7	35	61	52	9 / 9	42	135	66	
VOCs	1,1,1,2-Tetrachloroethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,1,1-Trichloroethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,1,2,2-Tetrachloroethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,1,2-Trichloro-1,2,2-trifluoroethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,1,2-Trichloroethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,1-Dichloroethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,1-Dichloroethene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,1-Dichloropropene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,2,3-Trichlorobenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,2,3-Trichloropropane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,2,4-Trichlorobenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,2,4-Trimethylbenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,2-Dibromo-3-chloropropane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,2-Dibromoethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,2-Dichlorobenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,2-Dichloroethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,2-Dichloropropane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,3,5-Trichlorobenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,3,5-Trimethylbenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,3-Dichlorobenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,3-Dichloropropane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,4-Dichlorobenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	1,4-Dioxane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	2,2-Dichloropropane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	2-Butanone	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	2-Chlorotoluene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	2-Hexanone	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	4-Chlorotoluene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	4-Isopropyltoluene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	4-Methyl-2-pentanone	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Acetone	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Acrylonitrile	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Benzene	0 / 8	ND	ND	ND ND	0 / 8	ND	ND	ND ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND ND	
VOCs	Bromobenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND ND	
VOCs	Bromochloromethane	0 / 8	ND	ND	ND ND	0 / 8	ND	ND	ND ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND ND	
VOCs	Bromodichloromethane	0 / 8	ND ND	ND ND	ND ND	0 / 8	ND ND	ND ND	ND ND	0 / 7	ND	ND ND	ND ND	0 / 9	ND ND	ND ND	ND ND	
VOCs VOCs	Bromoform		ND ND	ND ND	ND ND	0 / 8	ND ND	ND ND	ND ND	0 / 7	ND ND	ND ND	ND ND	0 / 9	ND ND	ND ND	ND ND	
	Bromomethane	0 / 8																
VOCs	Carbon disulfide	0 / 8	ND ND	ND ND	ND ND	0 / 8	ND ND	ND ND	ND ND	0 / 7	ND ND	ND ND	ND ND	0 / 9	ND	ND ND	ND ND	
VOCs	Carbon tetrachloride						ND ND	ND ND			ND ND	ND ND			ND	ND ND	ND ND	
VOCs VOCs	Chlorobenzene Chloroethane	0 / 8	ND	ND	ND ND	0 / 8	ND ND	ND ND	ND ND	0 / 7		ND ND	ND ND	0 / 9	ND			
	COLOROPINANE	0 / 8	ND	ND	ND	0 / 8	טעו	טא	ND	0 / /	ND	טא	ND ND	0 / 9	ND	ND ND	ND	

ENVIRON

Table 3. Sediment Summary Results - Metals and VOCs^a

Туре	Chemical Name ^b	Brai		ok - Potei arge Zon				ch Brook m (Refere		Nauga		iver - Pote		Naugatuck River - Upstream (Reference)				
туре	Chemical Name	FoD	Min	Max	Average	FoD	Min	Max	Average	FoD	Min	Max	Average	FoD	Min	Max	Average	
VOCs	Chloromethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	cis-1.2-Dichloroethene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	cis-1,3-Dichloropropene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Dibromochloromethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Dibromomethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Dichlorodifluoromethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Diethyl ether	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Ethanol	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	1 / 7	0.66	1.5	0.97	0 / 9	ND	ND	ND	
VOCs	Ethyl tertiary-butyl ether	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Ethylbenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Hexachlorobutadiene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Isopropylether	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Isopropylbenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Methyl tert-butyl ether	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Methylene chloride	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Naphthalene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	n-Butylbenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	n-Propylbenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	o-Xylene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	sec-Butylbenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Styrene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Tert-Butyl alcohol	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	tert-Butylbenzene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Tertiary-amyl methyl ether	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Tetrachloroethene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Tetrahydrofuran	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Toluene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	trans-1,2-Dichloroethene	0 / 8	ND	ND	ND	0 / 8	ND	ND		0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	trans-1,3-Dichloropropene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	trans-1,4-Dichloro-2-butene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Trichloroethene	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Trichlorofluoromethane	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Vinyl chloride	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
VOCs	Xylene, M&P-	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND	
TOC	Total Organic Carbon	8 / 8	498	1849	1129	8 / 8	473	3370	1442	7 / 7	296	8230	1684	9 / 9	260	6960	2920	
Total Solids	Percent Solids ^c	8 / 8	66	76	71	8 / 8	63	81	72	7 / 7	71	82	76	9 / 9	65	77	72	

a. Minimum, Maximum, and Average concentrations calculated using ND = 1/2 RL. Not reported where the chemical is not detected in any sample

b. All concentrations are mg/kg, except Percent Solids (%)

c. Percent Solids reported for metals sample

%: percent

FoD: frequency of detection

GW: groundwater

Max: maximum concentration mg/kg: milligrams per kilogram

Min: minimum concentration

NA: not applicable

ND: not detected above reporting limits

RL: reporting limit

VOCs: volatile organic compounds

Page 2 of 2 ENVIRON

Table 4. Central Tendency Values and Statistical Comparison for Metals and TOC in Branch Brook and Naugatuck River

			Branch Brook			Naugatuck Rive	er
Type ^a	Chemical Name ^c	Upstream (Reference) Central Tendency Concentration ^b	Potential GW Discharge Zone Central Tendency Concentration ^b	Statistical Result (upstream vs potential GW discharge zone)	Upstream (Reference) Central Tendency Concentration ^b	Potential GW Discharge Zone Central Tendency Concentration ^b	Statistical Result (upstream vs potential GW discharge zone)
Metals	Arsenic	ND	ND	NA	ND	ND	NA
Metals	Barium	25	29	p=0.094 ^d	27	21	p=0.086 ^d
Metals	Cadmium	ND	ND	NA	0.33	0.30	p=0.56 ^e
Metals	Chromium	8.5	7.9	p=0.23 ^d	11	8.9	p=0.090 ^e
Metals	Copper	9.4	8.8	p=0.33 ^e	21	18	p=0.37 ^e
Metals	Iron	8,995	9,018	p=0.96 ^e	7592	8026	p=0.36 ^d
Metals	Lead	4.8	4.1	p=0.33 ^e	11	7.6	p=0.017 ^d
Metals	Manganese	256	170	p=0.018 ^d	140	171	p=0.40 ^e
Metals	Nickel	9.2	9.2	p=0.50 ^d	8.2	8.0	p=0.41 ^d
Metals	Sodium	81	79	p=0.65 ^e	83	61	p=0.11 ^e
Metals	Zinc	34	31	p=0.27 ^d	55	55	p=0.46 ^e
Organics	TOC (%)	0.14%	0.11%	p=0.21 ^d	0.29%	0.06%	p=0.24 ^e

- a. All metals were detected in sediment at least once, except arsenic (arsenic was not detected in either Branch Brook or Naugatuck River).
- b. Central tendency values (either average or median) presented depending on statistical test performed^{i.e}
- c. All concentrations are in milligrams per kilogram (mg/kg).
- d. Normality test passed, one-tailed t-test performed on average value
- e. Normality test failed, Mann-Whitney test performed on median value

GW: groundwater

NA: not analyzed (statistical tests only conducted for detected chemicals)

ND: not detected above reporting limit

TOC: total organic carbon

Bold indicates a significant difference at p<0.05

Table 5. Comparison of Sediment Metals Data (1994 versus 2014)

Chemical Name ^a	Year								ch Brook m (Refere		Naug	Naugatuck River - Potential GW Discharge Zone				Naugatuck River - Upstream (Reference)				
		FoD	Min	Max	Average ^b	FoD	Min	Max	Average ^b	FoD	Min	Max	Average ^b	FoD	Min	Max	Average ^b			
Arsenic	1994	1 / 9	1.0	1.0	0.6	0 / 2	ND	ND	ND	1 / 5	0.43	0.43	0.49	0 / 4	ND	ND	ND			
	2014	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	0 / 7	ND	ND	ND	0 / 9	ND	ND	ND			
Barium	1994	9 / 9	18	38	25	2 / 2	29	400	215	5 / 5	23	38	32	4 / 4	24	41	31			
	2014	8 / 8	23	33	29	8 / 8	18	35	25	7 / 7	13	30	21	9 / 9	19	48	27			
Cadmium	1994	0 / 9	ND	ND	ND	0 / 2	ND	ND	ND	4 / 5	0.22	1.1	0.50	1 / 4	1.1	1.1	0.35			
	2014	0 / 8	ND	ND	ND	0 / 8	ND	ND	ND	1 / 7	0.27	0.49	0.33	0 / 9	ND	ND	ND			
Chromium	1994	9 / 9	5.0	16	8.7	2 / 2	8.8	13	11	5 / 5	12	78	32	4 / 4	12	25	16			
	2014	8 / 8	6.2	9.0	7.9	8 / 8	5.0	12	8.5	7 / 7	6.0	69	17	9 / 9	9.3	19	13			
Copper	1994	9 / 9	8.0	17	12	2 / 2	6.6	12	9	5 / 5	34	101	71	4 / 4	28	92	47			
	2014	8 / 8	6.1	9.6	8.2	8 / 8	6.8	20	10	7 / 7	12	41	21	9 / 9	17	53	25			
Lead	1994	7 / 9	1.2	9.8	4.4	2 / 2	1.6	410	206	5 / 5	11	21	18	4 / 4	7.2	29	16			
	2014	8 / 8	2.8	6.6	4.5	8 / 8	4.0	8.6	5.6	7 / 7	5.2	10	7.6	9 / 9	6.1	18	11			
Nickel	1994	9 / 9	7.8	13	10	1 / 2	12	12	6.2	5 / 5	7.8	22	13	4 / 4	7.0	13	9.0			
	2014	8 / 8	7.7	10	9.2	8 / 8	7.7	12	9.2	7 / 7	5.7	12	8.0	9 / 9	6.1	13	8.2			
Zinc	1994	9 / 9	17	44	28	2 / 2	22	170	96	5 / 5	80	140	106	4 / 4	62	170	95			
	2014	8 / 8	24	35	31	8 / 8	23	55	34	7 / 7	35	61	52	9 / 9	42	135	66			

a. All concentrations are in milligrams per kilogram (mg/kg).

b. 2014 average concentrations calculating using ND = 1/2 RL, 1995 RCRA Facility InvestigationI (1994 average) states that "mean values were calculated using 1/2 the quantitation limit for non-detects."

FoD: frequency of detection

NA: not analyzed

ND: not detected above reporting limit

Table 6. Sediment Physical Parameters

	Branch Brook - Potential GW							pstream	Naugatuck River - Potential					Naugatuck River -			
Chemical Name	Discharge Zone					(Ret	erence	!)	•	GW Disc	charge	Zone	Upstream (Reference)				
	n	Min	Max	Average	n	Min	Max	Average	n	Min	Max	Average	n	Min	Max	Average	
Fractional % Sieve #4 (>4750µm): pebble	8	0.41	36	11	8	0.20	36	19	7	0.25	27	12	9	0	29	3.6	
Fractional % Sieve #10 (4750-2000µm): granule	8	1.2	14	6.0	8	0.70	38	13	7	2.1	43	14	9	0.10	9.2	2.7	
Fractional % Sieve #20 (2000-850µm): very coarse sand	8	2.0	22	12	8	6.0	36	17	7	15	33	25	9	0.10	49	14	
Fractional % Sieve #40 (850-425µm): coarse sand	8	17	34	25	8	8.1	49	26	7	8.1	46	26	9	1.7	37	16	
Fractional % Sieve #60 (425-250µm): medium sand	8	13	54	31	8	0.4	46	18	7	1.4	29	14	9	6.7	51	27	
Fractional % Sieve #100 (250-150µm): fine sand	8	0.17	15	5.5	8	0.10	4.4	2.3	7	0	2.9	1.1	9	0	13	2.4	
Fractional % Sieve #200 (150-75µm): very fine sand	8	1.3	19	8.7	8	0.23	16	4.4	7	0.10	19	6.9	9	0.90	60	33	
Fractional % Sieve #230 (<75µm): silt and clay	8	0.25	5.5	1.3	8	0	1.4	0.30	7	0	3.1	0.70	9	0.10	4.8	1.9	

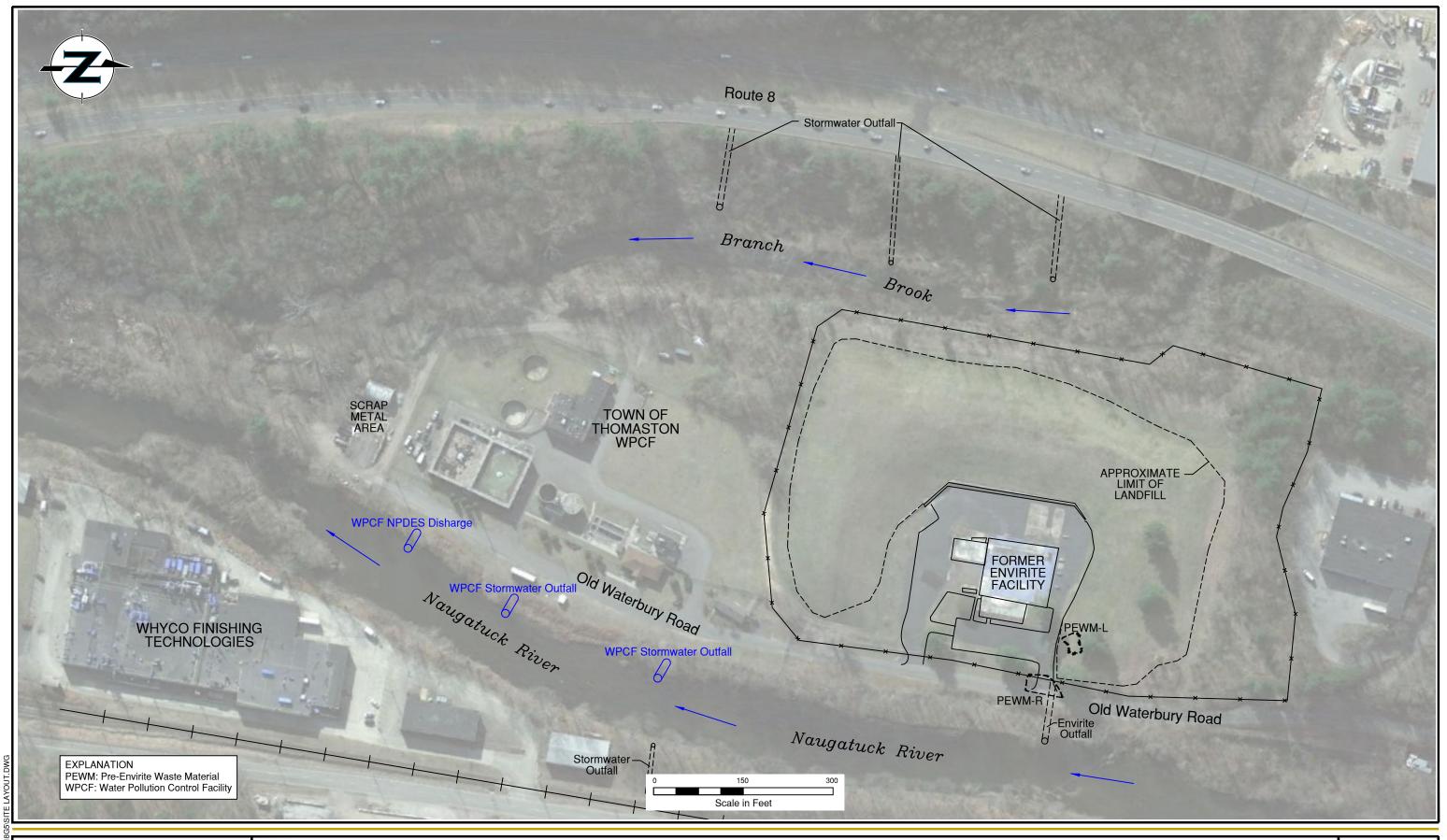
Bold outline denotes fractional % sieve with majority of sediment

%: percent µm: micrometer GW: groundwater

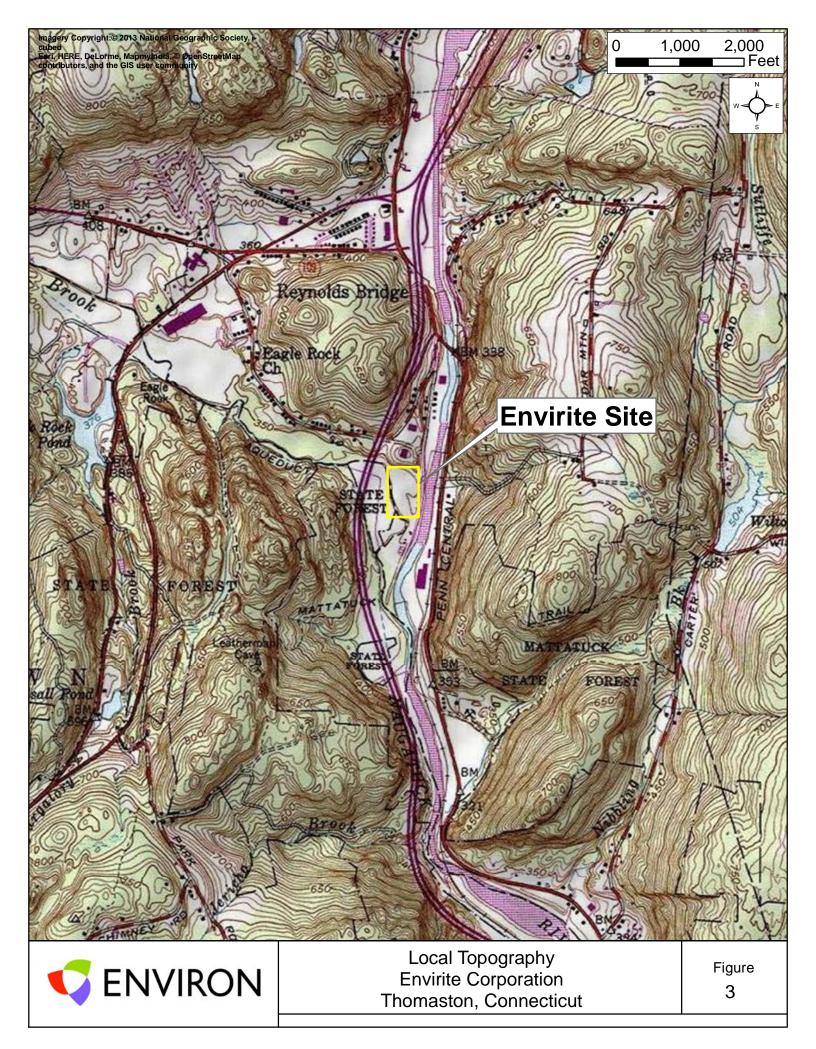
Max: maximum concentration
Min: minimum concentration

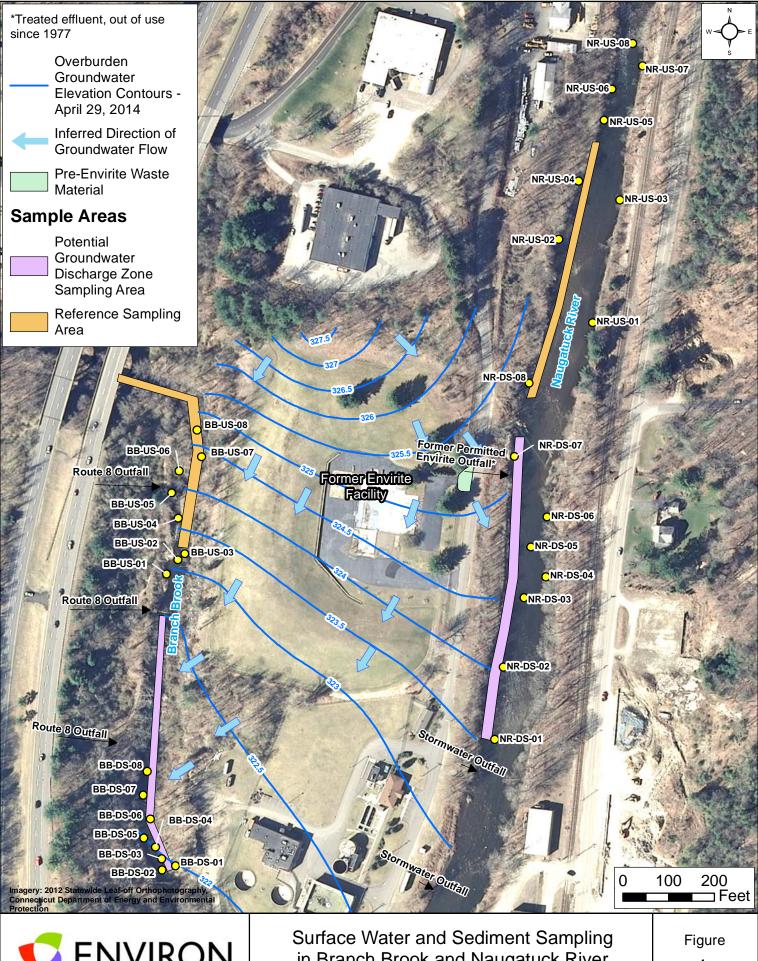
n: sample size

TOC: total organic carbon


Figures

Site Location Envirite Corporation Thomaston, Connecticut

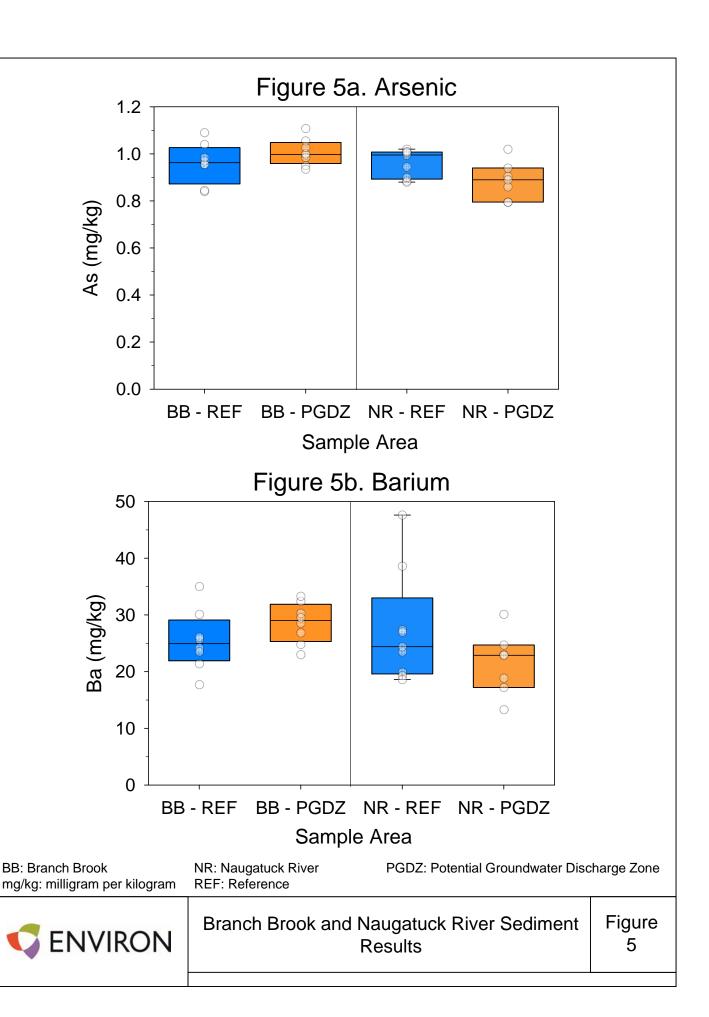

Figure 1

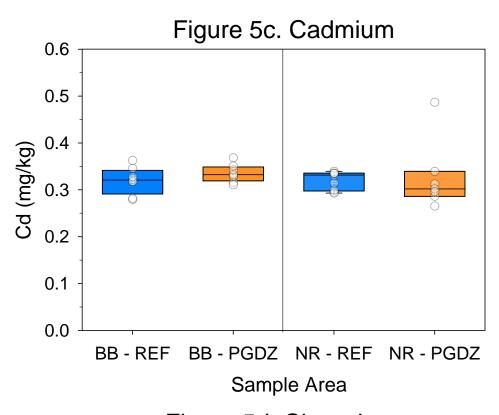


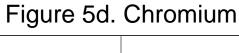
DRAFTED BY: \GMILES DATE: 1/26/2015

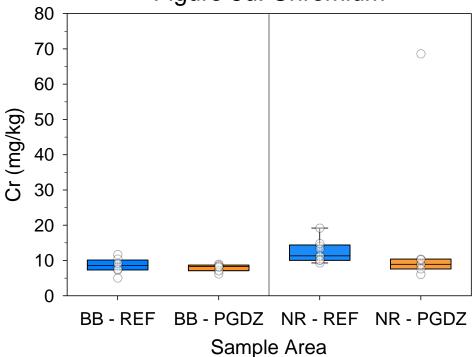
Site Layout

Envirite RCRA Facility
Old Waterbury Road, Thomaston, Connecticut

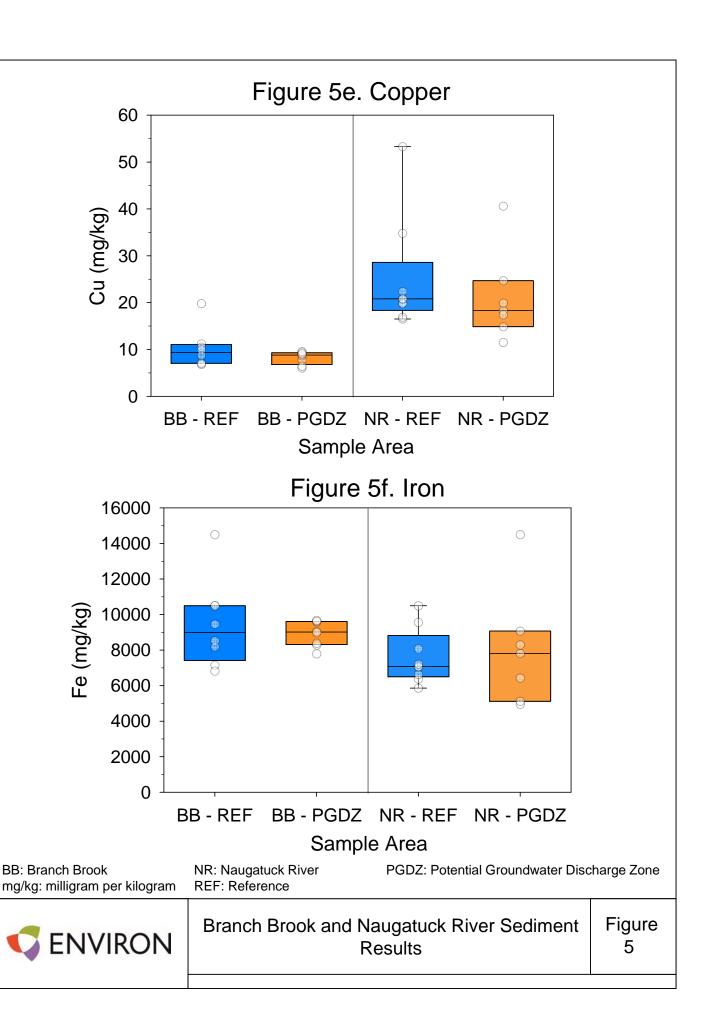


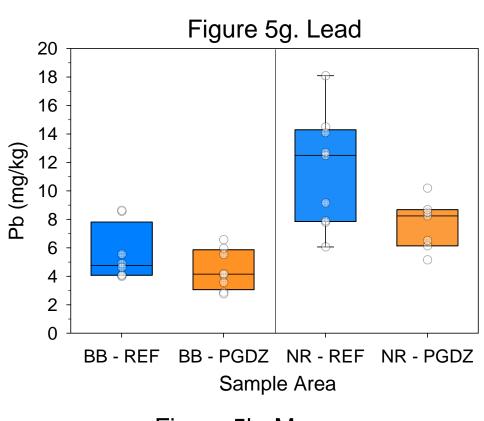


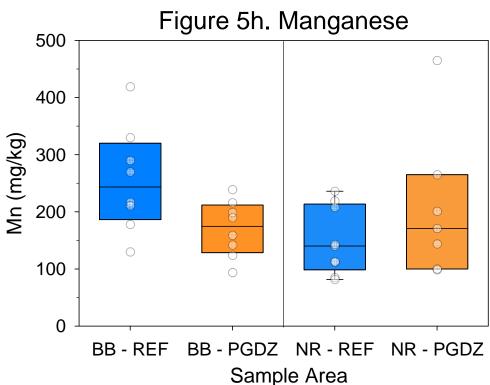

ENVIRON


in Branch Brook and Naugatuck River

4


BB: Branch Brook mg/kg: milligram per kilogram NR: Naugatuck River **REF: Reference**


PGDZ: Potential Groundwater Discharge Zone

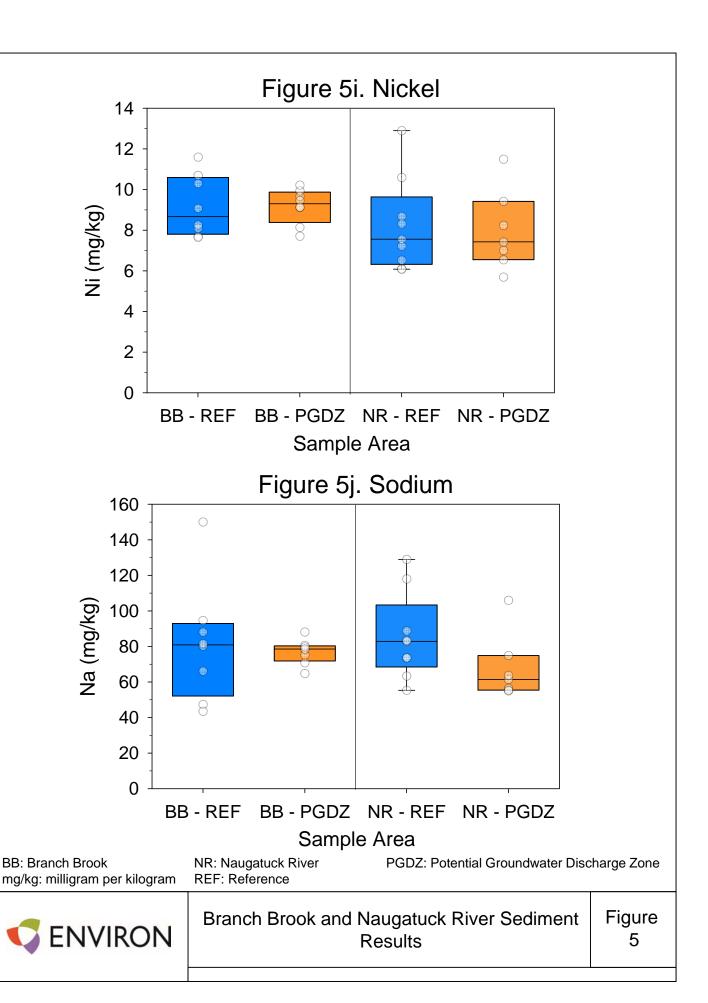


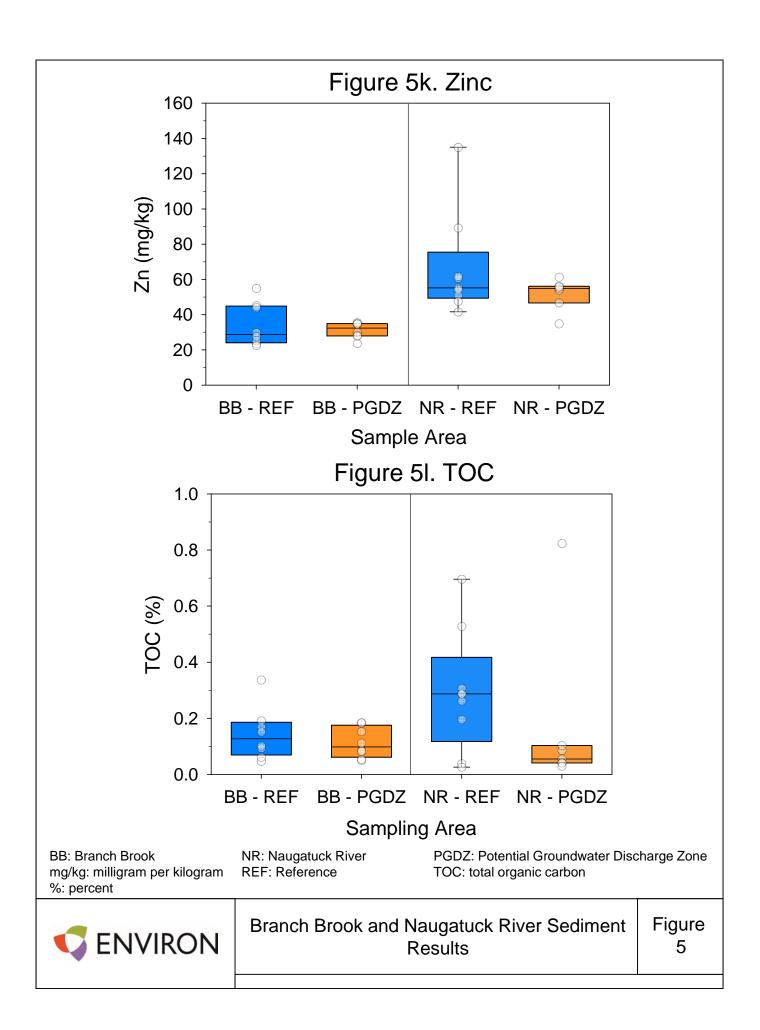
Branch Brook and Naugatuck River Sediment Results

Figure 5

S ENVIRON

mg/kg: milligram per kilogram


BB: Branch Brook


NR: Naugatuck River REF: Reference

PGDZ: Potential Groundwater Discharge Zone

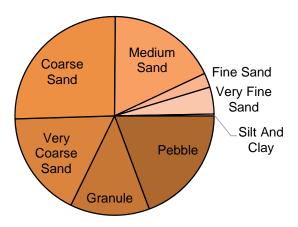
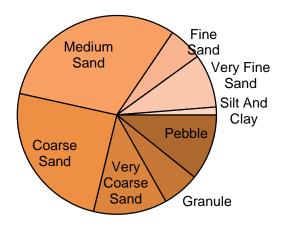
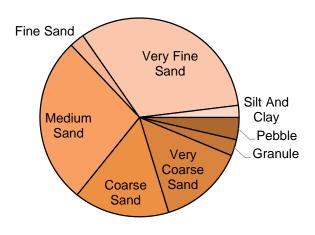
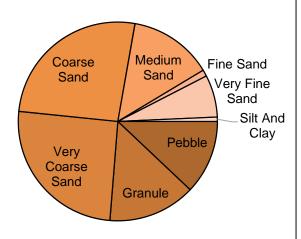

Branch Brook and Naugatuck River Sediment Results

Figure 5




BB-REF


BB-PGDZ

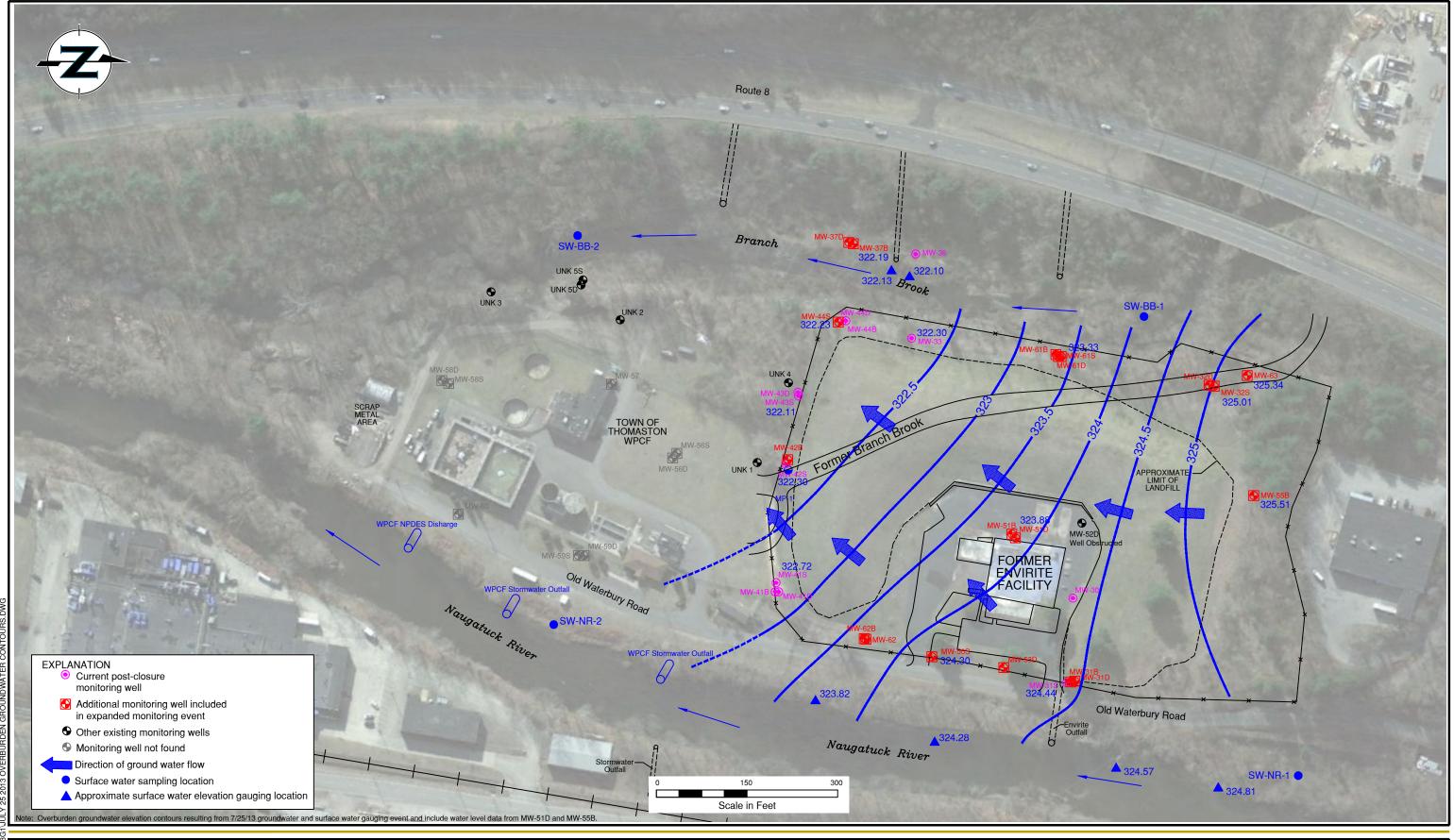
NR - REF

NR - PGDZ

BB: Branch Brook NR: Naugatuck River

PGDZ: Potential Groundwater Discharge Zone

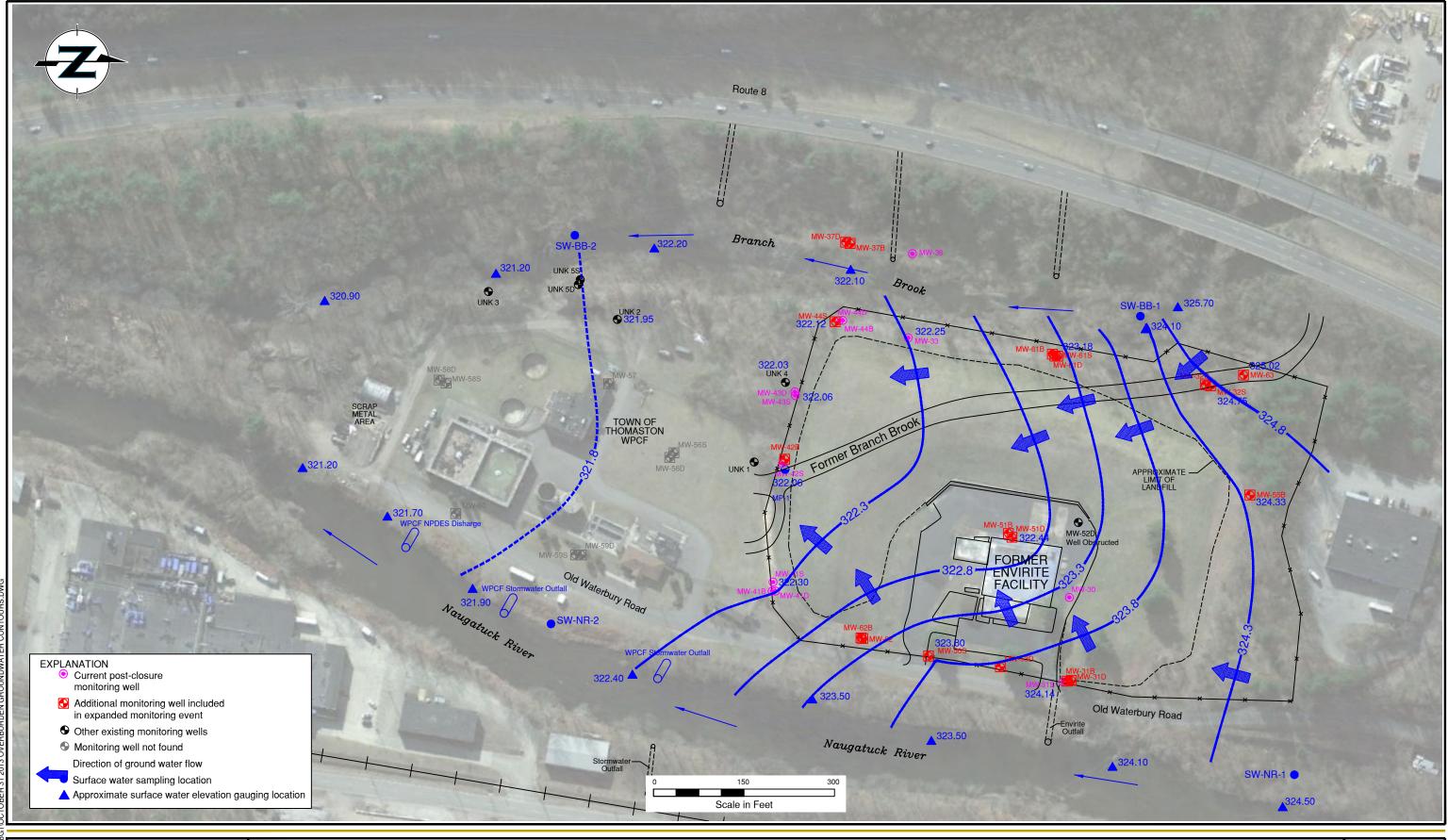
REF: Reference



Average Sediment Grain Size Distributions from Branch Brook and Naugatuck River

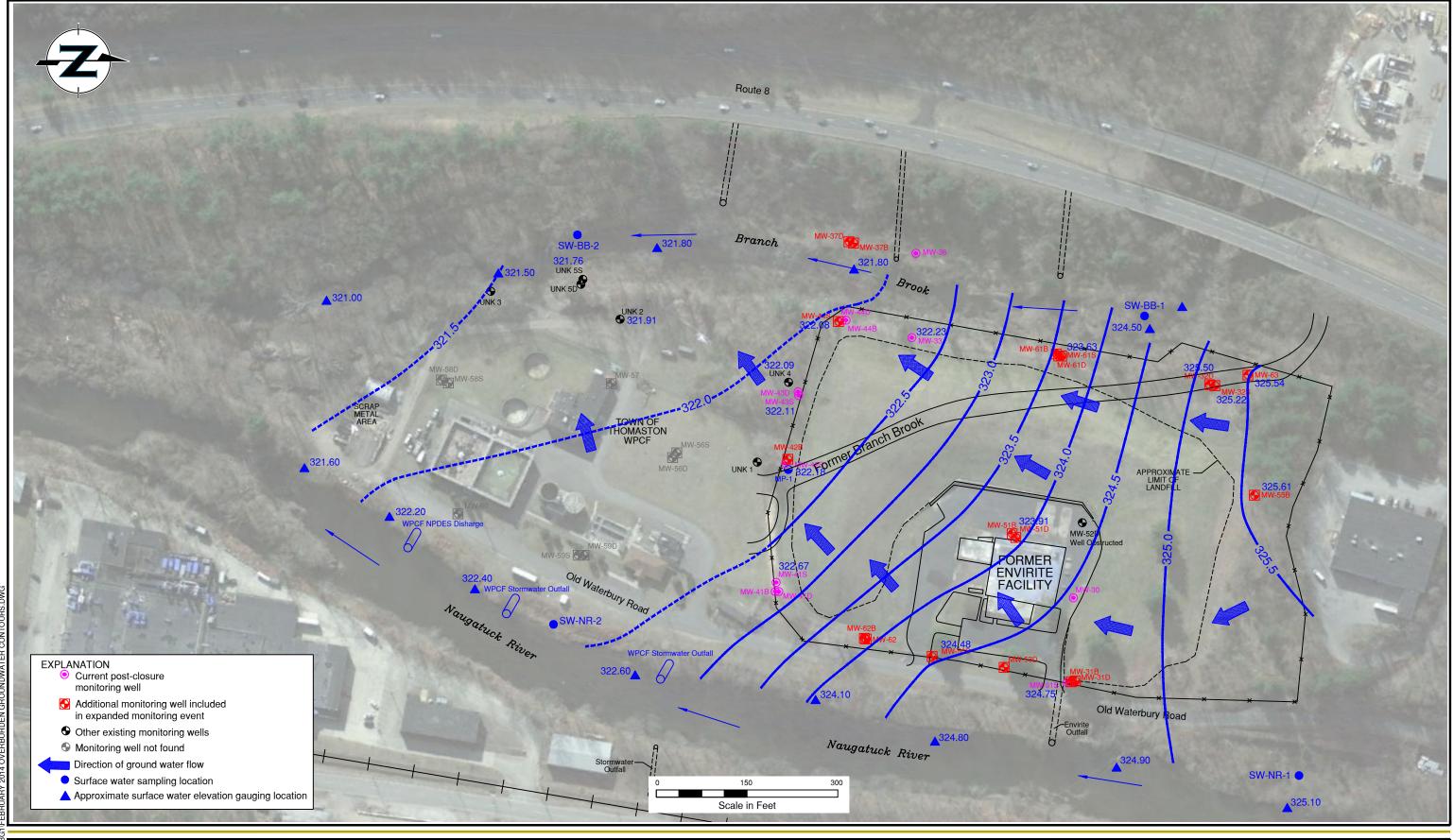
Figure 6

Appendix A

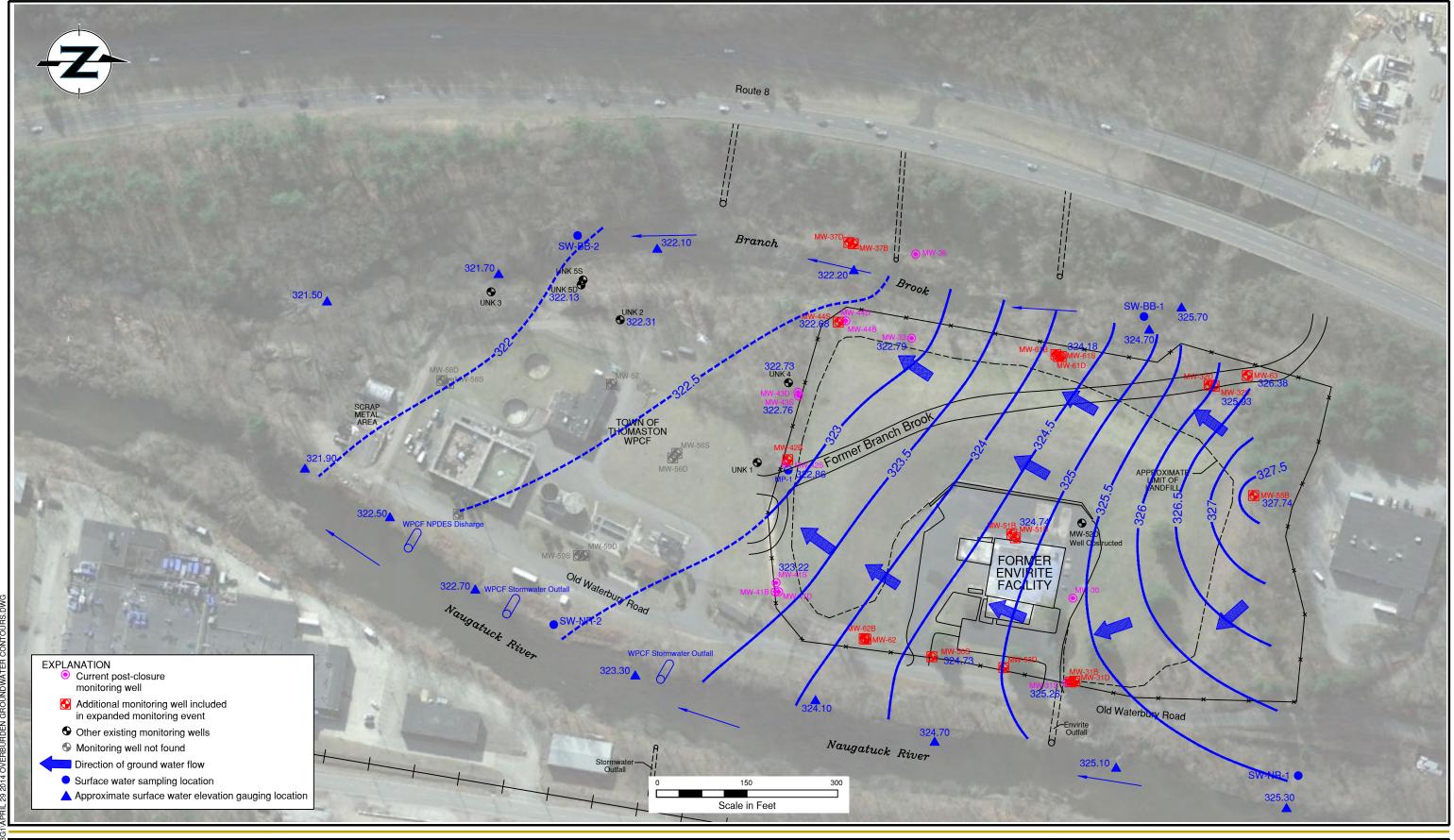

Overburden Groundwater Elevation Contours: July 25, 2013 – April 29, 2014

DRAFTED BY: \GMILES DATE: 2/25/2014

Environmental Monitoring Locations Site Plan July 25, 2013 Overburden Groundwater Elevation Contours


Envirite RCRA Facility
Old Waterbury Road, Thomaston, Connecticut

Environmental Monitoring Locations Site Plan
October 31, 2013 Overburden Groundwater Elevation Contours

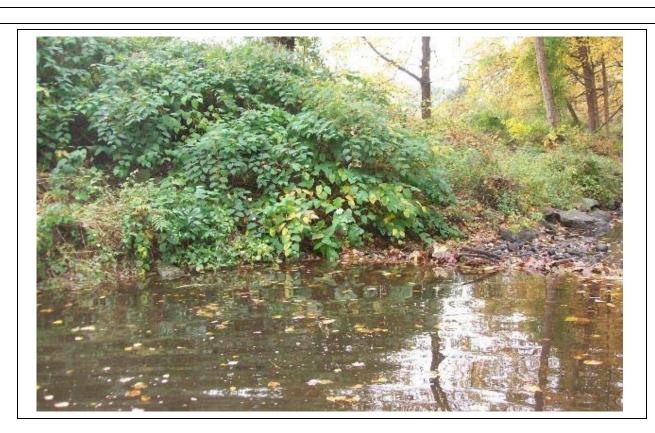

Envirite RCRA Facility
Old Waterbury Road, Thomaston, Connecticut

DRAFTED BY: \GMILES DATE: 5/2/2014

Environmental Monitoring Locations Site Plan February 12, 2014 Overburden Groundwater Elevation Contours

Figure **3-1**

DRAFTED BY: \GMILES DATE: 5/29/2014


Environmental Monitoring Locations Site Plan April 29, 2014 Overburden Groundwater Elevation Contours

Envirite RCRA Facility
Old Waterbury Road, Thomaston, Connecticut

Appendix B Photo Log

Photo 1: Branch Brook – Downstream: Beaver dam at downstream boundary of reach

Photo 2: Branch Brook – Downstream: East bank at downstream boundary of reach

Site: Envirite RCRA Facility, Thomaston, CT

Photo 3: Branch Brook - Downstream: Location BB-DS- 01

Photo 4: Branch Brook – Downstream: BB-DS-SED-01 sediment sample for metals analysis

Site: Envirite RCRA Facility, Thomaston, CT

Date: October 2014 Senviron

Photo 5: Branch Brook – Downstream: BB-DS-SED-02 sediment samples for VOC analysis

Photo 6: Branch Brook – Downstream: BB-DS-SED-02 sediment sample for metals analysis

Site: Envirite RCRA Facility, Thomaston, CT

Photo 7: Branch Brook – Downstream: BB-DS-SED-03 sediment sample for VOC analysis

Photo 8: Branch Brook – Downstream: BB-DS-SED-03 sediment sample for metals analysis

Site: Envirite RCRA Facility, Thomaston, CT

Photo 9: Branch Brook – Downstream: BB-DS-SED-04 sediment sample for metals analysis

Photo 10: Branch Brook – Downstream: DUP-1 sediment sample for metals analysis

Site: Envirite RCRA Facility, Thomaston, CT

Photo 11: Branch Brook – Downstream: BB-DS-SED-05 sediment sample for metals analysis

Photo 12: Branch Brook – Downstream: Upstream boundary of reach

Site: Envirite RCRA Facility, Thomaston, CT

Photo 13: Branch Brook – Downstream: View looking downstream from upstream boundary of reach

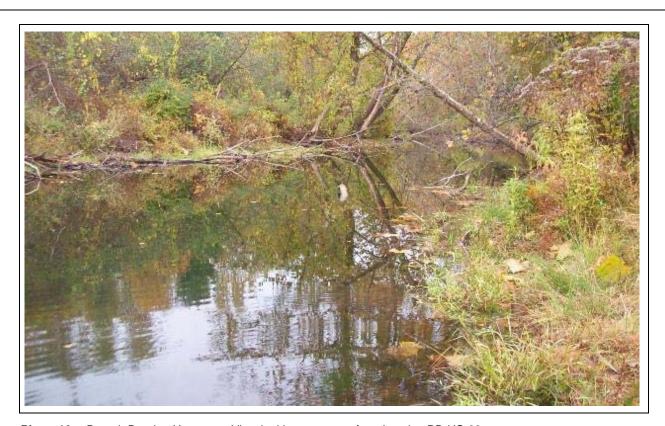


Photo 14: Branch Brook – Upstream: View looking upstream from location BB-US-01

Site: Envirite RCRA Facility, Thomaston, CT

Photo 15: Branch Brook – Upstream: BB-US-SED-01 sediment sample for metals analysis

Photo 16: Branch Brook – Upstream: View looking upstream from location BB-US-03

Site: Envirite RCRA Facility, Thomaston, CT

Photo 17: Branch Brook – Upstream: BB-US-SED-03 sediment sample for metals analysis

Photo 18: Branch Brook – Upstream: BB-US-SED-04 sediment sample for metals analysis

Site: Envirite RCRA Facility, Thomaston, CT

Photo 19: Branch Brook – Upstream: BB-US-SED-05 sediment sample for metals analysis

Photo 20: Branch Brook – Upstream: BB-US-SED-06 sediment sample for metals analysis

Site: Envirite RCRA Facility, Thomaston, CT

Date: October 2014 Senviron

Photo 21: Branch Brook – Upstream: BB-US-SED-07 sediment sample for metals analysis

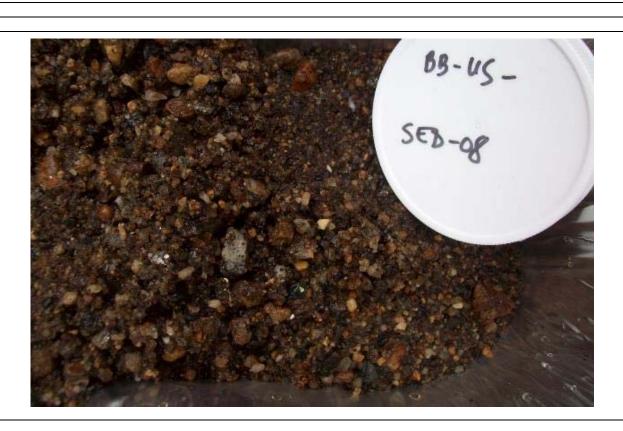


Photo 22: Branch Brook – Upstream: BB-US-SED-08 sediment sample for metals analysis

Site: Envirite RCRA Facility, Thomaston, CT

Photo 23: Naugatuck River – Downstream: NR-DS-SED-01 and DUP-4 sediment sample for metals analysis

Photo 24: Naugatuck River – Downstream: NR-DS-SED-02 sediment sample for metals analysis

Site: Envirite RCRA Facility, Thomaston, CT

Photo 25: Naugatuck River – Downstream: NR-DS-SED-05 and MS/MSDS-3 sediment sample for metals analysis

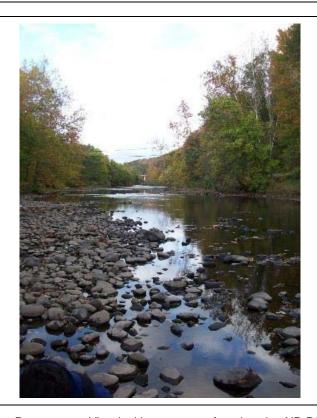


Photo 26: Naugatuck River – Downstream: View looking upstream from location NR-DS-03

Site: Envirite RCRA Facility, Thomaston, CT

Date: October 2014 Senviron

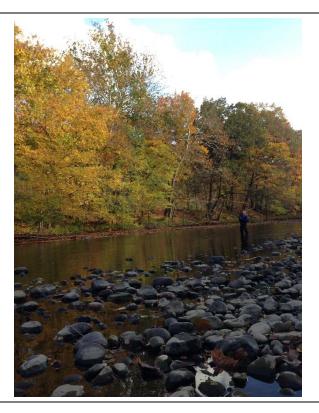


Photo 27: Naugatuck River – Downstream: Sampling location NR-DS-03

Photo 28: Naugatuck River – Downstream: NR-DS-SED-06 sediment sample for metals analysis

Site: Envirite RCRA Facility, Thomaston, CT

Photo 29: Naugatuck River – Downstream: NR-DS-SED-07 sediment sample for metals analysis

Photo 30: Naugatuck River – Downstream: NR-DS-SED-08 sediment sample for metals analysis

Site: Envirite RCRA Facility, Thomaston, CT

Photo 31: Naugatuck River – Upstream: NR-US-SED-01 sediment sample for VOC analysis

Photo 32: Naugatuck River – Upstream: NR-US-SED-01 sediment sample for VOC analysis

Site: Envirite RCRA Facility, Thomaston, CT

Date: October 2014 Senviron

Photo 33: Naugatuck River – Upstream: NR-US-SED-01 sediment sample for metals analysis

Photo 34: Naugatuck River – Upstream: View looking upstream from location NR-US-01

Site: Envirite RCRA Facility, Thomaston, CT

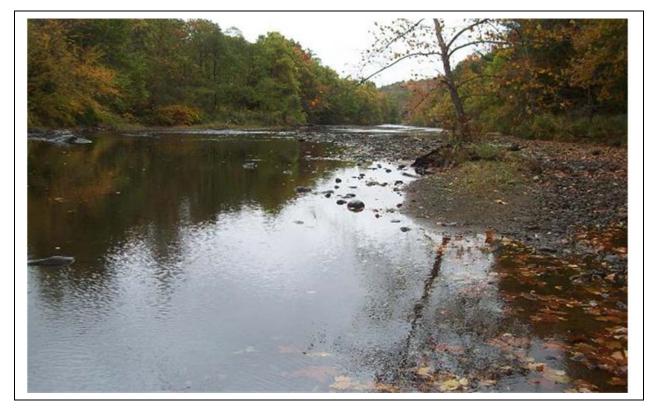


Photo 35: Naugatuck River – Upstream: View looking downstream from location NR-US-01

Photo 36: Naugatuck River – Upstream: NR-US-SED-02 sediment sample for metals analysis

Site: Envirite RCRA Facility, Thomaston, CT

Photo 37: Naugatuck River – Upstream: NR-US-SED-03 sediment sample for metals analysis

Photo 38: Naugatuck River – Upstream: NR-US-SED-04 sediment sample for metals analysis

Site: Envirite RCRA Facility, Thomaston, CT

Date: October 2014 Senviron

Photo 39: Naugatuck River – Upstream: NR-US-SED-05 sediment sample for metals analysis

Photo 40: Naugatuck River – Upstream: NR-US-SED-06 sediment sample for metals analysis

Site: Envirite RCRA Facility, Thomaston, CT

Photo 41: Naugatuck River – Upstream: NR-US-SED-07 sediment sample for metals analysis

Photo 42: Naugatuck River – Upstream: NR-US-SED-08 sediment sample for metals analysis

Site: Envirite RCRA Facility, Thomaston, CT

Date: October 2014 Senviron

Appendix C

Laboratory Chain-of-Custody Forms

		-**
CB98028	BY.	
3.0	Special Handlin	g:

	M ANALYTICAL, INC. Featuring AL TECHNOLOGY			СНА	IN (OF Page					REC	OR	D	12			Rush All TA Min. 2	rd TA ΓΑΤ - Ts sub	T - 7 Date ject to otifica	7 to 10 business days Needed: o laboratory approval ation needed for rushes after 60 days unless otherwise instructed.	
Report To:	ENVIRON													08	3-14	218	9:	3			
) 	136 Commercial St Suite 402					Kris	Sa	bing	a			_		Site Na	me:	En	viri	te			
	Portland, ME O41	21				PO B				N5111		-				Tho		***********		State: CT	
Project Mgr. John P Derek Pelletier			_	Chappagua NY 10514 Location: Sampler(s): P.O No.: Quote/RQN:									er(s):	Ani	ne De	anie	:(State: C1	-		
F=Field Filtered	1=Na ₂ S2O ₃						d					L	ist Pres	ervati	ve Coc	le belo	w:			QA/QC Reporting Notes:	
7=CH3OH 8=N	aHSO ₄ 9=Deionized Water 10=H ₃ Pe	O_4	11=		12=	=					7,9	12						I	-	* additional charges may appply	
W=Dinking Wat	ter GW=Groundwater SW=Su	rface Wate	er W	W=Waste Wat	er			C	ontain	ers				Ana	lysis					MA DEP MCP CAM Report? Yes] No
	oil SL=Sludge A=Indoor/Amb						Vials	# of Amber Glass	of Clear Glass		0928		As, Ba, Cd, Cr	Fe, Mn,	1 Pag 2n		n Size	Solids	Check if chlorinated	CT DPH RCP Report? Yes	No
	G= Grab	C	-Compsit	e	be	trix	of VOA	Ambe	lear	of Plastic		3	8	T	Na N:	Ö	Grain	otal	k if c	□ NJ Reduced* □ NJ Full* □ Tier II* □ Tier IV*	
Lab ID:	Sample ID:	D	ate:	Time:	Ty	Matrix	# of 1	7 Jo #	# of (# of I	50	19	As	3	ZA	6	2	1	Chec	Other: State-specific reporting standards:	-
802801	BB-DS-SED-01	10/1	4/14	940	9	SO		3					X	X	X	X	X	X			
1 02	BB-DS-SEDV-01	1	\	940	1	Sd	3				X										
1 3	BB-DS-SWV-01			940		SW	3					X									
04	88-DS-SED-02			955		50		3					X	X	X	X	X	X			
05	66-05-SEDV-02	(9))	955	(9)	50	3				X		3								
06	0.0	1)	955	T	SW	3					X									
07	BB-DS-SED-03			1015		SO		3					X	X	X	X	X	X			
80	BB-DS- SEDV-03			1015		50	3				· X										
69	BB-DS-SWV-03	V	/	1015	V	SW						X					T				
10	0.0	10/14	1/14	1135	19	10		3					X	X	X	X	X	X			1
Reli	nquished by:		Received	l by:			Date:			Time:	Ter	np °C		EDD f	ormat:						
Aplelo	a leryel	1/1	2/	leag	19	10/1	4/1	4	1	453	Observe	d.8 on Factor	X	E-mail	to:	ac	lani	ele) e	environcorp.com	_
1	Matt		m	W		10	4	14	1	721	()									
- 10			- P	0			-			, , , , , , , , , , , , , , , , , , , ,	Correcto	8	Condi	ion up	on rece	eipt:	Custod	y Seals	s:	☐ Present ☐ Intact ☐ Broker	1
											IR ID#	0		mbien	1 10	ed	Ref	rigerate	ed	☐ DI VOA Frozen ☐ Soil Jar Fro	zen

Special Handling:	
-------------------	--

Report To: ENVIRON Invoice To: E 136 Commercial St Suite 402 Portland, ME 04101 Telephone #: 207-517-8225							Site National Site National Site National State Nat										TAT - TS sub 24-hr no es dispo -142 rite stov	Date ject to otific osed	7 to 10 business days e Needed: to laboratory approval cation needed for rushes after 60 days unless otherwise instructed. 3 G 3 State: CT QA/QC Reporting Notes:
7= CH3OH 8= Na	HSO ₄ 9=Deionized Water 10=H ₃ PC)4 11:		12=	: 			-1		7/0	1 76						<u> </u>		* additional charges may appply
DW=Dinking Wate	er GW =Groundwater SW =Sui	rface Water W	W=Waste Wat	er		39,19	C	ontain	ers				Ana	lysis					MA DEP MCP CAM Report? Yes No
O=Oil SO=Soi		ent Air SG=So		0	-] ×	# of VOA Vials	of Amber Glass	of Clear Glass	ıstic	5, 8260	0978 5	As Calcy Cu	F. MM, Ma, N., P.S.			Grainstee	otal Solidi	nlorinat	CT DPH RCP Report? Yes No
Lab ID:	Sample ID:	Date:	Time:	Type	Matrix	of V(of Aı	of CI	of Plastic	V0C,	VOCs	75.6	100	5	700	75	to	heck	Other:
	BB-DS-SEDV-04	10/14/14	1135	9	SO	3	#	#	#	X		Total Service	Fa colonia	1.0	-		1		State-specific reporting standards:
	BB-DS-SWV-04	A	1135		5W	-				1/	X						 		
The state of the s	86-DS-SED-05		1200	+	50		3	-			7	×	X	X	X	Χ	×		
	BB-DS-SEDV-05		1200		50	3	٦			X				- (/		1		
	BB-DS-SWV-05	(00)	1200	(a)		Same				- /	X								
	BB-DS-SED-06	14	1230		30		16				,	X	X	X	X	X	X	10	Run MS/MSD
	BB-DS-SEDV-06		1230	++	SO	76	7			X								10	Run MS/MSD
1 18	BB-D3-SWV-06		1230	11	SW	-					X								Run MO/MSD per
19	BB-DS-SED-07	1 V	1250	1	30	10	3					X	X	X	X	X	X		
1/20	BB-DS-SEDV-07	10/14/19	1250	G	SO	3				X		1							GM 10/1
Relin	quished by:		d by: //		A E	Date:			Time:	Tem	p °C		EDD f	ormat:		1	L		
Ophwhimog Miller				7	10/1	4/1	4	14	153	Observed	8		E-mail		ad	anie	210	CI	nvironcorp.com
1 1/1	flaff	m	any		10	14	4	1-	721	Corrected O. ()	Condit		(/					☐ Present ☐ Intact ☐ Broken ☐ DI VOA Frozen ☐ Soil Jar Frozen

SPECTRUM ANALYTICAL, INC.

CHAIN OF CUSTODY RECORD

Page

C092,28	Day 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
212 10000	Special Handling:
	☐ Standard TAT - 7 to 10 business days
RECORD	Rush TAT - Date Needed:
	All TATs subject to laboratory approval

All TATs subject to laboratory approval
Min. 24-hr notification needed for rushes
Samples disposed after 60 days unless otherwise instructe

HANI	Featuring IBAL TECHNOLOGY								1								Sample	es dispo	osed g	after 60 days unless otherwise instructed.
Report To:	ENVIRON			Invoice T	o:	E	nvi	rit	e					Project	No:	08-14218 43				
Magazinia (annual)	136 Commercial	St.				Kri	s Si	bino	19			-						CONTRACTOR NAME OF STREET		
1393	Suite 402			Kris Sibinga Po Box 591 Site Name:										me:	Envirite					
	Portland, ME 04	1101											Locatio	n:	Thomaston State: C1				State: CT	
Telephone #:	207-517-8 Derek Pelletie			P.O No.: Quote/RQN:								r(s):		Anne			rwood			
Project Mgr:								Quot	e/RQN:		To the second	-					Jonr	n Un	WE!	I MOG G
F=Field Filtered 7=CH3OH 8=1	1=Na ₂ S2O ₃ 2=HCl NaHSO ₄ 9=Deionized Water 1	3=H ₂ SO ₄ 10=H ₂ PO ₄	4=HNO ₃ :	5=NaOH	6=Asco 12		d					L	ist Pre	servativ	ve Cod	e belo	w:			QA/QC Reporting Notes:
											7,9	2								* additional charges may appply
DW=Dinking Wa	ater GW=Groundwater	SW=Surfac	ce Water WY	W=Waste Wat	er	*********		C	ontain	ers				Ana	lysis					MA DEP MCP CAM Report? Yes
O=Oil SO=S		or/Ambient	t Air SG=So	il Gas							•		3	B					70	CT DPH RCP Report? Yes
	01 1/							SS			0	3	5	-			3	-0	nate	Standard No QC
X1=	V 17/100/(100 X2=		X3=	=	3,000		Vials	r Gla	of Clear Glass		8260	8	13	Ja,			515	200	hlori	☐ ASP A* ☐ ASP B*
	G= Grab		C=Compsite	e	9	,ix	OA	mbe	lear	of Plastic		3	28	Yu		0	X,	30	c if c	□ NJ Reduced* □ NJ Full* □ Tier II* □ Tier IV*
Lab ID:	Sample ID:		Date:	Time:	Type	Matrix	# of VOA Vials	# of Amber Glass		of P	20	VOCS 8260	As, 8a, Cd, Cr, Cu	Fe, MA, Na, N., Pb	N	2	Grain	Total Solid	heck	Other:
79.22 2		7	10/14/19	1250	9	SW		#	#	#	-	X	4		114			,	0	State-specific reporting standards:
	1 BB-DS-SWV-03		A	1310	A	SO		3			-	1	X	X	X	X	X	X		* * * * * * * * * * * * * * * * * * * *
	- BB-DS-SED-08			1310		-	-7	3			1	-	^	^	^	/\	^	/	1	
	BB-DS-SEDY-0					80	3				X							2		
	1 BB-DS-SWV-0	0	8	1310	11	SW	3					X					3		旦	
	Dup-1-Soil					3/200	43	3			X	X	X	X	X	X	X	X		Separated the Soil
26	DUP-Z-Soil					50/50	163	3			X	X	X	X	X	X	X	X		the Sw samples ch
	MS/MSD-1		-		V	50/5%	6	3			X	X	X	X	X	X	X	X		Em notified.
6 97	1 TB-1 - Soil		10/14/14	800	9	XI	7	2			·X	X								10/15 PM 11
			1		1		P	5				1	-							DN.
			in the Line				1	1			-		4						1	
		-	10 4 10							_		00							1	
Rei	linquished by:		Received	198:	_		Date:			Time:	Observed	ıp °C	. 1	EDD fo						
Skewledewood Man				MI		10/	14/14	4	14	155	0	8	X	E-mail	to:	ac	dani	e16	2 er	nvironcorp.com
1-	m		8	10	11	M	1	701	Corecctio	on Factor										
/	repring					10	4	H		121	Corrected									
											0						ceipt: Custody Seals: Present Intact Broken			
											IR ID#	0		Ambient	lo	ed	☐ Ref	rigerate	ed	☐ DI VOA Frozen ☐ Soil Jar Fro
									<u> </u>			_			/	_				

HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Page 4 of 4

Special Handling:	
☐ Standard TAT - 7 to 10 business days	3

	Rush TAT - Date Needed:	N
d.	All TATs subject to laboratory approval	
	Min. 24-hr notification needed for rushes	
	Samples disposed after 60 days unless otherwi	se instructed.

Report To:			Invoice To	:									Project No:			
	Same as Pa	ge)				xam	e 0	0 ت	age	1	-		Site Name: Location:	Some	as Page	State:
Telephone #: Project Mgr:			P.O No.	:			Quot	e/RQN	:	(90)	17		Sampler(s):			
F=Field Filtered 7=CH3OH 8=Nal	1=Na ₂ S2O ₃ 2=HCl HSO ₄ 9=Deionized Water		5=NaOH 6		bic Aci	d						L	ist Preservative Code below:			orting Notes:
											2				* additional cha	rges may appply
DW=Dinking Water	GW=Groundwater	SW=Surface Water W	W=Waste Wate	r			C	ontain	ers				Analysis			eport? Yes No
O=Oil SO=Soil	SL=Sludge A=Indo	oor/Ambient Air SG=So	il Gas								0			pa	CT DPH RCP Report? Standard	No QC
X1=	X2=	=X3=	-		-	# of VOA Vials	of Amber Glass	of Clear Glass	0		826			chlorinated	DQA* ASP A* NJ Reduced*	ASP B*
G	= Grab	C=Compsit	e	Type	Matrix	VOA	Ambe	Clear	of Plastic		VoC				☐ Tier II*	☐ Tier IV*
Lab ID:	Sample ID:	Date:	Time:	Ty	Ma	Jo#	# of /) Jo #	l Jo#	Â	5			Check if	Other: State-specific rep	orting standards:
18028-28	DUP-1-51	N 10/14/14		a	Su	13					V					
1 29	DVP-2-51		_	C	-	13					V					
1, 30	TB-1-5	W 10/14/14		G-	i i	- 1					V					
0 00														* 5 0		
						7									ANTIN CALLEGE DE CONTRACTO LA CONTRACTO DE CONTRACTO	A Wall
															·	
					1											
Reline	quished by:	Received	l by:			Date:			Time:		Temp	°C	☐ EDD format:			
		Δ. Δ.			1	1	1	-	34 - 4	50	Observed	2	E-mail to:			
		NorM Sco		/	1	114		T	48	77	Corecction Fa					•
Norm	Scott (Gm)	Mary	(6	m)	10	/14	/14	1	7:2	1	0					
		/									Corrected	8	Condition upon receipt: Cu	tody Seals:	Present In	tact Broken
											IR ID#)	Ambient Viced	Refrigerated	☐ DI VOA Frozen	Soil Jar Frozen
		11 Almoran D	rive • Aggwan	MA	11001 -	413_79	0_0019	R. FA	X 413_7	80_407			ctrum-analytical com			lan 2014

Special Handling:	
☐ Standard TAT - 7 to 10 business days	
☐ Rush TAT - Date Needed:	

	M ANALYTICAL, INC. Featuring AL TECHNOLOGY				Page	1	of.	李	4		*					Min. 2	24-hr no	otifica	o laboratory approval ation needed for rushes after 60 days unless other	rwise instructed.
Report To:	ENVIRON		Invoice T	o:	Er	viri	te	,			9		Project	No:	08	3-14	218	93	3	
	136 Commercial St Suite 402				Kris Po B	Sa	bing	a			-		Site Na			viri				
W Landing Street, Commission of the Commission o	Portland, ME O41	01	144	-		2-6			0514				Locatio		The	mas	ton	-		State: CT
Telephone #: Project Mgr:	207-517- John Derek Pel	8225	P.O No).:	happ	V				*	-		Sample	er(s):	Ani	ne D	anie	1		State.
	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SC aHSO ₄ 9=Deionized Water 10=H ₃ PC			6=Ascor		l		-		7,9		st Pres	ervati	ve Coo	le belo	w:			QA/QC Report * additional charge	
							C	ontain	3 199E)	7,1	2		Ana	lysis				1	MA DEP MCP CAM Rep	- Dya Dya
O=Oil SO=So X1=		ient Air SG=So		er	-	Vials	of Amber Glass	of Clear Glass		0978	VOC. 9260	As, Ba, Cd, Cr	Fe Mn	12 g		n Size	(Solids)	Check if chlorinated	CT DPH RCP Report? Standard DQA* ASP A*	No QC ASP B*
	G= Grab	C=Compsit	e	Type	Matrix	of VOA	Ambe	Clear	of Plastic	500	Ĉ	8	17	Na, Ni,	20	Grain	Total	ck if	☐ Tier II*	☐ Tier IV*
Lab ID:	Sample ID:	Date:	Time:	T	Ma	# of	# of	Jo#	jo#	3	3	As	3	Z	6	Q	-	Che	Other: Tree State-specific report	rting standards:
1802801	BB-DS-SED-01	10/14/14	940	9	SO		3					X	X	X	X	×	X		QA/QC.	requirened
1 02	BB-DS-SEDV-01	1	940	A	50	3		6		X									added per	lient
03	BB-DS-SWV-01		940		SW	-3					X			H.					regues	k.
04	BB-DS-SED-02		955		50		3					X	X	X	X	X	X			En 10/16
05	68-05-SEDV-02	(9)	955	9	50	3				X										
06	BB-DS-SWV-02	1	955		SW	3					X									
07	BB-DS-SED-03		1015		SD		3					X	X	X	X	X	X			
108	BB-DS- SEDV-03		1015		50	3				. X										
69		V	1015	V	SW	3					X									
N 10	BB-DS-SED-04	10/14/14	1135	9	10		3					X	X	X	X	X	X			
Relin	nquished by:	Received by:		Date:			Time:	Ten	ıp °C		EDD f	ormat:								
John	Adelwh leryd Mehleuff		1	10/1	4/11	4	1	455	Observed	8	X	E-mail	to:	ac	lani	ele) e	chvironcorp	.com	
10/16	May	ma	w		10	4	14	3	721	Correction)									
		I I	0			Day Comment				O	8	Condi	tion up	on rece	eipt:	Custod	y Seals);	Present Inta	act Broken
										DK ID#	2	A	mbien	KI	eed	Ref	rigerate	ed	☐ DI VOA Frozen	☐ Soil Jar Frozen

Spacial	Handling:
Sherm	manuming.

	MANALYTICAL, INC. Featuring ALTECHNOLOGY ENVIRON 136 COMMERCIA ST		CHAI	o:	Page	2	of	7		RE	CCC	RI		Project	No:	<u>«</u>	Rush 7 All TA Min. 2 Sample	TAT - I Ts subj 24-hr no es dispo	Date ject to otifica osed a	to 10 business days Needed: Daboratory approval ution needed for rushes offer 60 days unless otherwise instructed.
Celephone #:	136 Commercial St Swite 402 Portland, ME 0416 207-517-8220 Devek Relletie	5	P.O No			on g	ina 1	NY	10.					Site Na Locatio Sample	n:	Th	nvi omas Anne ohn	tor Da	nie	State: CT
Field Filtered CH3OH 8=N	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO aHSO ₄ 9=Deionized Water 10=H ₃ PO		5=NaOH (6=Ascor		d						Li	st Pres	ervativ	ve Cod	le belo	w:			QA/QC Reporting Notes:
								-			7/9	2								* additional charges may appply
W=Dinking Wat	er GW =Groundwater SW =Sur	face Water W	W=Waste Wate	er			C	ontain	ers	I				Ana		·	ı	ı		MA DEP MCP CAM Report? Yes No CT DPH RCP Report? Yes No
	il SL=Sludge A=Indoor/Ambie X2= G= Grab	ent Air SG=So X3= C=Compsit		ō	- xi	OA Vials	of Amber Glass	of Clear Glass	of Plastic		Cs 8260	CS 8260	As Bala Cr. Ca	FE MAININ PO			Grainsize	Total Solidi	if chlorinated	Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full* Tier II* Tier IV*
Lab ID:	Sample ID:	Date:	Time:	J kr	Matrix	# of VOA	of A	ofC	of Pl		VOCs	VOCs	As 10	4,00	5	100	2	Tot	heck	Other:
5028-11	BB-DS-SEDV-04	10/14/14	1135	9	SO	3	#	#	#		X			13.05	1	,		1		State-specific reporting standards:
	BB-DS-SWV-04	A	1135	1	5W	3						X							口	added on check
	BB-DS-SED-05		1200		50		3						X	X	X	X	X	X		request son
14			1200		50	3					X							-	同	10/16
15	BB-DS-SWV-05	(90)	1200	(9)	SW	3	21			-		X								110
16	BB-DS-SED-06		1230		30		\$6	,					X	X	X	X	X	X		Run MS/MSD
1 12	BB-DS-SEDV-06		1230		SO	76					X									Run MS/MSD
1-8	BB-D3-SWV-06		1230		SW	36						X								Run MS/MSD per
19	BB-DS-SED-07	V	1250	V	30		3						X	X	X	X	X	X		dievrequest.
/ 20	BB-D3-SEDV-07	10/14/14	1250	9	SO	3					X									Gm lo/
Reli	nquished by:	Receive	d by: /7			Date:			Time:		Tem	p °C		EDD fo	rmat:					
Ohwalenoy Meller 10		10/1	4/1	4	14	33		Observed			E-mail	to:	ad	anje	10	en	vironcorp.com			
1 /	Melall	m	and	* 15	10	14	K	1-	72.	1	Corecction									•
			0								Corrected O. (3		ion upo	1/		Custod			☐ Present ☐ Intact ☐ Broken ☐ DI VOA Frozen ☐ Soil Jar Frozen

Special Handling:	
Standard TAT - 7 to 10 business days	

	Standard	TAT	- 7	to	10	business	days
Season and	IN COURT COURT OF					CODILLOOD	erecj c

	Rush TAT - Date Needed:	
4	All TATs subject to laboratory approval	7
	Min 24 hr natification needed for maker	

RANDALTECHNOLOGY Report For ENVISOR Report For ENVISOR
Sib Corner of the 1 St. St
Suite 402
Field Filtered =Na_\$S20_3 2= FC 3= H_2S0_4 4= NO_3 5= NaOH 6= Ascorbic Acid
Field Filtered =Na_\$S20_3 2= FC 3= H_2S0_4 4= NO_3 5= NaOH 6= Ascorbic Acid
Field Filtered =Na_\$S20_3 2= FC 3= H_2S0_4 4= NO_3 5= NaOH 6= Ascorbic Acid
Containers Con
We Dinking Water GW=Groundwater SW=Surface Water WW=Waste Water Go So SL=Sludge A=Indoor/Ambient Air SG=Soil Gas SL=Sludge SL
SO-SOI SL=Sludge
So So St St Standard No QC No No Standard No QC No No No No No No No N
1018-21 68-DS-SWV-07 1018/14 1250 9 SW 3 X X X X X Den chieb requests 12 68-DS-SED-08 N 1310 N SO 3 X X X X X Den chieb request 13 68-DS-SEDV-08 1310 SO 3 X Den chieb request 14 68-DS-SEDV-08 1310 SW 3 X Den collection 15 DUP-1-Soil DP-2-Soil
1018-21 68-DS-SWV-07 1018/14 1250 9 SW 3 X X X X X Den chick requests 12 68-DS-SED-08 N 1310 N SO 3 X X X X X Den chick request 13 68-DS-SEDV-08 1310 SO 3 X Den chick request 14 68-DS-SEDV-08 1310 SW 3 X Den chick request 15 DUP-1-Soil DVP-2-Soil DVP-2-Soil DVP-2-Soil DVP-3-Side (333 X X X X X X X X X X X X X X X X X
1018-21 68-DS-SWV-07 1018/14 1250 9 SW 3 X X X X X Den chick requests 12 68-DS-SED-08 N 1310 N SO 3 X X X X X Den chick request 13 68-DS-SEDV-08 1310 SO 3 X Den chick request 14 68-DS-SEDV-08 1310 SW 3 X Den chick request 15 DUP-1-Soil DVP-2-Soil DVP-2-Soil DVP-2-Soil DVP-3-Side (333 X X X X X X X X X X X X X X X X X
1018-21 68-DS-SWV-07 1018/14 1250 9 SW 3 X X X X X Den chick requests 12 68-DS-SED-08 N 1310 N SO 3 X X X X X Den chick request 13 68-DS-SEDV-08 1310 SO 3 X Den chick request 14 68-DS-SEDV-08 1310 SW 3 X Den chick request 15 DUP-1-Soil DVP-2-Soil DVP-2-Soil DVP-2-Soil DVP-3-Side (333 X X X X X X X X X X X X X X X X X
1018-21 6B-DS-SWV-07 10/N/M 1250 9 SW 3 XXXXXX
22 68-DS-SED-08 N 1310 SO 3 XXXXXX Den clied request 1310 SO 3 XXXXX Den clied request SO 1310 SO 3 XXXX Den clied request SO 1310 SO 3 XXX Den clied request SO 1310 SO 13
24 BB-DS-SWV-08 15 DUP-1-Soil 26 DUP-2-Soil MS/MSD-1 V 50 6 3 X X X X X X X X I Separated the Soil from MS/MSD-1 V 50 6 3 X X X X X X X X I Separated the Soil from MS/MSD-1 V 50 6 3 X X X X X X X X X I Em MSt. fried
24 BB-DS-SWV-08 15 DUP-1-Soil 26 DUP-2-Soil MS/MSD-1 V 50 6 3 X X X X X X X X I Separated the Soil from MS/MSD-1 V 50 6 3 X X X X X X X X I Separated the Soil from MS/MSD-1 V 50 6 3 X X X X X X X X X I Em MSt. fried
25 DUP-1-Soil Separated the Soil from 26 DUP-2-Soil Wash
26 DUPZ-Soil — Sold 33 XXXXXX X I the Sw samples clienter Ms/msD-1 V 500 6 3 XXXXXXX X I Em notified
MS/MSD-1 V 50 6 3 XXXXXX X DEM notified
10/14/14/20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Relinquished by: Received by: Date: Time: Temp °C
Observed A
Abblidated 10/14/14 1455 08 E-mail to: adanje le environcorp. com
1 Holling Mary 10.4.4 1721 Corection Pactor
Corrected Condition upon receipt: Custody Seals: Present Intact Broken
Ambient Alced Refrigerated DI VOA Frozen Soil Jar Frozen

HANIBAL TECHNOLOGY

Report To:

CHAIN OF CUSTODY RECORD

Page 4 of 4

Invoice To:

19/2	1		A 189, 2
.0	/ S	péci	al Handling:
	☐ Standard TA	T - 7	to 10 business days
	☐ Rush TAT -	Date	Needed:
	Min. 24-hr n	otifica	plaboratory approval ution needed for rushes fter 60 days unless otherwise instructed.
roject No:			
Site Name:	Sow	c	as Page 1
ocation:			State:
Sampler(s):			
ervative Coo	de below:	-	QA/QC Reporting Notes: * additional charges may appply
Analysis			MA DEP MCP CAM Report? Yes No
		Check if chlorinated	CT DPH RCP Report? Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full* Tier II* Other: State-specific reporting standards:
	3 9 6 5		. 1
		+-	QA/QC requirements

Telephone #: Project Mgr:		P.O No.:				Quote	:/RQN:	0		Sampler(s):		State:
	OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄ 11= 12=							List Preservative Code b	pelow:	QA/QC Reporting Notes: * additional charges may appply		
									2			
	or/Ambient Air SG=Soil			ix	OA Vials	of Amber Glass	of Clear Glass	of Plastic	C3 8260	Analysis	Check if chlorinated	MA DEP MCP CAM Report?
Lab ID: Sample ID:	Date:	Time:	Tyl	Matrix	# of VOA	t of A	# of C	# of P	700		Check	Other: State-specific reporting standards:
98028-28 DUP-1-SV	0 10/14/14	-	a	SW	3	71-	74	74				Jane openie reporting denteration
	0 10/14/14		C	SW					V			pa Chartogues
1 30 TB-1-51	N 10/14/14	200	G-	T	- 1				V			Victoria Company
												gn 10/16
					-							
48												
Relinquished by:	Received l	by:		1	Date:			Time:	Temp °C	EDD format:		F. F. R. B. R. R. R. R. R. R.
	North Scot			10/	141	14	1	4:55	Observed O 8 Correction Facto	E-mail to:		•
Norm Scott (Gn)	Mary	Co	1)	10	1141	114	1-	121	0			
	/			<u> </u>					Corrected 9			☐ Present ☐ Intact ☐ Broken
						N OO IN N			U 2	Ambient Viced	Refrigerated	☐ DI VOA Frozen ☐ Soil Jar Frozen

1=Na₂S2O₃

2=HCI 3=H₂SO₄

4=HNO₃

5=NaOH

6=Ascorbic Acid

F=Field Filtered

CHAIN OF CUSTODY RECORD

Special Han	dling:
☐ Standard TAT - 7 to 10 bu	isiness days
	40

	Rush TAT - Date Needed:	
r	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes	

QA/QC Reporting Notes:

List Preservative Code below:

Ambient I Iced

	Featuring IBAL TECHNOLOGY	Page 1 of 0		Min. 24-hr notification needed for Samples disposed; after 60 days un	
Report To:	FNVIRON	Invoice To: Envirite	Project No:	08-1421863	
	736 Communcial St Suite 402	Kris Salanga Po Box Say	Site Name:	Envirite	
	Portland, ME 04101	Chappagua, NY 10514	Location:	Thomaston	State: CT
Telephone #:	207-517-8225	1 0	Sampler(s):	Anne Daniel	
Project Mgr:	Derek Relletier	P.O No.: Quote/RQN:		Tahn Underwood	

7=CH3	OH 8=Na	aHSO ₄ 9=Deionized Wa	nter 10=H ₃ PO ₄	11=		12=	=								Stiles	civati	ve Cou	ie neio	**.			VA/QC Reporting Notes: * additional charges may appply
												- 1	7/9	2								auditional charges may apppry
DW =D	nking Wate	er GW=Groundwater	SW=Surf	face Water WY	W=Waste Wate	er			C	ontain	ers			R		Ana	lysis					MA DEP MCP CAM Report? Yes No CT DPH RCP Report? Yes No
O=Oil	SO=So	il SL=Sludge A=	Indoor/Ambie	ent Air SG=So	il Gas								0	8160			- c		0	30	ated	☐ Standard ☐ No QC
>	[1=		X2=	X3=				Vials	Glass	Glass			8260	VUC	5	MY	Th.		S	Total Solids	lorin	DQA*
		G= Grab	L Ad	C=Compsite	e	Type	Matrix	of VOA	Amber	Clear (of Plastic				As, Ba, (13	Pe	C	Grain	Ta	k if cl	NJ Reduced* NJ Full* Tier II* Tier IV*
Lab	ID:	Sample II):	Date:	Time:	J.	Ma	# of	# of.	# of	# of]		VOCS	a co	B	3	Z	1	2.	70	Chec	Other: State-specific reporting standards:
7814	701	NR-DS-SED-	-01	10/14/14	1540	9	SO		3						X	X	X	X	X	X		Soil you for "SED"
1	02	NR-DS-SEDI	1-01	1	1540	1	50	3					X									Samples corresponds to
	03	NR-DS-SWV	-01		1540		SW	3						X								soil in "SEDV" sample
	04	NR-DS-SED-	02		1600	1	50		3						X	X	X	X	X	X		for all samples.
	TOTAL COMMENTS AND THE PARTY OF	NR-DS-SEDV-		9	1600	W	50	3	7				X									0
	06	NR-DS-SWV	-02		1600		SW	3			0.1			X								
	0)	NR-DS-SED-	-03		1615		30		3						X	X	X	X	X	X		
		NR-DS-SEDV-			1615		50	3					X									
	09	NR-DS-SWV-	03	4	1615	V	SW	3						X								
V	AND DESCRIPTION OF THE PARTY OF	NR-DS-SED-		10/14/14	1635	9	SO		3	H					X	X	X	X	X	X		
* 0		nquished by:		Received	l by:			Date:			Time:		Tem	p °C		EDD fo	ormat:					*
4	huh	dal		DEC	3		10	115,	14	3.	30			2	\$	E-mail	to:	ar	nad	ante	+	,
/	1	DE	e	mar	u		10	5.1	4	18	320		Corecction	Factor				CKO	lani	e 10	er	avironiorp.com
		2											Corrected	7	Condit	ion up	on rece	ipt:	Custod	y Seals	:	☐ Present ☐ Intact ☐ Broken

Refrigerated DI VOA Frozen Soil Jar Frozen

フ	0	- 1	-	/	1	-	 0	7				-
							S	peci	al	Han	dling:	

04	TAT	7	4- 110	Landana	1
Standard	IAI -	- /	to 10	business	gays
					2

		Needed

All TATs subject to laboratory approval

	M ANALYTICAL, INC. Featuring BAL TECHNOLOGY				Page	7/2	of of	0	-											ation needed for rushes after 60 days unless otherwise instructed.
Report To:	ENVIRON		Invoice To	:	E	nvi	rit.	e				2.		Project	No:	08	3-14	1218	36	13
***************************************	136 Commercial St				Kri	s 5	abi	nga								Er			***************************************	- Africano e construir de la como
***************************************	Suite 402	***				Box			2 /					Site Na	me:			,		
-	Portland, ME 04101 DD 207-517-82	25			Cho	rppa	guo	N	Y 10	15/4				Locatio			20M			State: CT
Telephone #: Project Mgr:	Derek Pelletier	<i>U</i> 3	P.O No.	:			Quot	te/RQN	:				¥ .	Sample	r(s):	Joh	ne l	nder	wo.	0 %
F=Field Filtered	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄		5=NaOH 6	-Ascor	bic Aci	d			-			L	ist Pres	ervati	ve Cod	Evitoria.				QA/QC Reporting Notes:
7=CH3OH 8=N:	aHSO ₄ 9=Deionized Water 10=H ₃ PO	4 11=		_ 12=	=			-			7/9									* additional charges may appply
DW=Dinking Wat	ter GW=Groundwater SW=Sur	face Water W	W=Waste Wate	r			C	ontain	ers			105		Ana	lysis					MA DEP MCP CAM Report? Yes No
O=Oil SO=So	oil SL=Sludge A=Indoor/Ambie	ent Air SG=So	il Gas								1			Z					p	CT DPH RCP Report? Yes No
						S	355	S			9260	0928	3	5	5		Size	-8	Check if chlorinated	DQA*
A1	X2=	A3-	***************************************		_	Vial	er Gla	Glas	0		18		3	2	40		5	Tes	chlor	☐ ASP A* ☐ ASP B* ☐ NJ Reduced* ☐ NJ Full*
	G= Grab	C=Compsit	e	Type	trix	VOA	of Amber Glass	of Clear Glass	of Plastic		WC.	V0C5	8	3	Ni, Pb,zn	T0C	rain	otal	k if	Tier II* Tier IV*
Lab ID:	Sample ID:	Date:	Time:	Ty	Matrix	# of VOA Vials	/ Jo #) Jo #	# of I		3	3	As, Ba,	Cu, Fe, Mn,	Z	F	D	10	Chec	Other: State-specific reporting standards:
98147-11	NR-DS-SEDV-04	10/14/14	1635	9	30						X									
1 12	NR-05-SEVV-04	A	1635	1	SW	3						X								Soil gar for "SED"
13	NR-DS-SED-05		1700		50		3						X	X	X	X	X	X		Samples, corresponds
14	NR-DS-SEDV-OS		1700	6	50	3					X							-		with soil in "SEDV"
1.5	NR-DS-SWV-05		1700	1	SW	3						X								samples, For all samples.
16	DUP-4-501L	- 4 1 1 2 2	-	1	SOX	38	3				X	兴	X	X	X	X	X	X		
17	DUP-5-SOIL				50/50	182	3				X	gux	×	X	X	X	λ	X		
13/14	1			1	50/94	63	3				X	The same	X	X	X	Х	X	X		Parent sample NR-DS-05
	DUP-14-WATER	V	-	1	SW	3						X								(SED, SEDV, SWU) for
	DUP-5-WATER	10/14/14	-	6	SW	3						X								MS/MSD-3-SOIL
Relin	nquished by:	Received	l by:			Date:			Time:		Ten	ıp °C		EDD fo	rmat:					
goli h	h Jol	DE			10	/15/	114		313	0	Observed	2	×	E-mail	to:	a	dani	ele	12	nvironcorp.com
/	DEC	mani	1		10-1	5-1	4	18	32C)	Corecctio	on Factor								
		11/10	J		101	<u></u>		1			Corrected)	Condi	ion un	on rece	ipt:	Custody	/ Seals:		☐ Present ☐ Intact ☐ Broken
											IR ID#				./					
											0	2		mbient	A lo	ed	∐ Refi	ngerate	d	☐ DI VOA Frozen ☐ Soil Jar Frozen

		Ci.	
	Beech	A	
1			
		11	
-K			1
		I ANALYTIC	

	X.	
By.		
Speci	al Handling:	* .*
☐ Standard TAT - 1	7 to 10 business days	
☐ Rush TAT - Date	Needed:	No.
Min. 24-hr notific	o laboratory approval ation needed for rushes after 60 days unless oth	erwise instructed.
08-142186	13	
Envirite		
Thomaston Anne Danjel John Underwi	oud	State: <u>C7</u>
de below:		orting Notes:
l'Osi	MA DEP MCP CAM R CT DPH RCP Report? Standard	eport? Yes No

	JM ANALYTICAL, INC. Featuring BAL TECHNOLOGY	3			Page	5	of	0	-											tion needed for rushes fter 60 days unless otherwise instr	ructed.
Report To:		and any particular and any	Invoice T	0:	Fn	vici	te						I	roject	No:	0	8-14	214	36	3	
	ob Commercial St				Kr	15 Se	abino	10						Site Na			nvir	,			
	Suite 402	H					591			- 1			K	110 140							
Telephone #:	Portland, ME 04101 207-517-8225	***************************************			Chap	page	ya,	NY	105	14	-			ocatio	n: _	The	ma	stor	2/	State:	<u>CT</u>
Project Mgr:	Derek Pelletier		P.O No).:			Quot	e/RQN:	:					Sample	(S): _	Joh	n Un	der	wo	od	
F=Field Filtered 7=CH3OH 8=N	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO laHSO ₄ 9=Deionized Water 10=H ₃ PO			=Ascor		d	**************************************		Acri au con deprior com and ac				st Pres	ervativ	e Code	e belov	v:			QA/QC Reporting No	
									of an inches		7/9	2								* additional charges may a	bbbia
DW =Dinking Wa	ter GW =Groundwater SW =Sur	face Water W	W=Waste Wate	er			C	ontain	ers					Anal	ysis					MA DEP MCP CAM Report?	Yes No
0=0il	oil SL=Sludge A=Indoor/Ambie				_	# of VOA Vials	of Amber Glass	of Clear Glass	2)		8160.	0928	5	CW, Fe, Mrs. Na	Ple, Zn		Stre	Solids	lorinated	CT DPH RCP Report? Standard No QC DDQA* ASP A* ASP B* NJ Reduced* NJ Full	*
	G= Grab	- C=Compsit	e	Type	Matrix	VOA	Amb	Clear	of Plastic				E	رفي	9	T0C	Š	otal		Tier II* Tier IV	
Lab ID:	Sample ID:	Date:	Time:	Ty	Ma	Jo#	7 Jo #	# of (# of I		VOCS	VBCs	As , Bra	3	Ź	+	Grain	10	Chec	Other: State-specific reporting stand	lards:
8147 -15	MS/MSD-3-WATER	10/14/14	Extraordina (9	SW	3						X								Parent sample is NR-1	
1 20		10/15/14	0700	1	XI	31				-14	X	X								(SED, SEDV, SWA)	for
21	TB-3 - Water	11	0700		XI	81					X	X								MS/MSD-3-WATER	
22	BB-US-SED-01		0800	13	50		3						X	X	X	X	X	X			
. 23	BB-US-SEDV-01		0800	(1)	50	3					X									soil jar for "SE"	s" is
24	BB-US-SWV-01	(9)	0800	Y	SW	3						Х								the same soil as	"SEDV"
25	BB-45-5ED-02		810		30		3						X	×	X	X	X	Х		samples for % s	iolids
26	BB-US-SEDV-02		810	1	50	3				•	X		7.							analysis. For all	1 sample
. , 27	BB-45-5WV-02	¥	810	V	SW	3						X								Trip Blanks Se	parate
V 28	BB-US-SED-03	10/15/14	825	14	50		3						X	X	X	X	X	X		to Water TB: o	
Reli	inquished by:	Receive	d by:			Date:			Time:		Tem	p °C		EDD fo	rmat:				1	Sof TBs. client	notif
achil	whole	1)	EC		10	/15	/14	3:	30		Observed	2	X	E-mail	to:	2 da	nie	@e	SNV	ironcorp.com	On.
	Ste	mai	w	•	10	5	14	119	32C)	Corecction)	E	i							10/16
											Corrected)	Conditi	on upo	n recei	pt:	Custody	Seals:	: [☐ Present ☐ Intact ☐	Broken
							441				IR ID#	2	☐ Ai	mbient	lce	ed [☐ Refri	gerate	d [☐ DI VOA Frozen ☐ Soil	Jar Frozen

,	Special	Handling:	

Section (12)		1460	100		12.0
Standard	TAT	- 7	to 10	husiness	days

Rush TAT - Date Needed		Rush	TAT	- Date	Needed:
------------------------	--	------	-----	--------	---------

	M ANALYTICAL, INC. Featuring BAL TECHNOLOGY		Page of D. Min. Samp								Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.											
Report To:	ENVIRON		Invoice To	0:	**********	E	nvir	ite]	roject ?	No:	(08-	-14:	218	893		
	136 Commercial St Suite 402			No. of Contract of		Kr	is S Box	abin						Site Nar	ne:		Env.					
Telephone #: Project Mgr:	Portland, ME 0410 207-517-8225 Derek Pelletier		P.O No	h.:	C	hap	pae	Bua	, NY	105	74			Location Sampler		Ar	me	Dan	ie	l wood	State: CT	
F=Field Filtered 7=CH3OH 8=N	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ S0 IaHSO ₄ 9=Deionized Water 10=H ₃ P0		5=NaOH 6			d		-			7/0		st Pres	ervativ	e Code	below	v: 				porting Notes:	
DW=Dinking Wa	ter GW=Groundwater SW=Su	rface Water W	W=Waste Wate	er			C	ontain	ers					Anal	ysis					MA DEP MCP CAM	Report? Yes N	Vo.
O=Oil SO=So X1=		ient Air SG=So	il Gas		rix	of VOA Vials	of Amber Glass	of Clear Glass	of Plastic		- 0928 s	0978 5	Ba, Cd, Cr	Fe Mn, Na	Ni, Pb, Zn	*	Grainsize	al Solids	chlorinate	CT DPH RCP Report Standard DQA* ASP A* NJ Reduced*	?	lo
Lab ID:	Sample ID:	Date:	Time:	Type	Matrix	/ Jo #	# of A	# of C	# of P		VOCS	VOCS	AS	3	Z	TOC.	2	Total	Chec	Other:	porting standards:	
18147-29	BB-US-SEDV-03	10/15/14	825	6	50	3					X									Soll jor	0	
1 30	BB-US-5WV-03	A	825	1	SW	3						X									rresponds to)
31	BB-US-SED-04		840		50		3					_	X	X	X	X	X	X		soil 10 "5	EDV"sample	25
32	BB-US-SEDV-04		840		50	3					X	2			,			•		for all so		
33		Oxi	840	a	SW	3						头	X	X	X	X	X	*			1	
34	BB-US-SED-05		850	111	50		3				实		X	X	X	X	X	X				
30	BB-US-SEDV-05		850	11	so	3					X	Xg)								V	
36	BB-US-SWV-05		850		SW	3						X	X	X	X	X	X	X				
37	BB- US-SED-06	4	905	V	50		3				Q.		X	X	X	X	X	X			i i	-
1, 38		10/15/14	905	16	30	3				7	X	XO	,	-							34	-
V /	nquished by:	Receive	d by:			Date:			Time:		Tem			EDD fo	rmat:							
ghwh	Jul	DE			10,	115	114	-	313	30	Observed)		E-mail t	-	ad	ani	e10	e e	nvironcor	p.com	
J'	Dec	mar	ul		10.	15-1	4	19	320)	Corecction)	il.		_							
		1									Corrected)	Condit	on upo	n receij	ot: (Custody	Seals:		Present I	ntact Broken	
											IR ID#	2	□ A	mbient	lce	i [Refr	igerated	d [DI VOA Frozen	☐ Soil Jar Froze	n

Featuring
HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Page 5 of 8

2	B	92	314	7	V	Ly			. *	G. Transfer
)				1		/	ř	Sp	ecia	al Handling:
							Standa	rd TA	Γ - 7	to 10 business days
CE	CCC	R					Rush T	AT - I	Date	Needed:
		8				*	Min. 24	4-hr no	tifica	laboratory approval tion needed for rushes fter 60 days unless otherwise instructed.
				Project	No:	0	3-14	2/8	92	3
				Site Na	me:	E	nvir	ite		6888
				Locatio	n'	The	nnat	ton		State: CT
				Sample		A	mas	Dan	ie (
		K	,			Jo,	hn L	Inde	ru	pod
		L	ist Pres	servati	ve Cod	le belo	w:			QA/QC Reporting Notes:
	7/9	Z								* additional charges may appply
				Ana	lysis					MA DEP MCP CAM Report? Yes No
	VOCS 9260 .	VOC, 8260	As, Ba, Cd, Cr	Cu, Fe, Mr, Na	Ni, Pb, Zn	10C	Grain Size	Total Solids	Check if chlorinated	CT DPH RCP Report? Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full* Tier II* Tier IV* Other: State-specific reporting standards:
		X			57					Soil gus for SED
			X	X	X	X	X	X		samples corresponds
	X									with soil in "SEDV"
		X								samples for 10 solids
			X	X	X	×	X	X		analysis. For all samp
	X									3
		X								•
,			X	X	×	X	X	X		
	X									
		X								
	Tem	p °C		EDD fo	ormat:	4				t (1)
	Observed Corecction Corrected	n Factor	X	E-mail	to:	ao	lanie	10	en	vironcorp, com
	L.	2	Condi	tion up	on rece	eipt:	Custody	y Seals		☐ Present ☐ Intact ☐ Broken

Repo	ort To:	ENVIRON		Invoice To):		Envi	rite	-					Project	No:	08	3-14	2/8	43	1
		136 Commercial St.				Kri	5 S.	abin	ga	w-17-90-170-170-170-170-170-170-170-170-170-17		-		Site Na	me:	E	nvir,	to		6 2 R Z
			-				BOX			*		-		one i va		- 1000				
		Portland, ME 04101			(Chapp	pagu	ia N	(Y_1	10514		-		Locatio			mas			State: CT
	hone #: ct Mgr:	207-517-8225 Derek Pelletier		P.O No									v	Sample	r(s):	JOI	nne hn L	van)	181	100N
	eld Filtered	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ S	SO ₄ 4=HNO ₃ :	5=NaOH 6																
		aHSO ₄ 9=Deionized Water 10=H ₃							_				ist Pres	ervati	ve Cod	e belov	w:			QA/QC Reporting Notes: * additional charges may appply
											7/9	Z								
DW	Dinking Wat	ter GW =Groundwater SW =S	Surface Water W	W=Waste Wate	er			C	ontain	ers			1	Ana	lysis					MA DEP MCP CAM Report? Yes No
O=O	oil SO =Sc	oil SL =Sludge A =Indoor/Am	nbient Air SG=So	il Gas										Na			2)	9	paj	CT DPH RCP Report? Yes No
	X1=	X2=	X3=	=			IIs	lass	SSI		0978	00	As, Ba, Cd, Cr	Cu, Fe, Mn, N	47		Size	Pilas	Check if chlorinated	DADQA* □ ASP A* □ ASP B*
							4 Via	oer G	ır Gla	tic	1	1 4 9-2	3	4	100		C	18	chlo	NJ Reduced* NJ Full*
		G= Grab	C=Compsit	e	Type	Matrix	of VOA Vials	of Amber Glass	of Clear Glass	of Plastic	VOCS	VOCS	30	1, F	1	20	Grain	Total	sck ii	Other:
L	ab ID:	Sample ID:	Date:	Time:		-	#	# of	fo#	# of	>	1	Ť	3	Ź	9	60	+-	Ü	State-specific reporting standards:
181	47-39	BB-US-SWV-06	10/15/14	905	9	SW	3					X								Soil gas for SED"
1	40	BB-US-SED-07-	A	920	1	So		3					X	X	X	X	X	Χ		samples corresponds
,	41	BB-US-SEDV-07		920		so	-3				X									with soil in "SEDV"
	42			920	1	SW	3			73		X				- 1				samples for 10 solids
	43	BB-US-SED-08	9	930	197	50		3					X	×	X	×	У	Х		analysis. For all sangle
	44	BB-US-SEDV-08		930		50	3				X									J.
	45		-) - =	930		SW	3					×								
	46		1 1 1 1 1 1	1025		SO		3					X	X	X	X	X	人		
	47		V	1025	1	SO	3				X		8							
V	48		10/15/14	1025	6	SW	3					X	1							
		inquished by:	Receive	d by:			Date:			Time:	Ter	np °C		EDD fe	ormat:					
	1/11		502			1,	hi	Tin	21	30	Observe	2				00	lanie	10	PM	wicontorn-Com
\rightarrow	YhWh sury 3						115				Coreccti	on Factor	E-mail to: adaniel Cenvironcorp. Cona							
J		1000	more	1		10	10	14	118	320	I C)								
											Соггесте	2	Condi	ion up	on rece	ipt:	Custody	y Seals:	[☐ Present ☐ Intact ☐ Broken
											IR ID#	<u></u>	1 -	mbient	XII	ed	Refr	igerate	d [☐ DI VOA Frozen ☐ Soil Jar Frozen
												4		-/	4			Sorato	- 1	
			11 Almgren D	rive · Agawar	n, MA	01001 •	413-78	39-9013	8 . FA	X 413-789-	4076 · wv	vw.spe	ctrum-a	nalyti	cal.con	n				Rev. Jan 2014

SPECTRUM ANALYTICAL, INC.

SPECTRUM ANALYTICAL, INC
Featuring

CHAIN OF CUSTODY RECORD

Page 6 of 8

0			
CB98147	Ry	4 .25 .	
0000	Special Handling:		
	☐ Standard TAT - 7 to 10 business days		
CORD	Rush TAT - Date Needed:	*	
	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless oth		

H	Featuring ANIBAL TECHNOLOGY				8-				-							Sample	es disp	oseda	fter 60 days unless otherwise instructed.
Report To:	ENVIRON		Invoice T	o:		Env	irit	e					Project	No:	0	18-14	4218	343	3
	136 Commercial St.	4		-			Sab		Q.				Site Na	mar		Em	inci	te	
	Suite 40Z	A					x 50	and the same of					one ma						70 dans
Telephone #:	Portland, ME 041 207-517-8225	101		-	CY	app	agy	1a	NY 109	514			Locatio Sample		Tho	nne mai			State: CT
Project Mgr:	Derek Pelletier		P.O No	D.:									Sample	1(5).					mood
F=Field Filter	ed 1=Na ₂ S2O ₃ 2=HCl 3=H	I ₂ SO ₄ 4=HNO ₃	5=NaOH	6=Ascor	bic Aci	id					1	ict Pro	orvoti	va Cor	le belov	587°			OLOGO I NI
7=CH3OH	8=NaHSO ₄ 9=Deionized Water 10=H	I ₃ PO ₄ 11=	=	12=	=			-		26		ist ries	ervau	ve Cot	ie beto	w. I		41	QA/QC Reporting Notes: * additional charges may appply
DW D' L'	W. C. L. C. C.	C C Wi N	*** ***				C	ontain	ore	7/9	12		Ana	lveie				-	Voc. No.
DW=Dinking			W=Waste Wat	er				T T						19313			Γ		MA DEP MCP CAM Report? Yes No
O=Oil SO	=Soil SL=Sludge A=Indoor/A	mbient Air SG=So	oil Gas				So			0	0	3	J.	· c		e)	7	chlorinated	Standard No QC
X1=	X2=	X3			_	Vials	Glass	Jass		00728	0978	3	Cu, Re, Mrn	Plo, Zn		Size	100	llorin	☐ ASP A* ☐ ASP B*
	G= Grab	C=Compsi	te	96	lix.	of VOA	mber	of Clear Glass	of Plastic			2ª (· Th	9	O	2	1	k if cl	NJ Reduced* NJ Full* Tier II* Tier IV*
Lab ID:	Sample ID:	Date:	Time:	Type	Matrix	A Jo #	# of Amber	# of C	# of P	2007	VOCs	As Ba	3	Z	12	Grain	Total	Check if	Other: State-specific reporting standards:
98147-4	9 NR-DS-SED-07	10/18/14	1035	4	30	45	3	45	#			X	X	X	1	X	X		Soil in ISEN "Samples
, 5	111111111111111111111111111111111111111	A	1035	1	50	3				X									corresponds to soil
1 5			1035	(A)	Sho	3					4								in SEDV" samples
	2 NR-DS-SED-08		1045	100	50		3					X	X	X	X	X	X		For all samples
	3 NR-DS-SEDV-08	(9)	1045	1	SU	3				X									101 Mr 7011A x 2
	Y NR-DS-SWV- 08		1045	+	SW	3	1			1	X							\Box	
	NR-US-SED-0)		1125	-	30		3				/	X	¥	×	×	X	X		
	(NR-US-SEOV-O)		1125	+	50	3)			· X		~	<i>y</i> -		-	/	1		
0		- V	1125	1	SW	3				1	X								
1/5	8 NR-UX-SED-02	10/15/14	1135	61	30		3					X	X	V		X	X		
V)				101	30	D.			Pan*	700	00				1	1			
	Relinquished by:	Receive	d by:		-	Date	, _		Time:	Observed	ip °C	-6	EDD fo				, .		
Alle	Wholoung	DA			1/4	1181	114	3:	30	1.		X	E-mail	to:	ada	inie	00	envi	roncorp.com.
- /	The /	m	010		10.	15.	14	19	520	Corecction									
		- I PC	y		1	10				Corrected		Condi	tion up	on read	oint:	Cuetod	v Sach		☐ Present ☐ Intact ☐ Broken
					-		+			IR ID#	2_			1					
										C	2		mbient	AIG	ed	Ref	rigerat	ed	☐ DI VOA Frozen ☐ Soil Jar Frozen
		11 Almonou T	Autora a Amarona	- B/I A 4	01001 -	412 76	00 0016	A TEAN	V 412 700	1076	Marie Contract	Assessment of	1						Day Jan 2014

SPECTRUM ANALYTICAL INC.

CHAIN OF CUSTODY RECORD

Special Handling:	*	
☐ Standard TAT - 7 to 10 business days		
Rush TAT - Date Needed:		V
All TATs subject to laboratory approval		4

	M ANALYTICAL, INC. Featuring BAL TECHNOLOGY				Page	7	of	8									Min. 2	4-hr no	otific	o laboratory approval ation needed for rushes after 60 days unless otherwise instructed.
Report To:	NVIRON		Invoice T	0:	EI	1/1/	rite	>						Project	No:		EA	ST	2/1	08-1421863
_13	6 Comercial St			-			abin							C' N		5	nulr	16		
	Suite 402	- 4			fo	BOX	50	7/		1, 1				Site Na						
m 1 1 "	Portland, ME			(hap	2pag	cua.	/N	V 103	14	-			Locatio		Tho	Mas	ston		State: 7
Telephone #: Project Mgr:	207-517-8225 Derek pelktier		P.O No).:										Sample	r(s):	7. 1	Dani	ruve	0/	
	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO			=Ascor								L	st Pres	ervati	ve Cod	e belov	w:			QA/QC Reporting Notes:
7=CH3OH 8=N	aHSO ₄ 9=Deionized Water 10 =H ₃ PC)4 11=		12=							7/9		1						-	* additional charges may appply
DW=Dinking Wat	ter GW=Groundwater SW=Sur	face Water WY	V=Waste Wat	or			C	ontain	ers			V		Ana	lysis					MA DEP MCP CAM Report? Yes No
O=Oil SO=So									П		4			. <						CT DPH RCP Report? Yes No
		ent Air SG=So					SS				30	0728	3	2			3	70	nated	☐ Standard ☐ No QC DQA*
X1=	X2=	X3=				/ials	Glas	rlass			6260	2	ತ	M	12		526	3	Norin	☐ ASP A* ☐ ASP B*
	G= Grab	C=Compsite	2	e Se	ix	OA	of Amber Glass	of Clear Glass	of Plastic		VOCS	Vocs	As, Ba, Cd, CV	E	, od	20	S.	3	cifel	☐ NJ Reduced* ☐ NJ Full* ☐ Tier II* ☐ Tier IV*
Lab ID:	Sample ID:	Date:	Time:	Tyl	Matrix	# of VOA Vials	t of A	t of C	t of P		3	2	F	CU, Fe, MIN, NO	Ni,pb,zn	100	Grain	10	Check if chlorinated	Other: State-specific reporting standards:
2147-59	NR-US-SEDV-02	10/15/14	1135	(9	50	.3	*	+	-44		X									Soil in "SED" Samples
	NR-US-SWV-02	1	1135	水	Sw	3						X								corresponds to sail
THE RESERVE THE PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN TRANSPORT OF THE PERSON NAMED IN COLUMN TWO IS NAMED IN THE PERSON NAMED IN T	NR-US-SED-63		1150		50		3						X	X	X	X	X	X		in SEDV samples.
62	NR-US-SEDV-03		1150		50	3					X						*************	-		For all samples
63	NR-US-SWV-03	B	1150	6	sw	3						X								, v
64	NR-US-SED-04	W	1250	W	50		3			-			Χ	X	X	X	¥	X		
65	NR-US-SEDV-04		1250	11	50	3					X									
66	NR-US-EMV-DY		1250	11	SW	3						X								
62	NR-US-SED-05	V	1305	V	50		3						X	X	X	X	X	X		
68	NR-US-SEDY-UT	10/15/14	1305	6	50	3					X									
Reli	nquished by:	Received	by:			Date:		_	Time:		Tem	p °C		EDD fo	ormat:					*
adah	deed	力在	and the same of th		101	15%	14	3	30)	Observed)	风	E-mail	to:	ada	mil	10	en	wironcurp, com
1,000	DEC	man			10-1	D-14	4	18	20		Corecction	1 Factor			4					
1		1.10	J		1		-				Corrected)	Condit	ion up	on rece	ipt:	Custod	y Seals		Present Intact Broken
											IR ID#				V					
											0	2	LA	mbient	/ Ic	ed	Ref	rigerate	ed	☐ DI VOA Frozen ☐ Soil Jar Frozen

		#		
	Service Control	a p	er)b	
-	SOATONIO.	1		
		1		λ
Witness research	one manufactured and the	Storm	and the same	anderson.
SPECT	RUM A	NALY	TICAL	, INC.

	Special Handling:	
	Standard TAT - 7 to 10 business days	
	Rush TAT - Date Needed:	5
6	All TATs subject to laboratory approval	
	Min. 24-hr notification needed for rushes	

			CHAI	N(DF	CU	ST	OI	Y	RE	CC	RI					Rush T	CAT - I	Date	Needed:	
	MANALYTICAL, INC. Featuring AL TECHNOLOGY				Page	8	of	8									Min. 2	4-hr no	tifica	laboratory approval tion needed for rushes fter 60 days unless otherwise	instructed.
Report To:	ENVIRON		Invoice To		EM	vir)	te.							Project	No:	08	1-147	2/8	43		
	136 Commercial Suite 402				Kris PO B	Sal	bing	(A						Site Na			vir				E1
Telephone #: Project Mgr:	Portland, ME 04/01 207-517-8225 Derek Pullyrer		P.O No.	C	happ	pagu	ia, 1	UY e/RQN:	1051	4				Locatio Sample	r(s):	A	oma Dan Unde	iel		Sta	te: CT
	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄		S=NaOH 6			d						Li	st Pres	ervativ	ve Cod	e belov	w:			QA/QC Reporting	Notes:
7=CH3OH 8=Na	aHSO ₄ 9=Deionized Water 10=H ₃ PO ₄	11=		12=	-						7/9	7								* additional charges n	
DW=Dinking Wate	er	ace Water WV	V=Waste Wate	er			C	ontain	ers			4		Ana	lysis				1	MA DEP MCP CAM Report?	Yes No
O=Oil SO=Soi	il SL=Sludge A=Indoor/Ambie X2=	nt Air SG=Soi	l Gas		-	Vials	er Glass	Glass	27		8260.	0976	CA, Cr	Cu, Fe, Mn, Na	Pb,Zn		Grain Size	Solias	chlorinated	CT DPH RCP Report? Standard N DQA* ASP A*	Yes No
	G= Grab	C=Compsite		ype	Matrix	of VOA	of Amber	# of Clear	of Plastic		VOCS	VOCS	Ba	3	9	TOC	raic	total	ck if	Tier II*	ier IV*
Lab ID:	Sample ID:	Date:	Time:	1	1	#	# of	Jo#	jo #		×	more and the second	As,	3	Z	+	72	+	Che	Other: State-specific reporting	
8147-69	MR-US-SWV-05	10/19/15	13 95	9	SM	3						X								Soil in "SED	samples.
1 70	NR-US-SED-06	1	1315	1	50		3						X	X	X	X	X	X		corresponds to	Soil
71	NR-US-SEDV-06		1315	-	SU	3			3 1		X									IN SEDV" Sum	ples.
72	NR-US-SWY-076		1315		SW	3						1								For all sample	2 }
13	NR-US-SED-07		1330	194	30		3						X	X	X	X	X	X			
74	NR-US-SEDV-07	W	1330		So	3					X										
75	NR-US-SWV-07		1330		SW	3						X								× 1	
76			1340		50		3						X	X	X	X	X	X			***************************************
	NR-US-SEDV-08		1340	1	50	3					X										
78	NR-US- SWV-08	10/14/15	1340	61	1	3						1									
19 Relin	equished by: VB-7-5011	Received	by:			Date	2	Terrore and the	Time:		X em	p°C.		EDD fo	эrmat:						
/ hhbho		1)tic	1		10	115	1/4	2	3:3	Ü	Observed		X	E-mail	to:	ad	ani	e/6	Per	nvironcorp.co	m
	DEC	mary	1		10	15-1	4	18	320)	Corrected)								,	N=100 100 100 100 100 100 100 100 100 100
			J								IR ID#		Condi	ion up	on recei	pt:	Custod	y Seals:	:	Present Intact	☐ Broken
											0	7		mbient	Jic	ed	Ref	rigerate	ed	☐ DI VOA Frozen ☐	Soil Jar Frozen

Appendix D Laboratory EDDs

Report Date: 28-Oct-14 12:47

☑ Final Report☐ Re-Issued Report☐ Revised Report

HANIBAL TECHNOLOGY Laboratory Report

ENVIRON International Corporation 136 W Commercial St, Suite 402 Portland, ME 04101

Attn: Derek Pelletier

Project: Envirite - Thomaston, CT

Project #: 08-14218G3

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB98028-01	BB-DS-SED-01	Soil	14-Oct-14 09:40	14-Oct-14 17:21
SB98028-02	BB-DS-SEDV-01	Soil	14-Oct-14 09:40	14-Oct-14 17:21
SB98028-03	BB-DS-SWV-01	Surface Water	14-Oct-14 09:40	14-Oct-14 17:21
SB98028-04	BB-DS-SED-02	Soil	14-Oct-14 09:55	14-Oct-14 17:21
SB98028-05	BB-DS-SEDV-02	Soil	14-Oct-14 09:55	14-Oct-14 17:21
SB98028-06	BB-DS-SWV-02	Surface Water	14-Oct-14 09:55	14-Oct-14 17:21
SB98028-07	BB-DS-SED-03	Soil	14-Oct-14 10:15	14-Oct-14 17:21
SB98028-08	BB-DS-SEDV-03	Soil	14-Oct-14 10:15	14-Oct-14 17:21
SB98028-09	BB-DS-SWV-03	Surface Water	14-Oct-14 10:15	14-Oct-14 17:21
SB98028-10	BB-DS-SED-04	Soil	14-Oct-14 11:35	14-Oct-14 17:21
SB98028-11	BB-DS-SEDV-04	Soil	14-Oct-14 11:35	14-Oct-14 17:21
SB98028-12	BB-DS-SWV-04	Surface Water	14-Oct-14 11:35	14-Oct-14 17:21
SB98028-13	BB-DS-SED-05	Soil	14-Oct-14 12:00	14-Oct-14 17:21
SB98028-14	BB-DS-SEDV-05	Soil	14-Oct-14 12:00	14-Oct-14 17:21
SB98028-15	BB-DS-SWV-05	Surface Water	14-Oct-14 12:00	14-Oct-14 17:21
SB98028-16	BB-DS-SED-06	Soil	14-Oct-14 12:30	14-Oct-14 17:21
SB98028-17	BB-DS-SEDV-06	Soil	14-Oct-14 12:30	14-Oct-14 17:21
SB98028-18	BB-DS-SWV-06	Surface Water	14-Oct-14 12:30	14-Oct-14 17:21
SB98028-19	BB-DS-SED-07	Soil	14-Oct-14 12:50	14-Oct-14 17:21
SB98028-20	BB-DS-SEDV-07	Soil	14-Oct-14 12:50	14-Oct-14 17:21
SB98028-21	BB-DS-SWV-07	Surface Water	14-Oct-14 12:50	14-Oct-14 17:21
SB98028-22	BB-DS-SED-08	Soil	14-Oct-14 13:10	14-Oct-14 17:21
SB98028-23	BB-DS-SEDV-08	Soil	14-Oct-14 13:10	14-Oct-14 17:21
SB98028-24	BB-DS-SWV-08	Surface Water	14-Oct-14 13:10	14-Oct-14 17:21
SB98028-25	DUP-1-Soil	Soil	14-Oct-14 00:00	14-Oct-14 17:21
SB98028-26	DUP-2-Soil	Soil	14-Oct-14 00:00	14-Oct-14 17:21
SB98028-27	TB-1-Soil	Trip Blank	14-Oct-14 08:00	14-Oct-14 17:21
SB98028-28	DUP-1-SW	Surface Water	14-Oct-14 00:00	14-Oct-14 17:21
SB98028-29	DUP-2-SW	Surface Water	14-Oct-14 00:00	14-Oct-14 17:21
SB98028-30	TB-1-SW	Trip Blank	14-Oct-14 08:00	14-Oct-14 17:21

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Nicole Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 121 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Reasonable Confidence Protocols Laboratory Analysis QA/QC Certification Form

Laboratory Name: Spectrum Analytical, Inc.

Client: ENVIRON International Corporation - Portland, ME

Project Location: Envirite - Thomaston, CT

Project Number: 08-14218G3

Sampling Date(s):

Laboratory Sample ID(s):

10/14/2014 SB98028-01 through SB98028-30

RCP Methods Used:

SW846 6010C SW846 8260C

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓	Yes	N	lo
1A	Were the method specified preservation and holding time requirements met?	✓	Yes	N	lo .
1B	<u>VPH and EPH methods only</u> : Was the VPH or EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?		Yes	N	Ιο
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	1	Yes	N	Ιο
3	Were samples received at an appropriate temperature?	✓	Yes	N	10
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved?		Yes	✓ N	lo .
5	a) Were reporting limits specified or referenced on the chain-of-custody? b) Were these reporting limits met?		Yes Yes	✓ N N	
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?		Yes	✓ N	lo
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	✓	Yes	N	lo .

Note: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence."

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for obtaining the information contained in this analytical report, such information is accurate and complete.

Nicole Leja Laboratory Director Date: 10/28/2014

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

The samples were received 0.8 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

Low level VOC soil samples submitted in DI water or in an encore sampler were frozen on 10/14/2014 at 17:21.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

Required site-specific Matrix Spike/Matrix Spike Duplicate (MS/MSD) must be requested by the client and sufficient sample must be submitted for the additional analyses. Samples submitted with insufficient volume/weight will not be analyzed for site specific MS/MSD, however a batch MS/MSD may be analyzed from a non-site specific sample.

CTDEP has published a list of analytical methods which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of decisions being made utilizing the Reasonable Confidence Protocol (RCP). "Reasonable Confidence" can be established only for those methods published by the CTDEP in the RCP guidelines. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

The CTDEP RCP requests that "all non-detects and all results below the reporting limit are reported as ND (Not Detected at the Specified Reporting Limit)". All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

If no reporting limits were specified or referenced on the chain-of-custody the laboratory's practical quantitation limits were applied.

According to CTDEP RCP Quality Assurance and Quality Control Requirements for VOCs by method 8260, SW-846 version 1, 7/28/05 Table 1A, recovery for some VOC analytes have been deemed potentially difficult.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

Method SW846 5035A is designed to use on samples containing low levels of VOCs, ranging from 0.5 to 200 ug/Kg. Target analytes that are less responsive to purge and trap may be present at concentrations over 200ug/Kg but may not be reportable in the methanol preserved vial (SW846 5030). This is the result of the inherent dilution factor required for the methanol preservation.

For this work order, the reporting limits have not been referenced or specified.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

ASTM D422

Duplicates:

1424693-DUP1 Source: SB98028-25

RPD out of acceptance range.

Fractional % Sieve #10 (4750-2000μm) Fractional % Sieve #200 (150-75μm)

Lloyd Kahn

Samples:

SB98028-16 BB-DS-SED-06

This laboratory report is not valid without an authorized signature on the cover page.

Lloyd Kahn

Samples:

SB98028-16

BB-DS-SED-06

This sample was analyzed in quadruplicate. The % RSD is 11.48227%.

Total Organic Carbon

SM2540 G Mod.

Samples:

SB98028-02

BB-DS-SEDV-01

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -01 were used to calculate the results on a dry weight basis.

% Solids

SB98028-05

BB-DS-SEDV-02

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -04 were used to calculate the results on a dry weight basis.

% Solids

SB98028-08

BB-DS-SEDV-03

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -07 were used to calculate the results on a dry weight basis.

% Solids

SB98028-11

BB-DS-SEDV-04

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from sb98028-10 were used to calculate the results on a dry weight basis.

% Solids

SB98028-14

BB-DS-SEDV-05

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from sb98028-13 were used to calculate the results on a dry weight basis.

% Solids

SB98028-17

BB-DS-SEDV-06

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from sb98028-16 were used to calculate the results on a dry weight basis.

% Solids

SB98028-20

BB-DS-SEDV-07

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from sb98028-19 were used to calculate the results on a dry weight basis.

% Solids

SB98028-23

BB-DS-SEDV-08

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from sb98028-22 were used to calculate the results on a dry weight basis.

% Solids

SW846 6010C

SW846 6010C

Spikes:

1424725-MS1 Source: SB98028-16

The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon acceptable PS and /or LCS recovery.

Sodium

1424725-MSD1 Source: SB98028-16

The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon acceptable PS and /or LCS recovery.

Sodium

1425320-MS1 Source: SB98028-16

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron

1425320-MSD1 Source: SB98028-16

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron

Duplicates:

The dilution analysis is not within a control limit of 10%, therefore a chemical or physical interference effect must be suspected.

Nickel (11%)

S412261-SRD1 Source: BB-DS-SED-05

The dilution analysis is not within a control limit of 10%, therefore a chemical or physical interference effect must be suspected.

Iron (12%)

SW846 8260C

Calibration:

1409053

Analyte quantified by quadratic equation type calibration.

1,1,2-Trichlorotrifluoroethane (Freon 113)

Bromoform

Dibromochloromethane

Naphthalene

trans-1,3-Dichloropropene

This affected the following samples:

1424387-BLK1

1424387-BS1

1424387-BSD1

1424387-MS1

1424387-MSD1

BB-DS-SEDV-06

S410392-ICV1

S411760-CCV1

TB-1-Soil

Calibration:

1410024

Analyte quantified by quadratic equation type calibration.

1,2-Dibromo-3-chloropropane

2,2-Dichloropropane

Bromochloromethane

Bromodichloromethane

Bromoform

cis-1,3-Dichloropropene

Dibromochloromethane

Ethanol

Naphthalene

Tetrahydrofuran

trans-1,3-Dichloropropene

trans-1,4-Dichloro-2-butene

Vinyl chloride

This affected the following samples:

1424392-BLK1

1424392-BS1

1424392-BSD1

1424392-MS1

1424392-MSD1

BB-DS-SWV-03

BB-DS-SWV-04

BB-DS-SWV-05

BB-DS-SWV-06

BB-DS-SWV-07

BB-DS-SWV-08

DUP-1-SW

DUP-2-SW

S411447-ICV1

S411769-CCV1

TB-1-SW

1410028

Analyte quantified by quadratic equation type calibration.

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

Naphthalene

n-Butylbenzene

This affected the following samples:

1424395-BLK1

1424395-BS1

1424395-BSD1

BB-DS-SWV-01 BB-DS-SWV-02

S411509-ICV1

S411768-CCV1

1410045

Calibration:

S411447-ICV1

```
1410045
Analyte quantified by quadratic equation type calibration.
  1,2,3-Trichlorobenzene
  1,2,4-Trichlorobenzene
  1,4-Dioxane
  2-Butanone (MEK)
  2-Hexanone (MBK)
  4-Methyl-2-pentanone (MIBK)
 Naphthalene
  trans-1,3-Dichloropropene
  trans-1,4-Dichloro-2-butene
This affected the following samples:
  1424386-BLK1
  1424386-BS1
  1424386-BSD1
  1424512-BLK1
  1424512-BS1
  1424512-BSD1
  1424512-MS1
  1424512-MSD1
  BB-DS-SEDV-01
  BB-DS-SEDV-02
  BB-DS-SEDV-03
 BB-DS-SEDV-04
 BB-DS-SEDV-05
 BB-DS-SEDV-06
 BB-DS-SEDV-07
  BB-DS-SEDV-08
  DUP-1-Soil
 DUP-2-Soil
  S411759-CCV1
  S411778-ICV1
  S411832-CCV1
  TB-1-Soil
S410392-ICV1
Analyte percent recovery is outside individual acceptance criteria (80-120).
  1,2,3-Trichloropropane (121%)
  Isopropylbenzene (125%)
  trans-1,4-Dichloro-2-butene (123%)
This affected the following samples:
  1424387-BLK1
  1424387-BS1
  1424387-BSD1
  1424387-MS1
  1424387-MSD1
  BB-DS-SEDV-06
  S411760-CCV1
  TB-1-Soil
```

Calibration:

```
S411447-ICV1
```

```
Analyte percent recovery is outside individual acceptance criteria (80-120).
```

Dichlorodifluoromethane (Freon12) (77%)

Ethyl tert-butyl ether (78%)

This affected the following samples:

1424392-BLK1

1424392-BS1

1424392-BSD1

1424392-MS1

1424392-MSD1

BB-DS-SWV-03

BB-DS-SWV-04

BB-DS-SWV-05

BB-DS-SWV-06 BB-DS-SWV-07

BB-DS-SWV-08

DUP-1-SW

DUP-2-SW

S411769-CCV1

TB-1-SW

S411778-ICV1

Analyte percent recovery is outside individual acceptance criteria (80-120).

1,2,3-Trichloropropane (122%)

Dichlorodifluoromethane (Freon12) (69%)

Isopropylbenzene (126%)

This affected the following samples:

1424386-BLK1

1424386-BS1

1424386-BSD1

1424512-BLK1

1424512-BS1

1424512-BSD1

1424512-MS1

1424512-MSD1

BB-DS-SEDV-01

BB-DS-SEDV-02

BB-DS-SEDV-03

BB-DS-SEDV-04

BB-DS-SEDV-05

BB-DS-SEDV-06

BB-DS-SEDV-07

BB-DS-SEDV-08

DUP-1-Soil

DUP-2-Soil

S411759-CCV1

S411832-CCV1

TB-1-Soil

Laboratory Control Samples:

1424392 BS/BSD

Laboratory Control Samples:

1424392 BS/BSD

1,1-Dichloroethane percent recoveries (112/65) are outside individual acceptance criteria, but within overall method allowances.

All reported results of the following samples are considered to have a potentially low bias:

```
BB-DS-SWV-04
BB-DS-SWV-05
BB-DS-SWV-06
BB-DS-SWV-07
```

BB-DS-SWV-08

DUP-1-SW

DUP-2-SW

TB-1-SW

2-Butanone (MEK) percent recoveries (64/125) are outside individual acceptance criteria, but within overall method allowances.

All reported results of the following samples are considered to have a potentially low bias:

```
BB-DS-SWV-03
BB-DS-SWV-04
BB-DS-SWV-06
BB-DS-SWV-07
BB-DS-SWV-08
DUP-1-SW
DUP-2-SW
TB-1-SW
```

Methyl tert-butyl ether percent recoveries (91/51) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

BB-DS-SWV-03 BB-DS-SWV-04 BB-DS-SWV-05 BB-DS-SWV-06 BB-DS-SWV-07 BB-DS-SWV-08 DUP-1-SW DUP-2-SW TB-1-SW

1424392 BSD

1,1-Dichloroethane RPD 54% (20%) is outside individual acceptance criteria.

2-Butanone (MEK) RPD 65% (20%) is outside individual acceptance criteria.

Methyl tert-butyl ether RPD 57% (20%) is outside individual acceptance criteria.

1424395 BS/BSD

Dichlorodifluoromethane (Freon12) percent recoveries (131/107) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

BB-DS-SWV-01 BB-DS-SWV-02

1424512 BSD

2-Butanone (MEK) RPD 32% (30%) is outside individual acceptance criteria.

Spikes:

1424387-MS1 Source: SB98028-17

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,1,1-Trichloroethane

Acrylonitrile

Bromomethane

Hexachlorobutadiene

sec-Butylbenzene

tert-Butylbenzene

Trichlorofluoromethane (Freon 11)

1424387-MSD1

Source: SB98028-17

RPD out of acceptance range.

Chloroethane

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Bromomethane

Chloroethane

1424392-MSD1

Source: SB98028-18

RPD out of acceptance range.

1,4-Dioxane

2-Hexanone (MBK)

4-Methyl-2-pentanone (MIBK)

Acetone

Ethanol

Naphthalene

1424512-MS1

Source: SB98028-17RE1

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,2-Dibromo-3-chloropropane

1,2-Dichlorobenzene

1,3,5-Trichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,4-Dioxane

2-Butanone (MEK)

Acetone

Hexachlorobutadiene

Naphthalene

Styrene

trans-1,4-Dichloro-2-butene

1424512-MSD1 Source: SB98028-17RE1

RPD out of acceptance range.

2-Butanone (MEK)

Acetone

Ethanol

Styrene

BB-DS-SWV-02

S411769-CCV1

```
Spikes:
  1424512-MSD1
                           Source: SB98028-17RE1
  The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS
  recovery.
    1,2,3-Trichlorobenzene
    1,2,4-Trichlorobenzene
    1,3,5-Trichlorobenzene
    2-Butanone (MEK)
    2-Hexanone (MBK)
    Acetone
    Ethanol
    Naphthalene
    trans-1,4-Dichloro-2-butene
Samples:
  S411759-CCV1
  Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.
    2-Hexanone (MBK) (-22.4%)
  This affected the following samples:
    1424386-BLK1
    1424386-BS1
    1424386-BSD1
    DUP-1-Soil
    DUP-2-Soil
  S411760-CCV1
  Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.
    Carbon tetrachloride (23.4%)
  This affected the following samples:
    1424387-BLK1
    1424387-BS1
    1424387-BSD1
    1424387-MS1
    1424387-MSD1
    BB-DS-SEDV-06
    TB-1-Soil
  S411768-CCV1
  Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.
    2,2-Dichloropropane (20.6%)
  This affected the following samples:
    1424395-BLK1
    1424395-BS1
    1424395-BSD1
    BB-DS-SWV-01
```

Samples:

```
S411769-CCV1
```

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

```
2-Butanone (MEK) (-29.7%)
Di-isopropyl ether (-28.4%)
```

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

```
2,2-Dichloropropane (26.2%)
```

This affected the following samples:

```
1424392-BLK1
1424392-BSD1
1424392-MSD1
1424392-MSD1
BB-DS-SWV-03
BB-DS-SWV-04
BB-DS-SWV-05
BB-DS-SWV-06
BB-DS-SWV-07
BB-DS-SWV-08
DUP-1-SW
DUP-2-SW
TB-1-SW
```

SB98028-17 BB-DS-SEDV-06

Sample data reported for QC purposes only.

Sample Acceptance Check Form

Client: ENVIRON International Corporation - Portland, ME
Project: Envirite - Thomaston, CT / 08-14218G3
Work Order: SB98028
Sample(s) received on: 10/14/2014

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

		<u>Y es</u>	No	N/A
1.	Were custody seals present?		$\overline{\mathbf{V}}$	
2.	Were custody seals intact?			$\overline{\mathbf{C}}$
3.	Were samples received at a temperature of ≤ 6°C?	$\overline{\mathbf{V}}$		
4.	Were samples cooled on ice upon transfer to laboratory representative?	\checkmark		
5.	Were samples refrigerated upon transfer to laboratory representative?		\checkmark	
6.	Were sample containers received intact?	\checkmark		
7.	Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	$\overline{\mathbf{C}}$		
8.	Were samples accompanied by a Chain of Custody document?	$\overline{\mathbf{V}}$		
9.	Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?			
10.	Did sample container labels agree with Chain of Custody document?	\checkmark		
11.	Were samples received within method-specific holding times?	$\overline{\mathbf{V}}$		

Matrix Soil Collection Date/Time 14-Oct-14 09:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 1.90		mg/kg dry	1.90	0.671	1	SW846 6010C	21-Oct-14	23-Oct-14	EDT	1424725	Х
7440-39-3	Barium	24,8		mg/kg dry	1.26	0.230	1	1∎3	100	27-Oct-14	T	1425320	X
7440-43-9	Cadmium	< 0.632		mg/kg dry	0.632	0.0847	1	4.■3	3.■1	23-Oct-14	•	1424725	X
7440-47-3	Chromium	7.31		mg/kg dry	1,26	0,229	1	(1)	1	1	#	<u> </u>	X
7440-50-8	Copper	7.78		mg/kg dry	1.26	0.173	1				1 🖷 2		X
7439-89-6	Iron	9,050		mg/kg dry	5.05	2.29	1	(■)		27-Oct-14	(50)	1425320	X
743 9-96- 5	Manganese	216		mg/kg dry	1.26	0.191	1	(1)	1	23-Oct-14	•	1424725	X
7440-23-5	Sodium	75.2		mg/kg dry	31.6	7.09	1	1			Ħ	Ĩ	X
7440-02-0	Nickel	9.12		mg/kg dry	1,26	0.176	1	190	8.00	₹₩ \$	•	•	X
7439-92-1	Lead	3.57		mg/kg dry	1.90	0,879	1	0,■0	(1)	. .	•	•	X
7440-68-6	Zinc	30.0		mg/kg dry	1.26	0.316	1	(1)	(10)	(1)	•	924 	X
General C	Chemistry Parameters												
	% Solids	70.1		%			1	SM2540 G Mod.	15-Oct-14	15-Oct-14	DT	1424282	
	Total Organic Carbon	498		mg/kg	100	44.9	1	Lloyd Kahn	21-Oct-14	21-Oct-14	DJB	1424886	X
Toxicity C	Characteristics												
Grain Size -	Reported as % retained.												
Prepared	by method General Prepa	<u>aration</u>											
	Fractional % Sieve #4 (>4750µm)	5.43		% Retained			Ĭ	ASTM D422	20-Oct-14	21-Oct-14	EEM	1424693	
	Fractional % Sieve #10 (4750-2000µm)	3.36		% Retained			1	U	•	•	1		
	Fractional % Sieve #20 (2000-850µm)	14.0		% Retained			1	•		□ ■ □	, ,,	•	
	Fractional % Sieve #40 (850-425µm)	33.9		% Retained			Ĭ	(1)	•		П	<u> </u>	
	Fractional % Sieve #60 (425-250µm)	31.7		% Retained			1			•	ান ি		
	Fractional % Sleve #100 (250-150µm)	7.58		% Retained			1	.1.	3. 1 .:	J.		•	
	Fractional % Sieve #200 (150-75µm)	3.81		% Retained			1	*			•	in Apr	
	Fractional % Sieve #230 (less than 75µm)	0.277		% Retained			1	100	196	200	π:	•	

Matrix Soil Collection Date/Time 14-Oct-14 09:40

SB98028-	-02												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424367	
Re-analysis 8260	of Volatile Organic Compounds by	y SW846											
Prepared	by method SW846 5035A	Soil (low level)				<u>Initi</u>	al weight: 11.	59 g					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.2		µg/kg dry	5.2	4.2	1	SW846 8260C	17-Oct-14	18-Oct-14	JEG	1424512	Х
67-64- 1	Acetone	< 52.1		µg/kg dry	52.1	27.5	1	t∎#	(1)	0∎	•	•	Х
107-13-1	Acrylonitrile	< 5.2		µg/kg dry	5.2	3,5	1	0.00	2.5€	3 ■¢	•		X
71-43-2	Benzene	< 5.2		µg/kg dry	5,2	1.9	1			196		Ē	Х
108-86-1	Bromobenzene	< 5.2		µg/kg dry	5.2	3.5	1		T T		901		Х
74-97-5	Bromochloromethane	< 5.2		µg/kg dry	5.2	5.2	1	318		0		•	X
75-27-4	Bromodichloromethane	< 5.2		µg/kg dry	5.2	4.1	1	•		3 0		<u> </u>	X
75-25-2	Bromoform	< 5.2		µg/kg dry	5.2	5.0	1					Ĭ	Х
74-83-9	Bromomethane	< 10.4		µg/kg dry	10.4	10.3	1	0 = 0	5 m 5	5 0 3		•	X
78-93-3	2-Butanone (MEK)	< 52.1		µg/kg dry	52.1	17.6	1	00 0	(.)	Ø ■ 0			X
104-51-8	n-Butylbenzene	< 5.2		μg/kg dry	5.2	4.3	ī		•		•	Ĭ	х
135-98-8	sec-Butylbenzene	< 5.2		µg/kg dry	5.2	3.4	1				•		х
98-06-6	tert-Butylbenzene	< 5.2		μg/kg dry	5.2	3.7	1	t • d	11	93 m 3			х
75-15-0	Carbon disulfide	< 10.4		μg/kg dry	10.4	2,6	1	1	1		•	ì	х
56-23-5	Carbon tetrachloride	< 5.2		μg/kg dry	5.2	2.5	1				•		х
108-90-7	Chlorobenzene	< 5.2		μg/kg dry	5.2	1.8	1			•	· m :		х
75-00-3	Chloroethane	< 10.4		μg/kg dry	10.4	4.5	1	3 1 1	:1:	∴	•		Х
67-66-3	Chloroform	< 5.2		μg/kg dry	5.2	2.7	1	•	1	(a)	•		Х
74-87-3	Chloromethane	< 10.4		μg/kg dry	10.4	10,2	1	1				ě	X
95-49-8	2-Chlorotoluene	< 5.2		μg/kg dry	5.2	2,3	1	516	100	10 m			X
106-43-4	4-Chlorotoluene	< 5.2			5.2	2.8	1	38 3		20€	π.		X
96-12-8	1,2-Dibromo-3-chloroprop	< 10.4		μg/kg dry			1	•			п	î	X
	ane			µg/kg dry	10.4	6.8		9/ - 0				_	
124-48-1	Dibromochloromethane	< 5.2		µg/kg dry	5.2	1.9	1						X
106-93-4	1,2-Dibromoethane (EDB)	< 5.2		µg/kg dry	5.2	1.2	1	3 .	() 1 ()	O ■ 0	(1)	# #2	Х
74-95-3	Dibromomethane	< 5.2		µg/kg dry	5.2	2.9	1		200	38)	(30)	•	Х
95-50-1	1,2-Dichlorobenzene	< 5.2		µg/kg dry	5.2	2.4	1	•	P. ■ Paul			h _. pr	Х
541-73-1	1,3-Dichlorobenzene	< 5.2		µg/kg dry	5,2	3,7	1	5 1 5	10	10 = 0	T	•	Х
106-46-7	1,4-Dichlorobenzene	< 5.2		µg/kg dry	5.2	2.9	1	g=0	3. 1 1	(III)			Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.4		µg/kg dry	10.4	3.8	1	(*)			•	Ĭ	Х
75-34-3	1,1-Dichloroethane	< 5.2		µg/kg dry	5.2	2.0	1	•			7₩		X
107-06-2	1,2-Dichloroethane	< 5.2		µg/kg dry	5.2	2.7	1	10	: 1	0	(T)	•	Х
75-35-4	1,1-Dichloroethene	< 5.2		µg/kg dry	5.2	3.5	1		•			ě	X
156-59-2	cis-1,2-Dichloroethene	< 5.2		µg/kg dry	5.2	1.8	1	•			•	Ē	X
156-60-5	trans-1,2-Dichloroethene	< 5.2		μg/kg dry	5.2	3.6	1	t∎d	7	10	31	•	X
78-87-5	1,2-Dichloropropane	< 5.2		μg/kg dry	5.2	2.4	1	0,■0	3.0	2.■1			Х
142-28-9	1,3-Dichloropropane	< 5.2		μg/kg dry	5.2	1.8	1		(1		•	Ĭ	X
594-20-7	2,2-Dichloropropane	< 5.2		μg/kg dry	5.2	3,3	1	•			•		X
563-58-6	1,1-Dichloropropene	< 5.2		μg/kg dry	5.2	3.2	1	:■:	(1)	:3∎:		•	Х
10061-01-5	cis-1,3-Dichloropropene	< 5.2		μg/kg dry	5.2	1.4	ĭ	•		56	•		Х

<u>Matrix</u> Soil Collection Date/Time 14-Oct-14 09:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
-	of Volatile Organic Compounds b	y SW846_											
8260 Prepared	by method SW846 5035A	Soil (low level)				Initi	al weight: 11.5	50 a					
100-41-4	Ethylbenzene	< 5.2		μg/kg dry	5.2	1.7	1	5W846 8260C	17-Oct-14	18-Oct-14	JEG	1424512	х
87- 6 8-3	Hexachlorobutadiene	< 5.2		μg/kg dry	5.2	1.9	1	•		10-001-14	,	1-12-10-12	Х
591-78-6	2-Hexanone (MBK)	< 52.1		μ g/kg dry	52,1	12.0	1				,		X
98-82-8	Isopropylbenzene	< 5.2		μg/kg dry	5.2	4.6	1						X
99-87-6	4-Isopropyltoluene	< 5.2		μ g/kg dry	5,2	3,1	1				-		X
1634-04-4	Methyl tert-butyl ether	< 5.2		μg/kg dry	5.2	2.7	1						Х
108-10-1	4-Methyl-2-pentanone	< 52.1		µg/kg dry	52.1	16.2	1						Х
	(MIBK)	02.1		hātuā arī	OE. I	10.2	'						^
75-09-2	Methylene chloride	< 10.4		µg/kg dry	10.4	3.1	1	•	•	•	=	•	X
91-20-3	Naphthalene	< 5.2		µg/kg dry	5.2	3.5	1	•	•	•	•	•	Х
103-65-1	n-Propylbenzene	< 5.2		µg/kg dry	5.2	2.1	1	•	•	•	•	•	X
100-42-5	Styrene	< 5.2		μg/kg dry	5.2	0.3	1	•	•	•	•	•	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 5.2		μg/kg dry	5.2	3.1	1	•	•	•	•	•	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 5.2		µg/kg dry	5.2	3.4	1	•	•	•		•	Х
127-18-4	Tetrachloroethene	< 5.2		μg/kg dry	5.2	3.5	1	•	•	•	п	•	Х
108-88-3	Toluene	< 5.2		μg/kg dry	5.2	2.2	1	•	•	•	-	•	X
87-61-6	1,2,3-Trichlorobenzene	< 5.2		μg/kg dry	5.2	3.7	1	•	•	•	π.	•	Х
120-82-1	1,2,4-Trichlorobenzene	< 5.2		μg/kg dry	5.2	3.0	1	•	•	•	=	•	Х
108-70-3	1,3,5-Trichlorobenzene	< 5.2		μg/kg dry	5.2	1.2	1	•	•		•		
71-55-6	1,1,1-Trichloroethane	< 5.2		μg/kg dry	5.2	2.9	1	•	•		•		Х
79-00-5	1,1,2-Trichloroethane	< 5.2		μg/kg dry	5.2	2,1	1		•				Х
79-01-6	Trichloroethene	< 5.2		μg/kg dry	5.2	1.7	1	•	•		•	•	X
75-69-4	Trichlorofluoromethane (Freon 11)	< 5.2		μg/kg dry	5.2	3.6	1	•	•	•	*	•	X
96-18-4	1,2,3-Trichloropropane	< 5.2		μg/kg dry	5.2	3.1	1	•	•		=	•	х
95-63-6	1,2,4-Trimethylbenzene	< 5.2		μg/kg dry	5.2	3.2	1	•	•		•	•	х
108-67-8	1,3,5-Trimethylbenzene	< 5.2		µg/kg dry	5.2	3.1	1		•		π		х
75-01-4	Vinyl chloride	< 5.2		μg/kg dry	5.2	3,5	1		•				х
179601-23-1	m,p-Xylene	< 10.4		μg/kg dry	10.4	3.0	1	•	•		•		Х
95-47-6	o-Xylene	< 5.2		μg/kg dry	5.2	3.3	1		•				х
109-99-9	Tetrahydrofuran	< 10.4		μg/kg dry	10.4	7.7	1				=		
60-29-7	Ethyl ether	< 5.2		μg/kg dry	5.2	4.7	1				•		х
994-05-8	Tert-amyl methyl ether	< 5.2		μg/kg dry	5.2	3.0	1				-		
637-92-3	Ethyl tert-butyl ether	< 5.2		μg/kg dry	5,2	1,5	1						
108-20-3	Di-isopropyl ether	< 5.2		μg/kg dry	5.2	1.4	1	•			•	•	
75-65-0	Tert-Butanol / butyl	< 52.1		μg/kg dry	52.1	31.1	1	•	•	•	,	•	х
123-91-1	1,4-Dioxane	< 104		μg/kg dry	104	70.3	1						Х
110-57-6	trans-1,4-Dichloro-2-buten	< 26.1		µg/kg dry	26.1	12.8	1	•	•	•	•	•	х
64-17-5	e Ethanol	< 2090		μg/kg dry	2090	595	1	•	•	•	,	•	
Surrogate rec	coveries:												
460-00-4	4-Bromofluorobenzene	97			70-13	0 %		•	•	•	π	•	
2037-26-5	Toluene-d8	100			70-13	0 %					•		
17060-07-0	1,2-Dichloroethane-d4	111			70-13						•		

Sample Identification BB-DS-SEDV-01 SB98028-02

Client Project # 08-14218G3

Matrix Soil Collection Date/Time 14-Oct-14 09:40 Received 14-Oct-14

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.

Volatile Organic Compounds

Re-analysis of Volatile Organic Compounds by SW846

Dibromofluoromethane

8260

1868-53-7

Prepared by method SW846 5035A Soil (low level) Initial weight: 11.59 g

70-130 % SW846 8260C 17-Oct-14 18-Oct-14 JEG 1424512

General Chemistry Parameters

% Solids 70.1 SOLe % 1 SM2540 G Mod, 15-Oct-14 15-Oct-14 DT 1424282

Matrix
Surface Water

Collection Date/Time 14-Oct-14 09:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	anic Compounds by SW846 8260												
	by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		µg/l	1.0	0.7	1	SW846 8260C	16-Oct-14	16-Oct-14	JEG	1424395	Х
67-64-1	Acetone	< 10.0		µg/l	10.0	3.6	1	•	•	•	=	•	Х
107-13-1	Acrylonitrile	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	Х
71-43-2	Benzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
108-86-1	Bromobenzene	< 1.0		µg/l	1,0	0,3	1	•	•	•	•	•	Х
74-97-5	Bromochloromethane	< 1.0		µg∕l	1.0	0.3	1	•	•	•	•	•	Х
75-27-4	Bromodichloromethane	< 0.5		µg/l	0.5	0.4	1	•	•	•	•	•	Х
75-25-2	Bromoform	< 1.0		µg/l	1.0	0.6	1	•	•	•	•	•	X
74-83-9	Bromomethane	< 2.0		µg/l	2.0	0.5	1	•	•	•	•	•	Х
78-93-3	2-Butanone (MEK)	< 10.0		µg/l	10.0	3.1	1	•	•	•	•	•	X
104-51-8	n-Butylbenzene	< 1.0		µg∕l	1.0	0.4	1	•	•	•	7	•	Х
135-98-8	sec-Butylbenzene	< 1.0		µg∕l	1.0	0.4	1	•	•	•	•	•	Х
98-06-6	tert-Butylbenzene	< 1.0		µg∕1	1.0	0.4	1	•	•	•	•	•	Х
75-15-0	Carbon disulfide	< 2.0		µg/l	2.0	0.7	1	•	•	•	•	•	X
56-23-5	Carbon tetrachloride	< 1.0		µg∕l	1.0	0.4	1	•	•	•	•	•	X
108-90-7	Chlorobenzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
75-00-3	Chloroethane	< 2.0		µg/l	2.0	0.7	1	•	•	•	•	•	Х
07-06- 3	Chloroform	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	X
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	•	•	•	•	•	Х
95-49-8	2-Chlorotoluene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
106-43-4	4-Chlorotoluene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		µg/l	2.0	0.5	1	•	•	•	7	•	Х
124-48-1	Dibromochloromethane	< 0.5		µg/l	0.5	0.4	1	•	•	•	•	•	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		µg/l	0.5	0.3	1	•	•	•	"	•	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	•	•	•	-	•	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	•	•	•	π	•	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	•	•	•	-	•	Х
108-46-7	1,4-Dichlorobenzene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		µg/l	2.0	0.6	1	•	•	•	п	•	X
75-84-3	1,1-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	π	•	Х
107-06-2	1,2-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•		•	π	•	х
75-35-4	1,1-Dichloroethene	< 1.0		µg/l	1.0	0.5	1	•		•	-	•	X
156-59-2	cis-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.4	1	•	•	•	π	•	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	Х
7 8-8 7-5	1,2-Dichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•	=	•	Х
142-28-9	1,3-Dichloropropane	< 1.0		µg/l	1.0	0.2	1	•	•	•	=	•	х
594-20-7	2,2-Dichloropropane	< 1.0		µg/l	1.0	0,3	1	•		•	•	•	X
563-58-6	1,1-Dichloropropene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
10061-01-5	cis-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.4	1	•	•	•	•		Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	•	•	•	•	•	х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	•	•		,		Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2,0	1	•	•		•		х

Matrix
Surface Water

Collection Date/Time 14-Oct-14 09:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Anatyzed	Anatyst	Batch	Cert
Volatile O	rganic Compounds												
	anic Compounds by SW846 8260												
Prepared	by method SW846 5030 V	Vater MS											
98-82-8	Isopropylbenzene	< 1.0		µg/l	1.0	0.5	1	SW846 8260C	16-Oct-14	16-Oct-14	JEG	1424395	X
99-87-6	4-Isopropyltoluene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	X
1634-04-4	Methyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0	2.5	1	•	•	Ī	•	•	X
75-09-2	Methylene chloride	< 2.0		µg∕l	2,0	0,5	1	•	•	•	7	•	X
31-20-3	Naphthalene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	X
103-65-1	n-Propylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	п	•	X
100-42-5	Styrene	< 1.0		µg/l	1.0	0.4	1	•	•	•	=	•	X
30-20-6	1,1,1,2-Tetrachloroethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	#	•	X
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	X
127-18-4	Tetrachloroethene	< 1.0		µg/l	1.0	0.6	1	•	•	•	=	•	X
108-88-3	Toluene	< 1.0		µg∕l	1.0	0.3	1	•	•	•	•	•	Х
37-61-6	1,2,3-Trichlorobenzene	< 1.0		µg/l	1.0	0.8	1	•	•	•	7	•	X
120-82-1	1,2,4-Trichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
108-70-3	1,3,5-Trichlorobenzene	< 1.0		µg∕1	1.0	0.6	1	•	•	•	-	•	
71-55-6	1,1,1-Trichloroethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	π	•	Х
79-00-5	1,1,2-Trichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	π	•	Х
79-01-6	Trichloroethene	< 1.0		µg/l	1.0	0.4	1	•	•	•	=	•	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		µg/l	1.0	0.8	1	•	•	•	7	•	X
96-18-4	1,2,3-Trichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•	π	•	X
95-63-6	1,2,4-Trimethylbenzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	-		X
108-67-8	1,3,5-Trimethylbenzene	< 1.0		µg/l	1,0	0.4	1	•	•	•	=		Х
75-01-4	Vinyl chloride	< 1.0		µg/l	1.0	1.0	1	•		•	=		X
179601-23-1	m,p-Xylene	< 2.0		µg/l	2.0	0.4	1	•		•	•		Х
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	•	•	•	-	•	X
109-99-9	Tetrahydrofuran	< 2.0		µg/l	2,0	0.8	1			•	•		
30- 29- 7	Ethyl ether	< 1.0		µg/l	1.0	0.5	1	•	•	•	-		Х
394-05-B	Tert-amyl methyl ether	< 1.0		µg/l	1.0	0.3	1		•				Х
337-92-3	Ethyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1	•	•	•	π		Х
108-20-3	Di-isopropyl ether	< 1.0		µg/l	1.0	0.3	1				•		х
75-65-0	Tert-Butanol / butyl	< 10.0		µg/l	10.0	8.9	1	•	•	•	•	•	x
123-91-1	1,4-Dioxane	< 20.0		µg/l	20.0	14.6	1		•	•	•	•	Х
110-57-6	trans-1,4-Dichloro-2-buten	< 5.0		µg/l	5.0	1.0	1	•	•	•	7	•	X
34-17-5	Ethanol	< 400		µg/l	400	80.8	1	•	•	•	•	•	Х
Surrogate rec	coverles:												
160-00-4	4-Bromofluorobenzene	99			70-13	0 %		•	•	•	•	•	
2037-28-5	Toluene-d8	102			70-13	0 %		•	•	•	7	•	
17060-07-0	1,2-Dichloroethane-d4	105			70-13			•	•	•	₩		
1868-59-7	Dibromofluoromethane	105			70-13								

Matrix Soil Collection Date/Time 14-Oct-14 09:55

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 1.99		mg/kg dry	1.99	0.703	1	SW846 6010C	21-Oct-14	23-Oct-14	EDT	1424725	X
7440-39-3	Barium	30,3		mg/kg dry	1.32	0.241	1	10	110	27-Oct-14	1	1425320	X
7440-43-9	Cadmium	< 0.662		mg/kg dry	0.662	0.0887	1	9∎0	3.00	23-Oct-14	П	1424725	Х
7440-47-3	Chromium	8.52		mg/kg dry	1,32	0,240	1				Ħ	Ť	X
7440-50-8	Copper	8.66		mg/kg dry	1.32	0.181	1	•	•		19	ē	X
7439-89-6	Iron	9,590		mg/kg dry	5.30	2.40	1	888	:1	27-Oct-14	π.	1425320	X
743 9-96- 5	Manganese	199		mg/kg dry	1.32	0.200	1		1	23-Oct-14	•	1424725	Х
7440-23-5	Sodium	80.6		mg/kg dry	33.1	7.43	1				Ħ		X
7440-02-0	Nickel	9.67		mg/kg dry	1,32	0.184	1	17 ≡ 01	8.00	5.0	•	•	х
7439-92-1	Lead	4.10		mg/kg dry	1.99	0,922	1	g#g	(1)	.	•		X
7440-66-6	Zinc	28.3		mg/kg dry	1.32	0.331	1	(*)	()		•	Ť	Х
General C	Chemistry Parameters												
	% Solids	72.2		%			1	SM2540 G Mod.	15-Oct-14	15-Oct-14	DT	1424282	
	Total Organic Carbon	540		mg/kg	100	44.9	1	Lloyd Kahn	21-Oct-14	21-Oct-14	DJB	1424886	X
Toxicity C	Characteristics												
	Reported as % retained. by method General Prepa	aration											
	Fractional % Sieve #4 (>4750µm)	35.8		% Retained			1	ASTM D422	20-Oct-14	21-Oct-14	EEM	1424693	
	Fractional % Sieve #10 (4750-2000µm)	13.6		% Retained			1	188	•	•	П		
	Fractional % Sieve #20 (2000-850µm)	16.3		% Retained			1	10		0.	я.	•	
	Fractional % Sieve #40 (850-425µm)	16.6		% Retained			1		•	•	П	Ī	
	Fractional % Sieve #60 (425-250µm)	12,7		% Retained			1		1		Ħ		
	Fractional % Sleve #100 (250-150μm)	0.171		% Retained			1	8.43	3. 1 .:	3.	П	•	
	Fractional % Sieve #200 (150-75µm)	4.56		% Retained			1	٠		1	•		
	Fractional % Sieve #230 (less than 75µm)	0.313		% Retained			1	0 ■ 3	10	900	T	•	

Matrix Soil Collection Date/Time 14-Oct-14 09:55

SB98028-	-05												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424367	
Re-analysis 13260	of Volatile Organic Compounds by	y SW846											
repared	by method SW846 5035A	Soil (low level)				<u>Initi</u>	al weight: 15.	<u>37 g</u>					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 4.2		µg/kg dry	4.2	3.4	1	SW846 8260C	17-Oct-14	18-Oct-14	JEG	1424512	X
57-64- 1	Acetone	< 41.8		µg/kg dry	41.8	22.0	1	5#5	0∎0	10		•	X
107-13-1	Acrylonitrile	< 4.2		µg/kg dry	4,2	2,8	1		ā∎ş	8 .	•	•	X
71-43-2	Benzene	< 4.2		μg/kg dry	4.2	1,5	1	•					X
108-86-1	Bromobenzene	< 4.2		µg/kg dry	4.2	2.8	1	•		•	₩.		X
74-97-5	Bromochloromethane	< 4.2		µg/kg dry	4.2	4.1	1	011	0∎:	0.00	(10.1	•	X
75-27-4	Bromodichloromethane	< 4.2		µg/kg dry	4.2	3.3	1				•		X
75-25-2	Bromoform	< 4.2		μg/kg dry	4.2	4.0	1	•	(10)	100		Ē	Х
74-83 - 9	Bromomethane	< 8.4		μg/kg dry	8.4	8.2	1	800	10	6 a 4	•	•	X
78-93-9	2-Butanone (MEK)	< 41.8		µg/kg dry	41.8	14.1	1	a.e.a	((■):	8. . ()	•	•	Х
104-51-8	n-Butylbenzene	< 4.2		μg/kg dry	4.2	3.4	Ť		•	•	•	ï	Х
135-98-8	sec-Butylbenzene	< 4.2		μg/kg dry	4.2	2.7	1				•		х
98-06-6	tert-Butylbenzene	< 4.2		μg/kg dry	4,2	3.0	1	ែ ប្រ	(III)	10 1 0			х
75-15-0	Carbon disulfide	< 8.4		µg/kg dry	8.4	2,1	1				•		Х
6-23-5	Carbon tetrachloride	< 4.2		μg/kg dry	4.2	2.0	1		10 1 0	10		Ĩ	X
108-90-7	Chlorobenzene	< 4.2		μg/kg dry	4.2	1.5	1				and a		Х
/5-00-3	Chloroethane	< 8.4			8.4	3.6	1	9 8 8	01	S = 0	, m .		X
7-66-3	Chloroform	< 4.2		μg/kg dry	4.2	2.2		•	S E	1 m			x
74-87-3	Chloromethane	< 8.4		μg/kg dry			1	a n :	10 1 0	1		ĩ	X
95-49-8				μg/kg dry	8.4	8.2	1		10 1	11		773 ■	
	2-Chlorotoluene	< 4.2		µg/kg dry	4,2	1.9	1	a ∎e		3 1 0	π.		X
106-43-4	4-Chlorotoluene	< 4.2		μg/kg dry	4.2	2.2	1		•			·	X
96-12-8	1,2-Dibromo-3-chloroprop ane	< 8.4		µg/kg dry	8.4	5.4	1	y - 3	3,5	1,000			Х
124-48-1	Dibromochloromethane	< 4.2		µg/kg dry	4.2	1.5	1		3.5		π.	9	Х
106-93-4	1,2-Dibromoethane (EDB)	< 4.2		µg/kg dry	4.2	0.9	1	3 8 3	0.	0.			Х
4-95- 3	Dibromomethane	< 4.2		µg/kg dry	4.2	2,3	1	10	•	•	•	•	X
95-50-1	1,2-Dichlorobenzene	< 4.2		µg/kg dry	4.2	2.0	1					18	X
541-73-1	1,3-Dichlorobenzene	< 4.2		µg/kg dry	4,2	3,0	1	D a D	%∎:	17 1 0		•	Х
106-46-7	1,4-Dichlorobenzene	< 4.2		µg/kg dry	4.2	2.3	1	D.■.D	((■):	2. ()		•	X
75-71-8	Dichlorodifluoromethane (Freon12)	< 8.4		µg/kg dry	8.4	3.0	1	*	•	(1)	П	Ť	X
75-34-3	1,1-Dichloroethane	< 4.2		µg/kg dry	4.2	1.6	1	T.			₹		X
107-06-2	1,2-Dichloroethane	< 4.2		µg/kg dry	4.2	2.1	1	81 8 8	□ ■:	0.00	, m	•	Х
5-35-4	1,1-Dichloroethene	< 4.2		μg/kg dry	4.2	2.8	1		•	•			Х
156-59-2	cis-1,2-Dichloroethene	< 4.2		μg/kg dry	4.2	1.4	ĭ		•		•		Х
156-60-5	trans-1,2-Dichloroethene	< 4.2		μg/kg dry	4.2	2.9	1	1 ∎1	10	110			Х
78-87-5	1,2-Dichloropropane	< 4.2		μg/kg dry	4.2	1.9	1	0 ■3	8 .	8.■0			х
142-28-9	1,3-Dichloropropane	< 4.2		μg/kg dry	4.2	1.5	1		•	1	*	9% 	x
94-20-7	2,2-Dichloropropane	< 4.2		μg/kg dry	4,2	2.6	1	•			1 ₩3		X
63-58-6	1,1-Dichloropropene	< 4.2		μg/kg dry	4.2	2.5	1	0 ■ 0	∴	S T S	(,■.)		X
10061-01-5	cis-1,3-Dichloropropene	< 4.2		µg/kg dry	4.2	1.1	1		50		•	·	x
	are the promorphisheric	21.7.6 -		HALLA MILL	7.4	363	,1,1						^

<u>Matrix</u> Soil Collection Date/Time 14-Oct-14 09:55

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
-	of Volatile Organic Compounds b	y SW846_											
<u>3260</u> Prepared	by method SW846 5035A	Soil (low level)				Initi	al weight: 15.3	17 a					
100-41-4	Ethylbenzene	< 4.2		μg/kg dry	4.2	1.4	1	5W846 8260C	17-Oct-14	18-Oct-14	JEG	1424512	х
97-68-3	Hexachlorobutadiene	< 4.2		μg/kg dry	4.2	1.5	1	•		10-001-14	"	142-1012	Х
591-78-6	2-Hexanone (MBK)	< 41.8		μ g/kg dry	41.8	9.6	1				•		X
98-82-8	Isopropylbenzene	< 4.2		μg/kg dry	4.2	3.7	1				-		Х
99-87-6	4-Isopropyltoluene	< 4.2		μg/kg dry	4,2	2,5	1						X
1634-04-4	Methyl tert-butyl ether	< 4.2		μg/kg dry	4.2	2.2	1				•		X
108-10-1	4-Methyl-2-pentanone	< 41.8		µg/kg dry	41.8	13.0	1						X
	(MIBK)	441.0		hātuā arī	71.0	10.0							^
75-09-2	Methylene chloride	< 8.4		µg/kg dry	8.4	2.5	1	•	•	•	•	•	х
91-20-3	Naphthalene	< 4.2		µg/kg dry	4.2	2.8	1	•	•	•	•	•	х
103-65-1	n-Propylbenzene	< 4.2		µg/kg dry	4.2	1.7	1	•	•	•	•	•	х
100-42-5	Styrene	< 4.2		μg/kg dry	4.2	0.2	1	•	•	•	•	•	х
630-20-6	1,1,1,2-Tetrachloroethane	< 4.2		μg/kg dry	4.2	2.5	1	•	•	•	•		Х
79-34-5	1,1,2,2-Tetrachloroethane	< 4.2		µg/kg dry	4.2	2.7	1	•	•	•	•	•	х
127-18-4	Tetrachloroethene	< 4.2		µg/kg dry	4.2	2.8	1	•	•		•	•	х
108-88-3	Toluene	< 4.2		µg/kg dry	4,2	1.8	1	•	•	•	•	•	X
87-61-6	1,2,3-Trichlorobenzene	< 4.2		μg/kg dry	4.2	3.0	1	•	•		•	•	х
120-82-1	1,2,4-Trichlorobenzene	< 4.2		μg/kg dry	4.2	2.4	1	•	•		•		х
108-70-3	1,3,5-Trichlorobenzene	< 4.2		μg/kg dry	4.2	1.0	1		•		•		
71-55-6	1,1,1-Trichloroethane	< 4.2		μg/kg dry	4.2	2.4	1				=		х
79-00-5	1,1,2-Trichloroethane	< 4.2		μg/kg dry	4,2	1,7	1				•		х
79-01-6	Trichloroethene	< 4.2		μg/kg dry	4,2	1.3	1		•		•	•	х
75-69-4	Trichlorofluoromethane	< 4.2		μg/kg dry	4.2	2.9	1		•	•	•	•	х
00.40.4	(Freon 11)	. 4.0									,		34
96-18-4	1,2,3-Trichloropropane	< 4.2		µg/kg dry	4.2	2.5	1				,		X
95-63-6	1,2,4-Trimethylbenzene	< 4.2		μg/kg dry	4.2	2.6	1	-			,	•	Χ
108-67-8	1,3,5-Trimethylbenzene	< 4.2		µg/kg dry	4.2	2.5	1	-	•			•	X
75-01-4	Vinyl chloride	< 4.2		µg/kg dry	4,2	2,8	1	_		•	-	•	X
179601-23-1	m,p-Xylene	< 8.4		µg/kg dry	8.4	2.4	1	•	•	•	•	•	X
95-47-6	o-Xylene	< 4.2		µg/kg dry	4.2	2.6	1	•	•	•	•	•	Х
109-99-9	Tetrahydrofuran	< 8.4		µg/kg dry	8.4	6.1	1	•	•	•	•	•	
60-2 9- 7	Ethyl ether	< 4.2		µg/kg dry	4.2	3.8	1	•	•	•	•	•	X
994-05-8	Tert-amyl methyl ether	< 4.2		µg/kg dry	4.2	2.4	1	•	•	•	•	•	
637-92-3	Ethyl tert-butyl ether	< 4.2		µg/kg dry	4,2	1,2	1	•	•	•	•	•	
108-20-3	Di-isopropyl ether	< 4.2		µg/kg dry	4.2	1.1	1	•	•	•	•	•	
75-65-0	Tert-Butanol / butyl alcohol	< 41.8		µg/kg dry	41.8	24.9	1	•	•	•	•	•	Х
123-91-1	1,4-Dioxane	< 83.5		μg/kg dry	83.5	56.3	1	•	•	•	•	•	Х
110-57-6	trans-1,4-Dichloro-2-buten	< 20.9		μg/kg dry	20.9	10.3	1	•	•	•	•	•	X
64-17-5	e Ethanol	< 1670		μg/kg dry	1670	477	1				•	•	
Surrogate rec	coveries:												
460-00-4	4-Bromofluorobenzene	96			70-13	0 %		•	•	•	•	•	
2037-26-5	Toluene-d8	100			70-13	0 %				•	•	•	
17060-07-0	1,2-Dichloroethane-d4	111			70-13						•		

Sample Identification BB-DS-SEDV-02 SB98028-05

Client Project # 08-14218G3

Matrix Soil Collection Date/Time 14-Oct-14 09:55 Received 14-Oct-14

CAS No. A	nalyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared .	Analyzed	Analyst	Batch	Cert.
(4)													

Volatile Organic Compounds

Re-analysis of Volatile Organic Compounds by SW846

8260

Prepared by method SW846 5035A Soil (low level) Initial weight: 15.37 g

1868-53-7 Dibromofluoromethane 102 70-130 % SW846 8260C 17-Oct-14 18-Oct-14 JEG 1424512

General Chemistry Parameters

% Solids 72.2 SOLf % 1 SM2540 G Mod. 15-Oct-14 DT 1424282

Matrix
Surface Water

Collection Date/Time 14-Oct-14 09:55

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	anic Compounds by SW846 8260												
	by method SW846 5030 V	<u>Vater MS</u>											
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		µg/l	1.0	0.7	1	SW846 8260C	16-Oct-14	16-Oct-14	JEG	1424395	Х
67-64-1	Acetone	< 10.0		µg/l	10.0	3.6	1	•		•			х
107-13-1	Acrylonitrile	< 0.5		µg/l	0.5	0.5	1				•		Х
71-43-2	Benzene	< 1.0		µg/l	1.0	0.3	1				•		x
108-86-1	Bromobenzene	< 1.0		µg/l	1,0	0,3	1				•		Х
74-97-5	Bromochloromethane	< 1.0		µg/l	1.0	0.3	1				•		х
75-27-4	Bromodichloromethane	< 0.5		µg/l	0.5	0.4	1						х
75-25-2	Bromoform	< 1.0		µg/l	1.0	0.6	1				•		х
74-83-9	Bromomethane	< 2.0		µg/l	2.0	0.5	1				•		Х
78-93-3	2-Butanone (MEK)	< 10.0		µg/l	10.0	3.1	1				-		х
104-51-8	n-Butylbenzene	< 1.0		µg/l	1.0	0.4	1						х
135-98-8	sec-Butylbenzene	< 1.0		µg/l	1.0	0.4	1				•		Х
98-06-6	tert-Butylbenzene	< 1.0		µg/l	1.0	0.4	1						х
75-15-0	Carbon disulfide	< 2.0		µg/l	2.0	0.7	1				•		х
56-23-5	Carbon tetrachloride	< 1.0		µg/l	1.0	0.4	1				-		х
108-90-7	Chlorobenzene	< 1.0		µg/l	1.0	0.3	1	•			•		х
75-00-3	Chloroethane	< 2.0		µg/l	2.0	0.7	1	•			7		х
67-86-3	Chloroform	< 1.0		µg/l	1.0	0.5	1				•		х
74-87-3	Chloromethane	< 2.0		µg/l	2.0	0.5	1	•			7		х
95-49-8	2-Chlorotoluene	< 1.0		µg/l	1.0	0,4	1				•		х
108-43-4	4-Chlorotoluene	< 1.0		µg/l	1.0	0.3	1	•		•			х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		µg/l	2.0	0.5	1	•	•	•	•	•	X
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	•	•	•	•	•	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		µg/l	0.5	0.3	1	•	•	•	•	•	Х
74-95-3	Dibromomethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
95-50-1	1,2-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	π	•	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
108-46-7	1,4-Dichlorobenzene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	Х
75-71- 8	Dichlorodifluoromethane (Freon12)	< 2.0		µg/l	2.0	0.6	1	•	•	•	7	•	X
75-34-3	1,1-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
107-06-2	1,2-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	п	•	X
75-35-4	1,1-Dichtoroethene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	X
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	•	•	•	•	•	X
156-60-5	trans-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	Х
7 8-8 7-5	1,2-Dichloropropane	< 1.0		µg∕l	1.0	0.3	1	•	•	•	•	•	Х
142-28-9	1,3-Dichloropropane	< 1.0		µg/l	1.0	0.2	1	•	•	•	•	•	X
594-20-7	2,2-Dichloropropane	< 1.0		µg/l	1.0	0,3	1	1	•	•	7	•	X
563-58-6	1,1-Dichloropropene	< 1.0		µg/l	1.0	0.4	1		•	•	•	•	X
10061-01-5	cis-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.4	1	•	•	•	п	•	X
10061-02-6	trans-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	X
100-41-4	Ethylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	π	•	X
87-68-3	Hexachlorobutadiene	< 0.5		µg/l	0.5	0.4	1	•	•	•	7	•	Х
591-78-6	2-Hexanone (MBK)	< 10.0		µg/l	10.0	2.0	1	•			₩		Х

Matrix
Surface Water

Collection Date/Time 14-Oct-14 09:55

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Anatyzed	Anatyst	Batch	Cer
Volatile O	organic Compounds												
	anic Compounds by SW846 8260												
	by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		µg/l	1.0	0.5	1	SW846 8260C	16-Oct-14	16-Oct-14	JEG	1424395	Х
9 9-8 7-6	4-Isopropyttoluene	< 1.0		µg/l	1.0	0.5	1	•	•	•	7	•	Х
1634-04-4	Methyl tert-butyl ether	< 1.0		hâ⁄i	1.0	0.4	1	•	•	•	•	•	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0	2.5	1	•	•	•	•	•	X
75-09-2	Methylene chloride	< 2.0		µg/l	2,0	0,5	1	•	•	•	π	•	Х
91-20-3	Naphthalene	< 1.0		µg∕l	1.0	0.5	1	•	•	•	•	•	X
103-65-1	n-Propylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	#	•	X
100-42-5	Styrene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		µg∕l	1.0	0.4	1	•	•	•	•	•	X
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	X
127-18-4	Tetrachloroethene	< 1.0		µg/l	1.0	0.6	1	Ī	•	•	•	•	X
108-88-3	Toluene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
87-61-6	1,2,3-Trichlorobenzene	< 1.0		µg/l	1.0	0.8	1	•	•	•	7	•	X
120-82-1	1,2,4-Trichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	π.	•	X
108-70-3	1,3,5-Trichlorobenzene	< 1.0		µg/l	1.0	0.6	1	•	•	•	•	•	
71-55-6	1,1,1-Trichloroethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
79-00-5	1,1,2-Trichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
79-01-6	Trichloroethene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		µg/l	1.0	0.8	1	•	•	•	п	•	X
96-18-4	1,2,3-Trichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
95-63-6	1,2,4-Trimethylbenzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
108-67-8	1,3,5-Trimethylbenzene	< 1.0		µg/l	1,0	0.4	1	•	•	•	•	•	Х
75-01-4	Vinyl chloride	< 1.0		µg/l	1.0	1.0	1	•	•	•	7	•	Х
179601-23-1	m,p-Xylene	< 2.0		µg/l	2.0	0.4	1	•	•	•	•	•	Х
95-47-6	o-Xylene	< 1.0		µg/l	1.0	0.4	1	•	•	•	-	•	Х
109-99-9	Tetrahydrofuran	< 2.0		µg/l	2.0	0.8	1	•	•	•	•	•	
60-29-7	Ethyl ether	< 1.0		µg/l	1.0	0.5	1	•			•	•	Х
994-05-B	Tert-amyl methyl ether	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
637-92-3	Ethyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1	•	•	•	71		Х
108-20-3	Di-isopropyl ether	< 1.0		µg/l	1.0	0.3	1		•	•	•		Х
75-65-0	Tert-Butanol / butyl	< 10.0		µg/l	10.0	8.9	1	•	•	•	•	•	X
123-91-1	1,4-Dioxane	< 20.0		µg/l	20.0	14.6	1	•	•	•	•	•	X
110-57-6	trans-1,4-Dichloro-2-buten	< 5.0		µg/l	5.0	1.0	1	•	•	•	п	•	X
64-17-5	Ethanol	< 400		µg/l	400	80.8	1	•	•	•	•	•	х
Surrogate rec	coveries:												
460-00-4	4-Bromofluorobenzene	99			70-13	0%		•	•	•	•	•	
2037-26-5	Toluene-d8	99			70-13	0%		•	•	•	7	•	
17060-07-0	1,2-Dichloroethane-d4	104			70-13					•	•		
1868-53-7	Dibromofluoromethane	100			70-13								

Matrix Soil Collection Date/Time 14-Oct-14 10:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 1.97		mg/kg dry	1.97	0.698	1	SW846 6010C	21-Oct-14	23-Oct-14	EDT	1424725	X
7440-39-3	Barium	23.0		mg/kg dry	1.32	0.239	1	t∎d	100	27-Oct-14	1	1425320	X
7440-43-9	Cadmium	< 0.658		mg/kg dry	0.658	0.0881	1	0.0	3.■1	23-Oct-14	•	1424725	X
7440-47-3	Chromium	6.21		mg/kg dry	1,32	0.238	1	(1)			π.	\$ 15 m	X
7440-50-8	Copper	6.06		mg/kg dry	1.32	0.180	1			•	3 🖷 23		X
7439-89-6	Iron	7,790		mg/kg dry	5.26	2.38	1	8∎6		27-Oct-14	(10)	1425320	X
7439-96-5	Manganese	124		mg/kg dry	1.32	0.199	1			23-Oct-14	•	1424725	X
7440-23-5	Sodium	64.7		mg/kg dry	32.9	7.38	1				Ħ		X
7440-02-0	Nickel	8.14		mg/kg dry	1,32	0.183	1	(** 0)	5 .	9 = 8	•	•	X
7439-92-1	Lead	2.89		mg/kg dry	1.97	0,915	1	g a g	(1)		■		X
7440-68-6	Zinc	23.6		mg/kg dry	1.32	0.329	1	(1)	(10)		•) 1/2 	X
General C	hemistry Parameters												
	% Solids	74.4		%			1	SM2540 G Mod.	15-Oct-14	15-Oct-14	DT	1424282	
	Total Organic Carbon	841		mg/kg	100	44.9	1	Lloyd Kahn	21-Oct-14	21-Oct-14	DJB	1424886	Χ
Toxicity C	Characteristics												
Grain Size -	Reported as % retained.												
<u>Prepared</u>	by method General Prepa	<u>aration</u>											
	Fractional % Sieve #4 (>4750µm)	13.9		% Retained			1	ASTM D422	20-Oct-14	21-Oct-14	EEM	1424693	
	Fractional % Sieve #10 (4750-2000µm)	11.8		% Retained			1	(1)			п	1.0	
	Fractional % Sieve #20 (2000-850µm)	14.3		% Retained			1	10		010	; , 1	•	
	Fractional % Sieve #40 (850-425µm)	23.8		% Retained			1			ī	п	Ī	
	Fractional % Sieve #60 (425-250µm)	28.0		% Retained			1			•	ল ু		
	Fractional % Sleve #100 (250-150µm)	6.65		% Retained			1	8.43	J.B.:	3.00	П		
	Fractional % Sieve #200 (150-75µm)	1.27		% Retained			Ĭ	(*)	•	•	•	USE Mark Mark	
	Fractional % Sieve #230 (less than 75µm)	0.246		% Retained			1	9 0 3	10	71	11	•	

Matrix Soil Collection Date/Time 14-Oct-14 10:15

SB98028-	-08												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424367	
Re-analysis 3260	of Volatile Organic Compounds by	y SW846											
Prepared	by method SW846 5035A	Soil (low level)				<u>Initi</u>	al weight: 12.	22 g					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 4.5		µg/kg dry	4.5	3.6	1	SW846 8260C	17 -Oct-1 4	18-Oct-14	JEG	1424512	X
57-64- 1	Acetone	< 44.7		µg/kg dry	44.7	23.6	1	500	700	10 1 6	31	•	Х
107-13-1	Acrylonitrile	< 4.5		µg/kg dry	4.5	3.0	1	0.00	2.■2	2■;	•		X
71-43-2	Benzene	< 4.5		µg/kg dry	4.5	1,6	1			ES.	•	Ē	X
108-86-1	Bromobenzene	< 4.5		µg/kg dry	4.5	3.0	1				·# 1		X
74-97-5	Bromochloromethane	< 4.5		µg/kg dry	4.5	4.4	1	8∎8	::	0.	(1 .)	•	Х
75-27-4	Bromodichloromethane	< 4.5		µg/kg dry	4.5	3.5	1	•	3 1		•		X
75-25-2	Bromoform	< 4.5		µg/kg dry	4.5	4.3	1		10	100		,	х
74-83-9	Bromomethane	< 8.9		µg/kg dry	8.9	8.8	1	(III)	9.0	901	•	•	X
78-93-3	2-Butanone (MEK)	< 44.7		µg/kg dry	44.7	15.1	1	g∎g	(1)	(0■)			х
104-51-8	n-Butylbenzene	< 4.5		μg/kg dry	4.5	3.7	1		1		•	Ē	Х
135-98-8	sec-Butylbenzene	< 4.5		μg/kg dry	4.5	2.9	1	(10)		(1	•		х
98-06-6	tert-Butylbenzene	< 4.5		μg/kg dry	4.5	3.2	1	S m C	100	(III)		•	х
75-15-0	Carbon disulfide	< 8.9		μg/kg dry	8.9	2,2	1						X
6-23-5	Carbon tetrachloride	< 4.5		μg/kg dry	4.5	2.2	1					Ü	Х
08-90-7	Chlorobenzene	< 4.5		μg/kg dry	4.5	1.6	1		3.0		· 1		Х
5-00-3	Chloroethane	< 8.9		μg/kg dry	8.9	3.9	1	988		:3 ■ :	(1)		Х
7-66-3	Chloroform	< 4.5		S 825	4.5	2.3	1		1				X
74-87-3	Chloromethane	< 8.9		μg/kg dry	8.9		1		100		T	ě	X
15-49-8	2-Chlorotoluene	< 4.5		μg/kg dry		8.8		5 - 5	100	70 1 0		7.	X
				µg/kg dry	4.5	2,0	1	5 ■0	300	g∎r-			
106-43-4	4-Chlorotoluene	< 4.5		μg/kg dry	4.5	2.4	1	2 2 5		•		- #	X
16-12-8	1,2-Dibromo-3-chloroprop ane	< 8.9		µg/kg dry	8.9	5.8	1	0. - 0	i e			.=	Х
124-48-1	Dibromochloromethane	< 4.5		µg/kg dry	4.5	1.6	1	•			т.		Х
106-93-4	1,2-Dibromoethane (EDB)	< 4.5		µg/kg dry	4.5	1.0	1	3 1 8	S.■S	0.00	(1		Х
74-95-3	Dibromomethane	< 4.5		µg/kg dry	4.5	2,5	1		1	•	•		X
95-50-1	1,2-Dichlorobenzene	< 4.5		µg/kg dry	4.5	2.1	1				•	i.	X
541-73-1	1,3-Dichlorobenzene	< 4.5		µg/kg dry	4,5	3,2	1	ti u ti	10	0∎		•	X
106-46-7	1,4-Dichlorobenzene	< 4.5		µg/kg dry	4.5	2.5	1	g a g	3. 1 ()	(I .E .)	•		X
75-71-8	Dichlorodifluoromethane (Freon12)	< 8.9		µg/kg dry	8.9	3.2	1	(*)	•		•	•	X
75-34-3	1,1-Dichloroethane	< 4.5		µg/kg dry	4.5	1,7	1				·# *		X
107-06-2	1,2-Dichloroethane	< 4.5		µg/kg dry	4.5	2.3	1	9.■6	: 1	0	(11)	•	Х
75-35-4	1,1-Dichloroethene	< 4.5		µg/kg dry	4.5	3.0	1		•				х
56-59-2	cis-1,2-Dichloroethene	< 4.5		μg/kg dry	4.5	1.5	1				•		х
156-60-5	trans-1,2-Dichloroethene	< 4.5		μg/kg dry	4.5	3.1	1	to∎t	10	10		•	Х
78-87- 5	1,2-Dichloropropane	< 4.5		μg/kg dry	4.5	2.0	1	0∎0	3.0	Ø ■ 0			Х
142-28-9	1,3-Dichloropropane	< 4.5		μg/kg dry	4.5	1.6	1	•					Х
94-20-7	2,2-Dichloropropane	< 4.5		μg/kg dry	4.5	2.8	1				1		Х
63-58-6	1,1-Dichloropropene	< 4.5		μg/kg dry	4.5	2.7	1	3∎6	(1)	:3 ■ :			Х
10061-01-5	cis-1,3-Dichloropropene	< 4.5		μg/kg dry	4.5	1.2	1		i.	506			X
		9.134.5		ha. A mil	7.0	1.5							

<u>Matrix</u> Soil Collection Date/Time 14-Oct-14 10:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
-	of Volatile Organic Compounds b	y SW846											
8260 Prepared	by method SW846 5035A	Soil (low level)				Initi	al weight: 12.2	22 a					
100-41-4	Ethylbenzene	< 4.5		μg/kg dry	4.5	1.5	1	SW846 8260C	17-Oct-14	18-Oct-14	JEG	1424512	Х
67- 68-3	Hexachlorobutadiene	< 4.5		μg/kg dry	4.5	1.6	1	1	17-00-14	10-001-14	"	1424512	X
591-78-6	2-Hexanone (MBK)	< 44.7		μ g/kg dry μg/kg dry	44,7	10.3	1				•		X
98-82-8	Isopropylbenzene	< 4.5		μg/kg dry	4.5	3.9	1				-		X
99-87-6	4-Isopropyltoluene	< 4.5		μ g/kg dry	4,5	2,6	1						Х
1634-04-4	Methyl tert-butyl ether	< 4.5		μg/kg dry	4.5	2.4	1				•		X
108-10-1	4-Methyl-2-pentanone	< 44.7		μg/kg dry	44.7	13.9	1				•		x
100 10 1	(MIBK)	3 77.7		pg ng ury	77.7	13.8							^
75-09-2	Methylene chloride	< 8.9		µg/kg dry	8.9	2.7	1	•	•	•	•	•	х
91-20-3	Naphthalene	< 4.5		μg/kg dry	4.5	3.0	1	•	•	•	•	•	х
103-65-1	n-Propylbenzene	< 4.5		μg/kg dry	4.5	1.8	1	•	•	•	•	•	х
100-42-5	Styrene	< 4.5		μg/kg dry	4.5	0.3	1	•	•	•	•	•	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 4.5		μg/kg dry	4.5	2.7	1	•	•	•	*		х
79-34-5	1,1,2,2-Tetrachloroethane	< 4.5		μg/kg dry	4.5	2.9	1	•	•	•	•	•	х
127-18-4	Tetrachloroethene	< 4.5		μg/kg dry	4.5	3.0	1	•		•	•	•	х
108-88-3	Toluene	< 4.5		µg/kg dry	4.5	1.9	1	•	•	•	•	•	х
87-61-6	1,2,3-Trichlorobenzene	< 4.5		μg/kg dry	4.5	3.2	1	•	•		•	•	х
120-82-1	1,2,4-Trichlorobenzene	< 4.5		μg/kg dry	4.5	2.6	1	•	•		•		х
108-70-3	1,3,5-Trichlorobenzene	< 4.5		μg/kg dry	4.5	1.0	1		•		•		
71-55-6	1,1,1-Trichloroethane	< 4.5		μg/kg dry	4.5	2.5	1				=		х
79-00-5	1,1,2-Trichloroethane	< 4.5		μg/kg dry	4.5	1.8	1	•			•		х
79-01-6	Trichloroethene	< 4.5		μg/kg dry	4.5	1.4	1				•		х
75-69-4	Trichlorofluoromethane	< 4.5		μg/kg dry	4.5	3.1	1		•		7	•	х
	(Freon 11)												
96-18-4	1,2,3-Trichloropropane	< 4.5		µg/kg dry	4.5	2.7	1	•	•	•	•	•	Х
95-63-6	1,2,4-Trimethylbenzene	< 4.5		µg/kg dry	4.5	2.7	1	•	•	•	•	•	Х
108-67-8	1,3,5-Trimethylbenzene	< 4.5		µg/kg dry	4.5	2.7	1	•	•	•	•	•	Х
75-01-4	Vinyl chloride	< 4.5		µg/kg dry	4.5	3.0	1	•	•	•	•	•	Х
179601-23-1	m,p-Xylene	< 8.9		µg/kg dry	8.9	2.6	1	•	•	•	-	•	Х
95-47-6	o-Xylene	< 4.5		µg/kg dry	4.5	2.8	1	•	•	•	•	•	Х
109-99-9	Tetrahydrofuran	< 8.9		μg/kg dry	8.9	6.6	1	•	•	•	•	•	
60-2 9 -7	Ethyl ether	< 4.5		µg/kg dry	4.5	4.0	1	•	•	•	•	•	Х
994-05-8	Tert-amyl methyl ether	< 4.5		μg/kg dry	4.5	2.6	1	•	•	•	•	•	
637-92-3	Ethyl tert-butyl ether	< 4.5		µg/kg dry	4.5	1.3	1	•	•	•	•	•	
108-20-3	Di-isopropyl ether	< 4.5		µg/kg dry	4.5	1.2	1	•	•	•	7	•	
75-65-0	Tert-Butanol / butyl alcohol	< 44.7		μg/kg dry	44.7	26.6	1	•	•	•	"	•	Х
123-91-1	1,4-Dioxane	< 89.3		μg/kg dry	89.3	60.2	1	•	•	•	71	•	Х
110-57-6	trans-1,4-Dichloro-2-buten	< 22.3		μg/kg dry	22.3	11.0	1	•	•	•	7	•	X
64-17-5	Ethanol	< 1790		µg/kg dry	1790	510	1	•	•	•	7	•	
Surrogate rec	coveries:												
460-00-4	4-Bromofluorobenzene	97			<i>70-13</i>	0 %		•	•	•	•	•	
2037-26-5	Toluene-d8	101			70-13	0 %		•	•	•	7		
17060-07-0	1,2-Dichloroethane-d4	112			70-13	0 %		•		•	•	•	

Sample Identification BB-DS-SEDV-03 SB98028-08

Client Project # 08-14218G3 Matrix Soil Collection Date/Time 14-Oct-14 10:15 Received 14-Oct-14

CAS No. Analyte(s) Result Flag Units *RDL MDL Dilution Method Ref. Prepared Analyzed Analyst Batch Cert.

Volatile Organic Compounds

Re-analysis of Volatile Organic Compounds by SW846

8260

Prepared by method SW846 5035A Soil (low level) Initial weight: 12.22 g

1869-53-7 Dibromofluoromethane 103 70-130 % SW846 8260C 17-Oci-14 18-Oci-14 JEG 1424512

General Chemistry Parameters

% Solids 74.4 SOLg % 1 SM2540 G Mod. 15-Oct-14 15-Oct-14 DT 1424282

Matrix
Surface Water

Collection Date/Time 14-Oct-14 10:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	anic Compounds by SW846 8260												
	by method SW846 5030 V	<u>Vater MS</u>											
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		µg/l	1.0	0.7	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	Х
67-64-1	Acetone	< 10.0		µg/l	10.0	3.6	1	•	•	•	•	•	Х
107-13-1	Acrylonitrile	< 0.5		µg/l	0.5	0.5	1	•	•	•	7	•	Х
71-43-2	Benzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
108-86-1	Bromobenzene	< 1.0		µg/l	1,0	0,3	1	•	•	•	7	•	Х
74-97-5	Bromochloromethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
75-27-4	Bromodichloromethane	< 0.5		µg/l	0.5	0.4	1	•	•	•	7	•	X
75-25-2	Bromoform	< 1.0		µg/l	1.0	0.6	1	•	•	•	•	•	X
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	•	•	•	•	•	X
78-93-3	2-Butanone (MEK)	< 10.0		µg/l	10.0	3.1	1	•	•	•	•	•	X
104-51-8	n-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	7	•	X
135-98-8	sec-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	•	•	•	7	•	X
75-15-0	Carbon disulfide	< 2.0		µg/l	2.0	0.7	1	•	•	•	•	•	X
56-23-5	Carbon tetrachloride	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
108-90-7	Chlorobenzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	•	•	•	7	•	X
67-86-3	Chloroform	< 1.0		µg∕l	1.0	0.5	1	•	•	•	•	•	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	•	•	•	7	•	X
95-49-8	2-Chlorotoluene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
106-43-4	4-Chlorotoluene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		µg/l	2.0	0.5	1	•	•	•	•	•	X
124-48-1	Dibromochloromethane	< 0.5		µg/l	0.5	0.4	1	•	ı	•	п	•	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		µg/l	0.5	0.3	1	•	•	•	•	•	х
74-95-3	Dibromomethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
95-50-1	1,2-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•		•	•	•	X
541-73-1	1,3-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	=	•	X
108-46-7	1,4-Dichlorobenzene	< 1.0		µg/l	1.0	0.5	1	•	•	•	π	•	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		µg/l	2.0	0.6	1	•	•	•	п	•	X
75-84-8	1,1-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
107-06-2	1,2-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	7	•	X
75-35-4	1,1-Dichloroethene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	X
156-59-2	cis-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.4	1	•	i	•	п	•	X
156-60-5	trans-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.5	1	•	•	•	π	•	Х
7 8-8 7-5	1,2-Dichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•	π.	•	Х
142-28-9	1,3-Dichloropropane	< 1.0		µg/l	1.0	0.2	1	•		•	7	•	х
594-20-7	2,2-Dichloropropane	< 1.0		µg/l	1.0	0,3	1	•		•	•	•	х
563-58-6	1,1-Dichloropropene	< 1.0		µg/l	1.0	0.4	1	•		•	•		X
10061-01-5	cis-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.4	1			•	•		Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.5	1	•		•	•		Х
100-41-4	Ethylbenzene	< 1.0		µg/l	1.0	0.4	1			•	π		х
87-68-3	Hexachlorobutadiene	< 0.5		µg/l	0.5	0.4	1			•	•		х
591-78-6	2-Hexanone (MBK)	< 10.0		µg/l	10,0	2,0	1						Х

Matrix
Surface Water

Collection Date/Time 14-Oct-14 10:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	anic Compounds by SW846 8260												
<u>Prepared</u>	by method SW846 5030 V	/ater MS											
98-82-8	Isopropylbenzene	< 1.0		µg/l	1.0	0.5	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	Х
99-87-6	4-Isopropyltoluene	< 1.0		µg/l	1.0	0.5	1	Ī	•	Ī	₩	•	Х
1634-04-4	Methyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0	2.5	1	•	•	•	•		X
75-09-2	Methylene chloride	< 2.0		µg/l	2,0	0,5	1	•	•	•	7	•	Х
91-20-3	Naphthalene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	Х
103-65-1	n-Propylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
100-42-5	Styrene	< 1.0		µg/l	1.0	0.4	1	•	•	•		•	X
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	#	•	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		µg/l	0.5	0.5	1	•	•	•	-	•	X
127-18-4	Tetrachloroethene	< 1.0		µg∕l	1.0	0.6	1	•	•	•	7	•	X
108-88-3	Toluene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
87- 6 1-6	1,2,3-Trichlorobenzene	< 1.0		µg/l	1.0	0.8	1	•	•	•	7	•	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	π	•	Х
108-70-3	1,3,5-Trichlorobenzene	< 1.0		µg/l	1.0	0.6	1	•	•	•	-	•	
71-55-6	1,1,1-Trichloroethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	=	•	Х
79-00-5	1,1,2-Trichloroethane	< 1.0		µg/l	1.0	0.3	1	•		•	=	•	Х
79-01-6	Trichloroethene	< 1.0		µg/l	1.0	0.4	1	•		•	•	•	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		µg/l	1.0	0.8	1	•	•	•	π	•	X
96-18-4	1,2,3-Trichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•	π	•	Х
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	•	•	•	=	•	Х
108-67-B	1,3,5-Trimethylbenzene	< 1.0		µg/l	1,0	0.4	1	•	•	•	-	•	Х
75-01-4	Vinyl chloride	< 1.0		µg∕l	1.0	1.0	1	•		•	=	•	х
179601-23-1	m,p-Xylene	< 2.0		µg/l	2.0	0.4	1	•		•	•	•	х
95-47-6	o-Xylene	< 1.0		µg/l	1.0	0.4	1	•		•	-	•	х
109-99-9	Tetrahydrofuran	< 2.0		µg/l	2.0	0.8	1	•	•	•	•	•	
BO- 29- 7	Ethyl ether	< 1.0		µg/l	1.0	0.5	1	•		•	•	•	х
994-05-B	Tert-amyl methyl ether	< 1.0		µg/l	1.0	0.3	1	•				•	х
837-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	•		•	п		х
108-20-3	Di-isopropyl ether	< 1.0		µg/l	1.0	0.3	1	•			•		х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		µg/l	10.0	8.9	1	•	•	•	•	•	X
123-91-1	1,4-Dioxane	< 20.0		µg/l	20.0	14.6	1	•	•	•	•	•	Х
110-57-6	trans-1,4-Dichloro-2-buten	< 5.0		µg/l	5.0	1.0	1	•	•	Ī	Ħ	•	X
84-17- 5	Ethanol	< 400		µg/l	400	80.8	1	•	•	•	•	•	Х
Surrogate rec	coverles:												
460-00-4	4-Bromofluorobenzene	101			70-13	0 %		•		•	•	•	
2037-26-5	Toluene-d8	96			70-13	0 %		•		•	7	•	
17060-07-0	1,2-Dichloroethane-d4	103			70-13	0%		•	•	•	•		
1868-53-7	Dibromofluoromethane	82			70-13			•					

Matrix Soil Collection Date/Time 14-Oct-14 11:35

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 2.33		mg/kg dry	2.33	0.823	1	SW846 6010C	21-Oct-14	23-Oct-14	EDT	1424725	Х
7440-39-3	Barium	28.5		mg/kg dry	1.55	0.282	1	000	110	27-Oct-14	T	1425320	X
7440-43-9	Cadmium	< 0.775		mg/kg dry	0.775	0.104	1	0.■0	3.■1	23-Oct-14	•	1424725	Х
7440-47-3	Chromium	9.45		mg/kg dry	1,55	0,281	i	(1)		•	я	<u> </u>	X
7440-50-8	Copper	9.29		mg/kg dry	1.55	0.212	1				3 🖷 23		X
7439-89-6	Iron	8,810		mg/kg dry	6.20	2.81	1	01■0		27-Oct-14	(1	1425320	X
7439-90-5	Manganese	153		mg/kg dry	1.55	0.234	1	1		23-Oct-14	•	1424725	X
7440-23-5	Sodium	96.6		mg/kg dry	38.8	8.70	Ĭ	1		100	T		X
7440-02-0	Nickel	9.76		mg/kg dry	1.55	0.216	1	57 0 0	(1 -)	₹ **		•	X
7439-92-1	Lead	8.09		mg/kg dry	2,33	1,08	1	g∎g	(1)	. .	Ħ		X
7440-68-6	Zinc	37.2		mg/kg dry	1.55	0.388	1	(*)	(10)	(1)	•) / () / (X
General C	hemistry Parameters												
	% Solids	63.3		%			1	SM2540 G Mod.	15-Oct-14	16-Oct-14	TDD	1424283	
	Total Organic Carbon	2,830		mg/kg	100	44.9	1	Lloyd Kahn	21-Oct-14	21-Oct-14	DJB	1424886	X
Toxicity C	Characteristics												
Grain Size -	Reported as % retained.												
Prepared	by method General Prepa	<u>aration</u>											
	Fractional % Sieve #4 (>4750µm)	2.39		% Retained			1	ASTM D422	20-Oct-14	21-Oct-14	EEM	1424693	
	Fractional % Sieve #10 (4750-2000µm)	1.71		% Retained			1			1	7		
	Fractional % Sieve #20 (2000-850µm)	2.05		% Retained			1	100	•		; T ()	•	
	Fractional % Sieve #40 (850-425µm)	19.1		% Retained			1	(8)			•	Ĭ	
	Fractional % Sieve #60 (425-250µm)	53.6		% Retained			1	19			· # *		
	Fractional % Sieve #100 (250-150µm)	14,4		% Retained			1	(■)	3. 1	a . ■ :	П		
	Fractional % Sieve #200 (150-75µm)	6.02		% Retained			1				•	į.	
	Fractional % Sleve #230 (less than 75µm)	0.684		% Retained			1	101	9 🗷	90		•	

Matrix Soil Collection Date/Time 14-Oct-14 11:35

SB98028-	-11												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424367	
Re-analysis 3260	of Volatile Organic Compounds by	y SW846											
Prepared	by method SW846 5035A	Soil (low level)				<u>Initi</u>	al weight: 12.	<u>6 g</u>					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 6.0		µg/kg dry	6.0	4.9	1	SW846 8260C	17-Oct-14	18-Oct-14	JEG	1424512	X
67-64- 1	Acetone	< 60.4		µg/kg dry	60.4	31.9	1	500	(1	() = (•	X
107-13-1	Acrylonitrile	< 6.0		µg/kg dry	6.0	4.0	1	(A)	9. ■≠	a∎ş	•		X
71-43-2	Benzene	< 6.0		µg/kg dry	6.0	2,2	1			196		Ē	X
108-86-1	Bromobenzene	< 6.0		µg/kg dry	6.0	4.1	1		III		901		X
74-97-5	Bromochloromethane	< 6.0		µg/kg dry	6.0	6.0	1	318		0		•	X
75-27-4	Bromodichloromethane	< 6.0		µg/kg dry	6.0	4.7	1	•		3 0		<u> </u>	X
75-25-2	Bromoform	< 6.0		µg/kg dry	6.0	5.8	1					Ĭ	X
74-83-9	Bromomethane	< 12.1		µg/kg dry	12.1	11.9	1	0 . 00	® a A	500	: = :	•	X
78-93-3	2-Butanone (MEK)	< 60.4		µg/kg dry	60.4	20.4	1	(1 4)	(1)	Ø ■ 0			X
104-51-8	n-Butylbenzene	< 6.0		μg/kg dry	6.0	5.0	ī		•		•	Ĭ	Х
135-98-8	sec-Butylbenzene	< 6.0		µg/kg dry	6.0	3.9	1				•		Х
98-06-6	tert-Butylbenzene	< 6.0		μg/kg dry	6.0	4.3	1	t • d	11	93 m 3			х
75-15-0	Carbon disulfide	< 12.1		μg/kg dry	12,1	3.0	1	1	1		•	ì	X
6-23-5	Carbon tetrachloride	< 6.0		μg/kg dry	6.0	2.9	1				•		Х
108-90-7	Chlorobenzene	< 6.0		μg/kg dry	6.0	2.1	1			•	· m :		Х
75-00-3	Chloroethane	< 12.1		μg/kg dry	12.1	5.2	1	3 1 11	:1:	∴	•		Х
57-66-3	Chloroform	< 6.0		μg/kg dry	6.0	3.1	1	•	1	(a)	•		Х
74-87-3	Chloromethane	< 12.1		μg/kg dry	12,1	11.8	1	1				ě	X
95-49-8	2-Chlorotoluene	< 6.0		μg/kg dry	6.0	2,7	1	516	100	10 m 0		•	Х
106-43-4	4-Chlorotoluene	< 6.0			6.0	3.2	1	38 3		20€	π.		X
96-12-8	1,2-Dibromo-3-chloroprop	< 12.1		μg/kg dry	12.1		1	•			п	î	X
	ane			µg/kg dry		7.9		7 - 1	5.0			_	
124-48-1	Dibromochloromethane	< 6.0		μg/kg dry	6.0	2.2	1						Х
106-93-4	1,2-Dibromoethane (EDB)	< 6.0		µg/kg dry	6.0	1.4	1	3 .	() 1 ()	O ■ 0	(1)	# #2	Х
74-95-3	Dibromomethane	< 6.0		µg/kg dry	6.0	3.4	1		200	38)	(30)	•	Х
95-50-1	1,2-Dichlorobenzene	< 6.0		µg/kg dry	6.0	2.8	1	•	P. ■ Paul			h _. pr	X
541-73-1	1,3-Dichlorobenzene	< 6.0		µg/kg dry	6,0	4,3	1	5.0	10	10 = 0	T	•	X
108-46-7	1,4-Dichlorobenzene	< 6.0		µg/kg dry	6.0	3.3	1	(.	(■)	(III)	-		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 12.1		µg/kg dry	12.1	4.4	1	(*)			•	Ĭ	Х
75-34-3	1,1-Dichloroethane	< 6.0		µg/kg dry	6.0	2.4	1				·#0		X
107-06-2	1,2-Dichloroethane	< 6.0		μg/kg dry	6.0	3.1	1	0.00		0■		•	X
75-35-4	1,1-Dichloroethene	< 6.0		μg/kg dry	6.0	4.0	1	•		10 mm		ě	X
156-59-2	cis-1,2-Dichloroethene	< 6.0		μg/kg dry	6.0	2.0	1				•	Ē	X
158-60-5	trans-1,2-Dichloroethene	< 6.0		μg/kg dry	6.0	4.2	1	t∎d	10	10	31	•	X
78-87-5	1,2-Dichloropropane	< 6.0		μg/kg dry	6.0	2.7	1	0,■0	3.0	2.■1			Х
142-28-9	1,3-Dichloropropane	< 6.0		μg/kg dry	6.0	2,1	1		(1		•	Ĭ	X
594-20-7	2,2-Dichloropropane	< 6.0		μg/kg dry	6.0	3.8	1	•			₩ 3		X
563-58-6	1,1-Dichloropropene	< 6.0		μg/kg dry	6.0	3.7	1	3 8 6	:1	0	(11)	•	Х
10061-01-5	cis-1,3-Dichloropropene	< 6.0		μg/kg dry	6.0	1.6	1		1	•	•		Х
				1010 1011 1011									

<u>Matrix</u> Soil Collection Date/Time 14-Oct-14 11:35

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
•	of Volatile Organic Compounds b	y SW846											
<u>3260</u> Prepared	by method SW846 5035A	Soil (low level)				Initi	al weight: 12.6	λa.					
100-41-4	Ethylbenzene	< 6.0		μg/kg dry	6.0	2.0	1	SW846 8260C	17-Oct-14	18-Oct-14	JEG	1424512	х
97- 68- 3	Hexachlorobutadiene	< 6.0		µg/kg dry	6.0	2.2	1	•	•		,		Х
591-78-6	2-Hexanone (MBK)	< 60.4		μg/kg dry	60,4	13.9	1				-		х
98-82-8	Isopropylbenzene	< 6.0		μg/kg dry	6.0	5.3	1				•		X
99-87-6	4-Isopropyltoluene	< 6.0		μg/kg dry	6,0	3,6	1				•		Х
1634-04-4	Methyl tert-butyl ether	< 6.0		μg/kg dry	6.0	3.2	1				•		Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 60.4		µg/kg dry	60.4	18.8	1	•	•	•	7	•	X
75-09-2	Methylene chloride	< 12.1		µg/kg dry	12.1	3.6	1			•	•	•	Х
91-20-3	Naphthalene	< 6.0		μg/kg dry	6.0	4.1	1	•	•		•	•	х
103-65-1	n-Propylbenzene	< 6.0		µg/kg dry	6.0	2.4	1	•	•	•	•	•	х
100-42-5	Styrene	< 6.0		μg/kg dry	6.0	0.4	1	•	•		•	•	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 6.0		μg/kg dry	6.0	3.6	1	•		•	•	•	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 6.0		µg/kg dry	6.0	4.0	1	•	•		•	•	Х
127-18-4	Tetrachlorcethene	< 6.0		µg/kg dry	6.0	4.1	1	•	•		•		х
108-88-3	Toluene	< 6.0		µg/kg dry	6.0	2,5	1	•	•	•	•	•	Х
87-61-6	1,2,3-Trichlorobenzene	< 6.0		μg/kg dry	6.0	4.3	1	•			•	•	Х
120-82-1	1,2,4-Trichlorobenzene	< 6.0		μg/kg dry	6.0	3.5	1	•	•	•	•	•	Х
108-70-3	1,3,5-Trichlorobenzene	< 6.0		μg/kg dry	6.0	1.4	1	•		•	•	•	
71-55-6	1,1,1-Trichloroethane	< 6.0		μg/kg dry	6.0	3.4	1	•	•		•	•	х
79-00-5	1,1,2-Trichloroethane	< 6.0		µg/kg dry	6.0	2.4	1	•	•		•	•	х
79-01-6	Trichloroethene	< 6.0		µg/kg dry	6.0	1.9	1	•	•	•	•	•	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 6.0		µg/kg dry	6.0	4.1	1	•	•	•	7	•	X
96-18-4	1,2,3-Trichloropropane	< 6.0		µg/kg dry	6.0	3.6	1	•	•	•	•	•	Х
95-63-6	1,2,4-Trimethylbenzene	< 6.0		µg/kg dry	6.0	3.7	1	•	•	•	=	•	Х
108-67-8	1,3,5-Trimethylbenzene	< 6.0		µg/kg dry	6.0	3.6	1	•	•	•	π.	•	Х
75-01-4	Vinyl chloride	< 6.0		µg/kg dry	6.0	4.0	1	•	•	•	•	•	X
179601-23-1	m,p-Xylene	< 12.1		µg/kg dry	12.1	3.5	1	•	•	•	-	•	X
95-47-6	o-Xylene	< 6.0		µg/kg dry	6.0	3.8	1	•	•	•	π.	•	Х
109-99-9	Tetrahydrofuran	< 12.1		μg/kg dry	12.1	8.9	1	•	•	•	=	•	
60-29-7	Ethyl ether	< 6.0		µg/kg dry	6.0	5.5	1	•	•	•	•	•	Х
994-05-8	Tert-amyl methyl ether	< 6.0		µg/kg dry	6.0	3.5	1	•	•	•	•	•	
637-92-3	Ethyl tert-butyl ether	< 6.0		µg/kg dry	6,0	1.8	1	•	•	•	•	•	
108-20-3	Di-isopropyl ether	< 6.0		µg/kg dry	6.0	1.6	1	•	•	•	•	•	
75-65-0	Tert-Butanol / butyl alcohol	< 60.4		µg/kg dry	60.4	36.0	1	•	•	•	П	•	Х
123-91-1	1,4-Dioxane	< 121		µg/kg dry	121	81.5	1	•	•	•	•	•	Х
110-57-6	trans-1,4-Dichloro-2-buten e	< 30.2		µg/kg dry	30.2	14.9	1	•	•	•	7	•	Х
64-17-5	Ethanol	< 2420		μg/kg dry	2420	689	1	•	•	•	7	•	
Surrogate rec		07						_	_	_	_	_	
460-00-4	4-Bromofluorobenzene	97			70-13					•	-	•	
2037-26-5	Toluene-d8	100			70-13			•	•	•		•	
17060-07-0	1,2-Dichloroethane-d4	113			70-13	0 %		•	•	•	•	-	

Sample Identification BB-DS-SEDV-04 SB98028-11

Client Project # 08-14218G3

Matrix Soil Collection Date/Time 14-Oct-14 11:35 Received 14-Oct-14

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Organic Compounds												
B												

Re-analysis of Volatile Organic Compounds by SW846

8260

Prepared by method SW846 5035A Soil (low level) Initial weight: 12.6 g

1868-53-7 Dibromofluoromethane 102 70-130 % SW846 8260C 17-Oci-14 18-Oci-14 JEG 1424512

General Chemistry Parameters

% Solids 63.3 SOL % 1 SM2540 G Mod. 15-Oct-14 16-Oct-14 TDD 1424283

Matrix
Surface Water

Collection Date/Time 14-Oct-14 11:35

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Anatyzea	Anatyst	Batch	Cert.
Volatile O	organic Compounds												
	anic Compounds by SW846 8260 by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		µg/l	1.0	0.7	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	X
67-64-1	Acetone	< 10.0		µg/l	10.0	3.6	1	•	•	•	•	•	х
107-13-1	Acrylonitrile	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	Х
71-43-2	Benzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
108-86-1	Bromobenzene	< 1.0		µg/l	1,0	0,3	1	•	•	•	•	•	Х
74-97-5	Bromochloromethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
75-27-4	Bromodichloromethane	< 0.5		µg/l	0.5	0.4	1	•	•	•	7	•	Х
75-25-2	Bromoform	< 1.0		µg/l	1.0	0.6	1	•	•	•	•	•	X
74-83-9	Bromomethane	< 2.0		µg/l	2.0	0.5	1	•	•	•	-	•	Х
78-93-3	2-Butanone (MEK)	< 10.0		µg/l	10.0	3.1	1	•	•	•	•	•	X
104-51-8	n-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	π	•	Х
135-98-8	sec-Butylbenzene	< 1.0		µg∕l	1.0	0.4	1	•	•	•	•	•	Х
98-06-6	tert-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
75-15-0	Carbon disulfide	< 2.0		µg/l	2.0	0.7	1	•	•	•	•	•	X
56-23-5	Carbon tetrachloride	< 1.0		µg/l	1.0	0.4	1	•	•	•	-	•	Х
108-90-7	Chlorobenzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
75-00-3	Chloroethane	< 2.0		µg/l	2.0	0.7	1	•	•	•	•	•	Х
67-86-3	Chloroform	< 1.0		µg/l	1.0	0.5	1	•	•	•	•		х
74-87-3	Chloromethane	< 2.0		µg/l	2.0	0.5	1	•	•	•	71		х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1		•	•	•		х
106-43-4	4-Chlorotoluene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		µg/l	2.0	0.5	1	•	•	•	•	•	X
124-48-1	Dibromochloromethane	< 0.5		µg/l	0.5	0.4	1	•			=	•	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		µg/l	0.5	0.3	1	•	•	•	•	•	х
74-95-3	Dibromomethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	•		х
95-50-1	1,2-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1				•		х
541-73-1	1,3-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•		х
108-46-7	1,4-Dichlorobenzene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		µg/l	2.0	0.6	1	•	•	•	π	•	X
75-84-3	1,1-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
107-06-2	1,2-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
75-35-4	1,1-Dichtoroethene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	X
156-59-2	cis-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
158-80-5	trans-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	Х
7 8-8 7-5	1,2-Dichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•	7	•	Х
142-28-9	1,3-Dichloropropane	< 1.0		µg/l	1.0	0.2	1	•	•	•	•	•	Х
594-20-7	2,2-Dichloropropane	< 1.0		µg/l	1.0	0,3	1	•	•	•	₩		X
563-58-6	1,1-Dichloropropene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
10061-01-5	cis-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.4	1	•	•	•	•	•	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	Х
100-41-4	Ethylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	7		Х
87-68-3	Hexachlorobutadiene	< 0.5		µg/l	0.5	0.4	1	•			•		Х
591-78-6	2-Hexanone (MBK)	< 10.0		µg/l	10,0	2,0	1				•		х

Matrix
Surface Water

Collection Date/Time 14-Oct-14 11:35

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	anic Compounds by SW846 8260												
<u>Prepared</u>	by method SW846 5030 V	Vater MS											
98-82-8	Isopropylbenzene	< 1.0		µg/l	1.0	0.5	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	Х
99-87-6	4-Isopropyltoluene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	Х
1634-04-4	Methyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0	2.5	1	•	•	•	•		X
75-09-2	Methylene chloride	< 2.0		µg/l	2,0	0,5	1	•	•	•	7	•	Х
91-20-3	Naphthalene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	Х
103-65-1	n-Propylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
100-42-5	Styrene	< 1.0		µg/l	1.0	0.4	1	•	•	•		•	X
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	#	•	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		µg/l	0.5	0.5	1	•	•	•	-	•	X
127-18-4	Tetrachloroethene	< 1.0		µg∕l	1.0	0.6	1	•	•	•	7	•	X
108-88-3	Toluene	< 1.0		µg∕l	1.0	0.3	1	•	•	•	•	•	Х
87- 6 1-6	1,2,3-Trichlorobenzene	< 1.0		µg/l	1.0	0.8	1	•	•	•	7	•	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	π	•	Х
108-70-3	1,3,5-Trichlorobenzene	< 1.0		µg∕1	1.0	0.6	1	•	•	•	-	•	
71-55-6	1,1,1-Trichloroethane	< 1.0		µg/l	1.0	0.4	1	•		•	=	•	Х
79-00-5	1,1,2-Trichloroethane	< 1.0		µg/l	1.0	0.3	1	•		•	=	•	х
79-01-6	Trichloroethene	< 1.0		µg∕l	1.0	0.4	1	•		•	•	•	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		µg/l	1.0	0.8	1	•	•	•	π	•	X
96-18-4	1,2,3-Trichloropropane	< 1.0		µg/l	1.0	0.3	1	•		•	π	•	Х
95-63-6	1,2,4-Trimethylbenzene	< 1.0		µg/l	1.0	0.3	1	•		•	=	•	Х
108-67-B	1,3,5-Trimethylbenzene	< 1.0		µg/l	1,0	0.4	1	•		•	•	•	Х
75-01-4	Vinyl chloride	< 1.0		µg/l	1.0	1.0	1	•		•	=	•	х
179601-23-1	m,p-Xylene	< 2.0		µg/l	2.0	0.4	1	•		•	•	•	х
95-47-6	o-Xylene	< 1.0		µg/i	1.0	0.4	1	•		•	-	•	х
109-99-9	Tetrahydrofuran	< 2.0		µg/l	2.0	0.8	1	•		•	•	•	
BO- 29- 7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	•		•	•	•	х
994-05-B	Tert-amyl methyl ether	< 1.0		µg/l	1.0	0.3	1	•				•	х
837-92-3	Ethyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1	•		•	п		х
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1	•			•		х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		µg/l	10.0	8.9	1	•	•	•	•	•	X
123-91-1	1,4-Dioxane	< 20.0		µg/l	20.0	14.6	1	•		•	•	•	Х
110-57-6	trans-1,4-Dichloro-2-buten	< 5.0		µg/l	5.0	1.0	1	•	•	Ī	Ħ	•	X
84-17- 5	Ethanol	< 400		µg/l	400	80.8	1	•		•	•	•	Х
Surrogate rec	coverles:												
460-00-4	4-Bromofluorobenzene	99			70-13	0 %				•	•	•	
2037-26-5	Toluene-d8	96			70-13	0 %		•	•	•	₩	•	
17060-07-0	1,2-Dichloroethane-d4	104			70-13	0 %		•		•	•	•	
1868-53-7	Dibromofluoromethane	84			70-13	n e/		•					

Matrix Soil Collection Date/Time 14-Oct-14 12:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	tals by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 1.87		mg/kg dry	1.87	0.660	1	SW846 6010C	21-Oct-14	23-Oct-14	EDT	1424725	X
7440-39-3	Barium	29.5		mg/kg dry	1.24	0.226	1	t∎d	200	27-Oct-14	1	1425320	X
7440-43-9	Cadmium	< 0.622		mg/kg dry	0.622	0.0833	1	0.0	3.■1	23-Oct-14	•	1424725	Х
7440-47-3	Chromium	8.95		mg/kg dry	1,24	0,225	i	(1)		•	π.		X
7440-50-8	Copper	6.42		mg/kg dry	1.24	0.170	1			•	3 🖷 23	Ī	X
7439-89-6	Iron	9,620		mg/kg dry	4.97	2.25	1	8∎6		27-Oct-14	(10)	1425320	X
743 9-96- 5	Manganese	190		mg/kg dry	1.24	0.188	1			23-Oct-14	•	1424725	Х
7440-23-5	Sodium	78.7		mg/kg dry	31.1	6.98	1				Ħ	Ē	X
7440-02-0	Nickel	7.71		mg/kg dry	1,24	0.173	1	17 ≡ 01	(* *)	6.0	•	•	X
7439-92-1	Lead	2.77		mg/kg dry	1.87	0,866	1	g a g		3. 1 1	•		X
7440-68-6	Zinc	27.8		mg/kg dry	1.24	0.311	1	(*)	(1)		•	12	Х
General C	Chemistry Parameters												
	% Solids	76.1		%			1	SM2540 G Mod.	15-Oct-14	16-Oct-14	TDD	1424283	
	Total Organic Carbon	1,530		mg/kg	100	44.9	1	Lloyd Kahn	21-Oct-14	21-Oct-14	DJB	1424886	X
Toxicity C	Characteristics												
<u>Grain Size -</u>	Reported as % retained.												
Prepared	by method General Prepa	<u>iration</u>											
	Fractional % Sieve #4 (>4750µm)	5.79		% Retained			1	ASTM D422	20-Oct-14	21-Oct-14	EEM	1424693	
	Fractional % Sieve #10 (4750-2000µm)	7.84		% Retained			1			•	п	1 2 (2)	
	Fractional % Sieve #20 (2000-850µm)	15.6		% Retained			1	0 0	•	010	; T ()	•	
	Fractional % Sieve #40 (850-425µm)	21.5		% Retained)=(1	•	Ĭ	
	Fractional % Sieve #60 (425-250µm)	17.9		% Retained			1		2		п		
	Fractional % Sieve #100 (250-150µm)	9.54		% Retained			1	0.■1	2. 1 :	(J)	•	•	
	Fractional % Sieve #200 (150-75µm)	16.4		% Retained			1	(*)			я	i.	
	Fractional % Sieve #230 (less than 75µm)	5.45		% Retained			1	\$ * ±	*	100		•	

Matrix Soil Collection Date/Time 14-Oct-14 12:00

SB98028	-14												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424367	
Re-analysis 3260	of Volatile Organic Compounds by	y SW846											
Prepared	by method SW846 5035A	Soil (low level)				<u>Initi</u>	al weight: 13.	16 g					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 4.1		µg/kg dry	4.1	3.3	1	SW846 8260C	17-Oct-14	18-Oct-14	JEG	1424512	X
57-64- 1	Acetone	< 40.6		µg/kg dry	40.6	21.4	1	t∎d	700	10 1 6		•	X
107-13-1	Acrylonitrile	< 4.1		µg/kg dry	4.1	2,7	1	9.80	8.■3	2■;	•		X
71-43-2	Benzene	< 4.1		µg/kg dry	4.1	1.5	1			ES.	•		X
108-86-1	Bromobenzene	< 4.1		µg/kg dry	4.1	2.7	1				•		X
74-97-5	Bromochloromethane	< 4.1		µg/kg dry	4.1	4.0	1	10	::	0.	(1)	•	X
75-27-4	Bromodichloromethane	< 4.1		µg/kg dry	4.1	3.2	1	•	1		•		X
75-25-2	Bromoform	< 4.1		µg/kg dry	4.1	3.9	1		(0)	100		,	X
74-83-9	Bromomethane	< 8.1		µg/kg dry	8.1	8.0	1	(1)	5.0	901		•	X
78-93-3	2-Butanone (MEK)	< 40.6		µg/kg dry	40.6	13.7	1	n ■0	(1)	(0■)			Х
104-51-8	n-Butylbenzene	< 4.1		µg/kg dry	4.1	3.3	Ť	•	(1)		•	Ē	Х
135-98-8	sec-Butylbenzene	< 4.1		μg/kg dry	4.1	2.6	1				•		Х
98-06-6	tert-Butylbenzene	< 4.1		μg/kg dry	4,1	2,9	1	ta d	(m)	(III)		•	Х
75-15-0	Carbon disulfide	< 8.1		μg/kg dry	8.1	2,0	1	•					Х
56-23-5	Carbon tetrachloride	< 4.1		μg/kg dry	4.1	2.0	1					Ē	Х
108-90-7	Chlorobenzene	< 4.1		μg/kg dry	4.1	1.4	1				· * * * * * * * * * * * * * * * * * * *		Х
75-00-3	Chloroethane	< 8.1		μg/kg dry	8.1	3.5	1	1	S = 0	0.			Х
57-66-3	Chloroform	< 4.1		μg/kg dry	4.1	2.1	1	•			•	à	х
74-87-3	Chloromethane	< 8.1		μg/kg dry	8,1	8.0	Î					i	X
95-49-8	2-Chlorotoluene	< 4.1		μg/kg dry	4,1	1.8	1	516	100	10 m 0		•	Х
106-43-4	4-Chlorotoluene	< 4.1		μg/kg dry	4.1	2.1	1	g = 0		2.■1			X
96-12-8	1,2-Dibromo-3-chloroprop	< 8.1		pg/kg dry	8.1	5.3	1	(*)			•	Ĭ	X
124-48-1	ane Dibromochloromethane	< 4.1		ualles des	4.1	1.5	1		11		(m)		Х
106-93-4		< 4.1		μg/kg dry			1		***	:::::::::::::::::::::::::::::::::::::			
74-95-3	1,2-Dibromoethane (EDB)			μg/kg dry	4.1	0.9				9		4	X
	Dibromomethane	< 4.1		µg/kg dry	4.1	2.3	1	-		•			X
95-50-1	1,2-Dichlorobenzene	< 4.1		μg/kg dry	4.1	1.9	1	NEX 191		· ·	8000 8000	170 H	X
541-73-1	1,3-Dichlorobenzene	< 4.1		µg/kg dry	4,1	2,9	1	-		2.■			X
108-46-7 75-71-8	1,4-Dichlorobenzene Dichlorodifluoromethane	< 4.1 < 8.1		µg/kg dry µg/kg dry	4.1 8.1	2.2 3.0	1 1	*	*	•	•	ř	X
75-34-3	(Freon12) 1,1-Dichloroethane	< 4.1		μg/kg dry	4.1	1.6	1		201		9 4 0		х
107-06-2	1,2-Dichloroethane	< 4.1			4.1	2.1	<u>#</u> 1	0.000 0.000	:1	0			x
75-35-4	1000 1000 Mariane Mariane (1000)			μg/kg dry				•				-	
	1,1-Dichloroethene	< 4.1		μg/kg dry	4.1	2.7	1	1	1	•			X
156-59-2 158-80 5	cis-1,2-Dichloroethene	< 4.1		μg/kg dry	4.1	1.4	1	958 8 1 8	650 7 . €	•			X
156-60-5	trans-1,2-Dichloroethene	< 4.1		μg/kg dry	4.1	2.8	1			2 = 2		-	X
78-87-5	1,2-Dichloropropane	< 4.1		μg/kg dry	4.1	1.8	1	1. 4 .1	6 9 2 3	•		<u>-</u>	X
142-28-9	1,3-Dichloropropane	< 4.1		μg/kg dry	4.1	1.4	1	(1)	(E)			•	X
594-20-7	2,2-Dichloropropane	< 4.1		µg/kg dry	4.1	2,6	1	M.	<u>}.</u>				X
63-58-6	1,1-Dichloropropene	< 4.1		μg/kg dry	4.1	2.5	1	8 1 8	3 1	0 ■ 0	20		Х
10061-01-5	cis-1,3-Dichloropropene	< 4.1		µg/kg dry	4.1	1.1	1	()	(1)	•	•	•	X
10061-02-6	trans-1,3-Dichloropropene	< 4.1		μg/kg dry	4.1	2.1	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•		X

<u>Matrix</u> Soil Collection Date/Time 14-Oct-14 12:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
-	of Volatile Organic Compounds b	y SW846_											
3260 Prepared	by method SW846 5035A	Soil (low level)				Initi	al weight: 13.1	le a					
100-41-4	Ethylbenzene	< 4.1		μg/kg dry	4.1	1.4	1	SW846 8260C	17-Oct-14	18-Oct-14	JEG	1424512	х
67- 68-3	Hexachlorobutadiene	< 4.1		µg/kg dry	4.1	1.5	1	1	17-00-14	10-001-14	"	1424512	X
591-78-6	2-Hexanone (MBK)	< 40.6		μ g/kg dry	40,6	9.4	1				•		X
98-82-8	Isopropylbenzene	< 4.1		μg/kg dry	4.1	3.6	1				-		Х
99-87-6	4-Isopropyltoluene	< 4.1		μg/kg dry	4,1	2,4	1						Х
1634-04-4	Methyl tert-butyl ether	< 4.1		μg/kg dry	4.1	2.1	1				•		Х
108-10-1	4-Methyl-2-pentanone	< 40.6		μg/kg dry	40.6	12.6	1						Х
	(MIBK)	10.0		hāuā arī	10.0	12.0	,						^
75-09-2	Methylene chloride	< 8.1		µg/kg dry	8.1	2.5	1	•	•	•	=	•	Х
91-20-3	Naphthalene	< 4.1		µg/kg dry	4.1	2.8	1	•	•	•	•	•	Х
103-65-1	n-Propylbenzene	< 4.1		µg/kg dry	4.1	1.6	1	•	•	•	•	•	X
100-42-5	Styrene	< 4.1		µg/kg dry	4.1	0.2	1	•	•	•	•	•	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 4.1		μg/kg dry	4.1	2.4	1	•	•	•	•	•	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 4.1		μg/kg dry	4.1	2.7	1	•	•	•	•	•	х
127-18-4	Tetrachloroethene	< 4.1		μg/kg dry	4.1	2.8	1	•	•	•	*		х
108-88-3	Toluene	< 4.1		µg/kg dry	4.1	1.7	1	•	•	•	•	•	X
87-61-6	1,2,3-Trichlorobenzene	< 4.1		µg/kg dry	4.1	2.9	1	•	•	•	=	•	х
120-82-1	1,2,4-Trichlorobenzene	< 4.1		µg/kg dry	4.1	2.4	1	•	•	•	•	•	х
108-70-3	1,3,5-Trichlorobenzene	< 4.1		μg/kg dry	4.1	1.0	1	•	•		•	•	
71-55-6	1,1,1-Trichloroethane	< 4.1		μg/kg dry	4.1	2.3	1	•	•		•		х
79-00-5	1,1,2-Trichloroethane	< 4.1		μg/kg dry	4.1	1,6	1		•		•		х
79-01-6	Trichloroethene	< 4.1		μg/kg dry	4.1	1.3	1	•	•		•	•	х
75-69-4	Trichlorofluoromethane (Freon 11)	< 4.1		µg/kg dry	4.1	2.8	1	•	•	•	7	•	X
96-18-4	1,2,3-Trichloropropane	< 4.1		μg/kg dry	4.1	2.4	1	•	•		•	•	х
95-63-6	1,2,4-Trimethylbenzene	< 4.1		μg/kg dry	4.1	2.5	1	•	•		•	•	х
108-67-8	1,3,5-Trimethylbenzene	< 4.1		μg/kg dry	4.1	2.4	1		•		•	•	х
75-01-4	Vinyl chloride	< 4.1		μg/kg dry	4.1	2,7	1		•		•	•	х
179601-23-1	m,p-Xylene	< 8.1		μg/kg dry	8.1	2.3	1	•	•		•		х
95-47-6	o-Xylene	< 4.1		μg/kg dry	4.1	2.6	1		•		•		х
109-99-9	Tetrahydrofuran	< 8.1		μg/kg dry	8.1	6.0	1				•		
60-29-7	Ethyl ether	< 4.1		μg/kg dry	4.1	3.7	1				•		х
994-05-8	Tert-amyl methyl ether	< 4.1		μg/kg dry	4.1	2.4	1				•		
637-92-3	Ethyl tert-butyl ether	< 4.1		μg/kg dry	4,1	1,2	1				•		
108-20-3	Di-isopropyl ether	< 4.1		μg/kg dry	4.1	1.1	1	•			•	•	
75-65-0	Tert-Butanol / butyl	< 40.6		µg/kg dry	40.6	24.2	1	•	•	•	•	•	Х
123-91-1	1,4-Dioxane	< 81.3		μg/kg dry	81.3	54.8	1				•		х
110-57-6	trans-1,4-Dichloro-2-buten	< 20.3		µg/kg dry	20.3	10.0	1	•	•	•	•	•	Х
64-17-5	e Ethanol	< 1630		µg/kg dry	1630	464	1	•	•	•	7	•	
Surrogate rec	overies:												
460-00-4	4-Bromofluorobenzene	97			70-13	0 %		•	•	•	•	•	
2037-26-5	Toluene-d8	101			70-13	0 %		Ī	Ī	•	•		
17060-07-0	1,2-Dichloroethane-d4	114			70-13	0 %					•	-	

Sample Identification BB-DS-SEDV-05 SB98028-14

Client Project # 08-14218G3

Matrix Soil Collection Date/Time 14-Oct-14 12:00 Received 14-Oct-14

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
(1)													

Volatile Organic Compounds

Re-analysis of Volatile Organic Compounds by SW846

8260

Prepared by method SW846 5035A Soil (low level) Initial weight: 13.16 g

1869-53-7 Dibromofluoromethane 104 70-130 % SW846 8260C 17-Oci-14 18-Oci-14 JEG 1424512

General Chemistry Parameters

% Solids 76.1 SOLa % 1 SM2540 G Mod. 15-Oct-14 16-Oct-14 TDD 1424283

Matrix
Surface Water

Collection Date/Time 14-Oct-14 12:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Anatyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	anic Compounds by SW846 8260 by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		µg/l	1.0	0.7	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	X
67-64-1	Acetone	< 10.0		µg/l	10.0	3.6	1	•	•	•	•	•	х
107-13-1	Acrylonitrile	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	х
71-43-2	Benzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	x
108-86-1	Bromobenzene	< 1.0		µg/l	1,0	0,3	1	•	•	•	•	•	Х
74-97-5	Bromochloromethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
75-27-4	Bromodichloromethane	< 0.5		µg/l	0.5	0.4	1	•	•	•	7	•	х
75-25-2	Bromoform	< 1.0		µg/l	1.0	0.6	1	•	•	•	•	•	х
74-83-9	Bromomethane	< 2.0		µg/l	2.0	0.5	1	•	•	•	-	•	Х
78-93-3	2-Butanone (MEK)	< 10.0		µg/l	10.0	3.1	1	•	•	•	•	•	X
104-51-8	n-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	π	•	х
135-98-8	sec-Butylbenzene	< 1.0		µg∕l	1.0	0.4	1	•	•	•	•	•	х
98-06-6	tert-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	х
75-15-0	Carbon disulfide	< 2.0		µg/l	2.0	0.7	1	•	•	•	•	•	х
56-23-5	Carbon tetrachloride	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	х
108-90-7	Chlorobenzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	х
75-00-3	Chloroethane	< 2.0		µg/l	2.0	0.7	1	•	•	•	•	•	х
67-06- 3	Chloroform	< 1.0		µg/l	1.0	0.5	1	•	•	•	•		х
74-87-3	Chloromethane	< 2.0		µg/l	2.0	0.5	1	•	•	•	71	•	х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1		•	•	•	•	х
108-43-4	4-Chlorotoluene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		µg/l	2.0	0.5	1	•	•	•	7	•	X
124-48-1	Dibromochloromethane	< 0.5		µg/l	0.5	0.4	1	•	•	•	π	•	х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		µg/l	0.5	0.3	1	•	•	•	•	•	х
74-95-3	Dibromomethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	-	•	х
95-50-1	1,2-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	х
541-73-1	1,3-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	-	•	х
108-46-7	1,4-Dichlorobenzene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		µg/l	2.0	0.6	1	•	•	•	•	•	X
75-84-3	1,1-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
107-06-2	1,2-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	х
75-35-4	1,1-Dichloroethene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	Х
7 8-8 7-5	1,2-Dichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•	7	•	Х
142-28-9	1,3-Dichloropropane	< 1.0		µg/l	1.0	0.2	1	•	•	•	•	•	Х
594-20-7	2,2-Dichloropropane	< 1.0		µg/l	1.0	0,3	1	•	•	•	₩	•	x
563-58-6	1,1-Dichloropropene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
10061-01-5	cis-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.4	1	•	•		•	•	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	Х
100-41-4	Ethylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	7	•	х
87-68-3	Hexachlorobutadiene	< 0.5		µg/l	0.5	0.4	1	•	•	•	•	•	х
591-78-6	2-Hexanone (MBK)	< 10.0		µg/l	10.0	2,0	1				•		х

Matrix
Surface Water

Collection Date/Time 14-Oct-14 12:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cen
Volatile O	organic Compounds												
	anic Compounds by SW846 8260												
	by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		µg∕ì	1.0	0.5	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	Х
9 9-8 7-6	4-Isopropyltoluene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	Х
1634-04-4	Methyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0	2.5	1	•	•	•	•	•	Х
75-09-2	Methylene chloride	< 2.0		µg/l	2,0	0,5	1	•	•	•	•	•	X
91-20-3	Naphthalene	< 1.0		µg∕l	1.0	0.5	1	•	•	•	•	•	Х
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1	•	•	•	7	•	X
100-42-5	Styrene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		µg/l	1.0	0.4	1		•	•	7	•	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	X
127-18-4	Tetrachloroethene	< 1.0		µg/l	1.0	0.6	1	•	•	•	•	•	Х
108-88-3	Toluene	< 1.0		µg∕l	1.0	0.3	1	•	•	•	•	•	Х
87-61-6	1,2,3-Trichlorobenzene	< 1.0		µg/l	1.0	0.8	1	•	•	•	71	•	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
108-70-3	1,3,5-Trichlorobenzene	< 1.0		µg∕1	1.0	0.6	1	•	•	•	-	•	
71-55-6	1,1,1-Trichloroethane	< 1.0		µg/l	1.0	0.4	1	•	•	•		•	Х
79-00-5	1,1,2-Trichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
79-01-6	Trichloroethene	< 1.0		µg∕l	1.0	0.4	1	•			•	•	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		µg/l	1.0	0.8	1	•	•	•	•	•	X
96-18-4	1,2,3-Trichloropropane	< 1.0		µg/l	1.0	0.3	1	•			•	•	х
95-63-6	1,2,4-Trimethylbenzene	< 1.0		µg/l	1.0	0,3	1	•	•		•		Х
108-67-8	1,3,5-Trimethylbenzene	< 1.0		µg/l	1,0	0.4	1	•			•	•	х
75-01-4	Vinyl chloride	< 1.0		µg/l	1.0	1.0	1	•	•		•		х
179601-23-1	m,p-Xylene	< 2.0		µg/l	2.0	0.4	1	•	•		•	•	х
95-47-6	o-Xylene	< 1.0		µg/l	1.0	0.4	1	•	•		•	•	х
109-99-9	Tetrahydrofuran	< 2.0		µg/l	2.0	0.8	1				•		
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	•					х
994-05-B	Tert-amyl methyl ether	< 1.0		µg/l	1.0	0.3	1				•		Х
637-92-3	Ethyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1				•		Х
108-20-3	Di-isopropyl ether	< 1.0		µg/l	1.0	0.3	1						X
75-65-0	Tert-Butanol / butyl	< 10.0		µg∕i	10.0	8.9	1	•	•		4	•	х
123-91-1	1,4-Dioxane	< 20.0		µg/l	20.0	14,6	1				•		Х
110-57-6	trans-1,4-Dichloro-2-buten	< 5.0		µg/l	5.0	1.0	1	•	•		•	•	X
64-17-5	Ethanol	< 400		µg/l	400	80.8	1	•	•		•	•	Х
Surrogate rec	coverles:												
460-00-4	4-Bromofluorobenzene	101			70-13	0 %		•		•	•	•	
2037-26-5	Toluene-d8	97			70-13	0%		•	•	•	•	•	
17060-07-0	1,2-Dichloroethane-d4	106			70-13	0%		•	•		7	•	
1868-59-7	Dibromofluoromethane	85			70-13			_	_	_			

Matrix Soil Collection Date/Time 14-Oct-14 12:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 2.00		mg/kg dry	2.00	0.708	1	SW846 6010C	21-Oct-14	24-Oct-14	EDT	1424725	X
7440-39-3	Barium	32,4		mg/kg dry	1.33	0.243	1	tr∎tt	110	27-Oct-14	Ħ	1425320	X
7440-43-9	Cadmium	< 0.667		mg/kg dry	0.667	0.0894	1	0∎0	3.00	24-Oct-14	П	1424725	X
7440-47-3	Chromium	8.40		mg/kg dry	1.33	0,241	1	(1)	1		П	•	X
7440-50-8	Copper	9.38		mg/kg dry	1.33	0.183	Ĩ	(1)	•		19		X
7439-89-6	Iron	9,670		mg/kg dry	5.34	2.42	1	0 ■ 0	:1	27-Oct-14	π.	1425320	X
743 9-98- 5	Manganese	159		mg/kg dry	1.33	0.201	1	10	1	24-Oct-14	•	1424725	X
7440-23-5	Sodium	78.4		mg/kg dry	33.3	7.49	1			18	П	Ī	X
7440-02-0	Nickel	9,94		mg/kg dry	1.33	0.185	1	17 0 0	(a)	8.0	•	•	X
7439-92-1	Lead	4.19		mg/kg dry	2,00	0,928	1	0∎0	(1)	3. 0	я		Х
7440-68-6	Zinc	34.8		mg/kg dry	1.33	0.333	Ĭ	(*)			•	Ĭ	Х
General C	Chemistry Parameters												
	% Solids	70.3		%			1	SM2540 G Mod.	15-Oct-14	16-Oct-14	TDD	1424283	
	Total Organic Carbon	1,120	TOC 1	mg/kg	100	44.9	1	Lloyd Kahn	21-Oct-14	21-Oct-14	DJB	1424886	Х
Toxicity C	Characteristics												
	Reported as % retained.												
Prepared	by method General Prepa	San Inches		o/ B-1-11			2	40TH D400	00.0-14	04.0-444		4404000	
	Fractional % Sieve #4 (>4750µm)	0.414		% Retained			1	ASTM D422	20-Oct-14	21-Oct-14	EEM	1424693	
	Fractional % Sieve #10 (4750-2000µm)	1.20		% Retained			1	X	1	•	п		
	Fractional % Sieve #20 (2000-850µm)	5.18		% Retained			1	10		0.	я.	•	
	Fractional % Sieve #40 (850-425µm)	26.3		% Retained			1	(1)	•	•	П	ř	
	Fractional % Sieve #60 (425-250µm)	44,5		% Retained			1				п		
	Fractional % Sleve #100 (250-150µm)	2.03		% Retained			1	3 4 3	3. 1 .:	3. **)	П	•	
	Fractional % Sieve #200 (150-75µm)	18.7		% Retained			1	٠		1	•		
	Fractional % Sieve #230 (less than 75µm)	1.66		% Retained			1	000	196	800		•	

Matrix Soil Collection Date/Time 14-Oct-14 12:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424367	
100	anic Compounds by SW846 8260 by method SW846 5035A		QCR el)			Initio	al weight: 28.	06 a					
6-13-1	1,1,2-Trichlorotrifluoroetha	< 295	D en	μg/kg dry	295	239	a weigit. 20. 50	SW846 8260C	16-Oct-14	16-Oct-14	SJB	1424387	х
	ne (Freon 113)	1200	-15 58	pgrig ury	200	Loo	00	011010 02000	10 00 14	10 00: 14	CUD	1121007	
7 -64- 1	Acetone	< 2950	D	μg/kg dry	2950	1550	50				П	Ĭ.	Х
77-13-1	Acrylonitrile	< 295	D	μg/kg dry	295	197	50	51 ■ 38	0€ 0	*	(1	•	X
1-43-2	Benzene	< 295	D	µg/kg dry	295	106	50			•	п	Ê	X
08-86-1	Bromobenzene	< 295	D	μg/kg dry	295	199	50			196	*		Х
4-97-5	Bromochloromethane	< 295	D	μg/kg dry	295	293	50				9 m 5		Х
5-27-4	Bromodichloromethane	< 295	D	µg/kg dry	295	230	50			○■ ○	(1)	77.	Х
5-25-2	Bromoform	< 295	D	µg/kg dry	295	282	50	1.0			Ħ		Х
4-83-9	Bromomethane	< 589	D	µg/kg dry	589	581	50	i.e.i	•	•	•	Ē	X
8-93-3	2-Butanone (MEK)	< 2950	D	µg/kg dry	2950	993	50	1∎3	•	57 ■ U	18 1		Х
04-51-8	n-Butylbenzene	< 295	D	μg/kg dry	295	243	50	(•)	20 . 00	3. (1	П		Х
35-98-8	sec-Butylbenzene	< 295	D	μg/kg dry	295	191	50	€.■	1	•	П	Ē	Х
8-06-6	tert-Butylbenzene	< 295	D	μg/kg dry	295	210	50	(.	•		П	1.7	X
5-15-0	Carbon disulfide	< 589	D	µg/kg dry	589	147	50	(1)	O#0	O ■ 0	(1)	This	X
8-23-5	Carbon tetrachloride	< 295	D	μg/kg dry	295	144	50	i.t.i		•	(1)		X
08-90-7	Chlorobenzene	< 295	D	μg/kg dry	295	103	50	1			T		X
5-00-3	Chloroethane	< 589	D	μg/kg dry	589	254	50	1 1			п		X
7-66-3	Chloroform	< 295	D	μg/kg dry	295	153	50	1 1	O	0■ 0	(1)	E10	X
4-87-3	Chloromethane	< 589	D	μg/kg dry	589	578	50	111	200	•	•		X
5-49-8	2-Chlorotoluene	< 295	D	µg/kg dry	295	132	50		•		•	877	X
06-43-4	4-Chlorotoluene	< 295	D	μg/kg dry	295	156	50	•	**************************************	8 1 ■0	T	•)
6-12-8	1,2-Dibromo-3-chloroprop ane	< 589	D	µg/kg dry	589	383	50	,1,	(10)	al#fi			X
24- 48 -1	Dibromochloromethane	< 295	D	μg/kg dry	295	106	50		130	136	•	Ü	>
06-93-4	1,2-Dibromoethane (EDB)	< 295	D	μg/kg dry	295	66.9	50				9 m 8)
4-95-3	Dibromomethane	< 295	D	μg/kg dry	295	164	50	•	0.	20		•	X
5-50-1	1,2-Dichlorobenzene	< 295	D	μg/kg dry	295	138	50	(1		•		Ĭ	X
41-73-1	1,3-Dichlorobenzene	< 295	D	µg/kg dry	295	210	50	()			•	1. 2.7	Х
08-46-7	1,4-Dichlorobenzene	< 295	D	μg/kg dry	295	163	50	10		10	п)
5-71-8	Dichlorodifluoromethane (Freon12)	< 589	D	μg/kg dry	589	214	50		3.■:	3. 1 0	п)
5-34-3	1,1-Dichloroethane	< 295	D	μg/kg dry	295	115	50		1		*	Ē)
7-06-2	1,2-Dichloroethane	< 295	D	µg/kg dry	295	150	50	10	10	100	•	•)
5-35-4	1,1-Dichloroethene	< 295	D	µg/kg dry	295	197	50	3,■.6		<■	•	•)
6-59-2	cis-1,2-Dichloroethene	< 295	D	μg/kg dry	295	99.9	50	(3)		•	•	Ĭ)
58-60-5	trans-1,2-Dichloroethene	< 295	D	μg/kg dry	295	203	50	(▼)			п	# 8 gc)
3-87-5	1,2-Dichloropropane	< 295	D	µg/kg dry	295	133	50	10	5 1	91 €		•)
42-28-9	1,3-Dichloropropane	< 295	D	µg/kg dry	295	103	50	(1)	3,■0	Z ,■fr	•		X
94-20-7	2,2-Dichloropropane	< 295	D	µg/kg dry	295	186	50			i.	•	Ē)
83-58-6	1,1-Dichloropropene	< 295	D	µg/kg dry	295	178	50	1	•		•)
0061-01-5	cis-1,3-Dichloropropene	< 295	D	µg/kg dry	295	77.5	50		:■:	•	(1)	•)
0061-02-6	trans-1,3-Dichloropropene	< 295	D	μg/kg dry	295	149	50	(1)	•	1	Ħ	Ê	X
00-41-4	Ethylbenzene	< 295	D	μg/kg dry	295	98.7	50	340	197		π.	•	Х

<u>Matrix</u> Soil Collection Date/Time 14-Oct-14 12:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	anic Compounds by SW846 8260		QCR										
	by method SW846 5035A				-		al weight: 28.2	_			. :-	4	
87-68-3	Hexachlorobutadiene	< 295	D -	µg/kg dry	295	107	50	SW846 8260C	16-Oct-14	16-Oct-14	SJB	1424387	
591-78-6	2-Hexanone (MBK)	< 2950	D	µg/kg dry	2950	678	50	•	•	•	7	•	Х
98-82-8	Isopropylbenzene	< 295	D	µg/kg dry	295	258	50	•	•	•	•	•	Х
99-87-6	4-Isopropyltoluene	< 295	D	µg/kg dry	295	175	50	•	•	•	•		Х
1634-04-4	Methyl tert-butyl ether	< 295	D	µg/kg dry	295	155	50	•	•	•	•		Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 2950	D	µg/kg dry	2950	915	50	•	•	•	•	•	Х
75-09-2	Methylene chloride	< 589	D	µg/kg dry	589	178	50	•	•	•	•	•	Х
91-20-3	Naphthalene	< 295	D	µg/kg dry	295	200	50	•	•	•	•	•	X
103-65-1	n-Propylbenzene	< 295	D	μg/kg dry	295	118	50	•	•	•	•	•	X
100-42-5	Styrene	< 295	D	μg/kg dry	295	17.4	50	•	•	•	•	•	X
630-20-6	1,1,1,2-Tetrachloroethane	< 295	D	μg/kg dry	295	177	50	•	•	•	7	•	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 295	D	μg/kg dry	295	194	50	•	•	•	•	•	Х
127-18-4	Tetrachloroethene	< 295	D	μg/kg dry	295	200	50	•	•	•	•	•	х
108-88-3	Toluene	< 295	D	μg/kg dry	295	124	50	•	•	•	•	•	Х
87-61-6	1,2,3-Trichlorobenzene	< 295	D	μg/kg dry	295	209	50	•	•	•	-	•	X
120-82-1	1,2,4-Trichlorobenzene	< 295	D	μg/kg dry	295	172	50	•	•	•	•	•	Х
108-70-3	1,3,5-Trichlorobenzene	< 295	D	μg/kg dry	295	69.0	50	•	•	•	п	•	
71-55-6	1,1,1-Trichloroethane	< 295	D	μg/kg dry	295	166	50	•	•	•	•	•	Х
79-00-5	1,1,2-Trichloroethane	< 295	D	μg/kg dry	295	118	50	•		•	•	•	х
79-01-6	Trichloroethene	< 295	D	μg/kg dry	295	94,3	50	•			•	•	х
75-69-4	Trichlorofluoromethane (Freon 11)	< 295	D	µg/kg dry	295	202	50	•	•	•	•	•	X
98-18-4	1,2,3-Trichloropropane	< 295	D	μg/kg dry	295	177	50				•	•	Х
95-63-6	1,2,4-Trimethylbenzene	< 295	D	μg/kg dry	295	181	50	•			•	•	Х
108-67-8	1,3,5-Trimethylbenzene	< 295	D	μg/kg dry	295	177	50						х
75-01-4	Vinyl chloride	< 295	D	μg/kg dry	295	197	50	•		•	•		х
179601-23-1	m,p-Xylene	< 589	D	μg/kg dry	589	169	50				•	•	х
95-47-6	o-Xylene	< 295	D	μg/kg dry	295	186	50					•	х
109-99-9	Tetrahydrofuran	< 589	D	μg/kg dry	589	433	50				•		
60-29-7	Ethyl ether	< 295	D	μg/kg dry	295	267	50	•			•		х
994-05-8	Tert-amyl methyl ether	< 295	D	μg/kg dry	295	172	50						
637-92-3	Ethyl tert-butyl ether	< 295	D	μg/kg dry	295	86.9	50			•			
108-20-3	Di-isopropyl ether	< 295	D	µg/kg dry	295	79.9	50					•	
75-65-0	Tert-Butanol / butyl	< 2950	D	µg/kg dry	2950	1760	50	•		•	•	•	X
123-91-1	1,4-Dioxane	< 5890	D	μg/kg dry	5890	3970	50				•		х
110-57-6	trans-1,4-Dichloro-2-buten	< 1470	D	µg/kg dry	1470	726	50	•			•	•	X
64-17-5	e Ethanol	< 118000	D	μg/kg dry	118000	33600	50				•		
			- '	Lana mi	. 10000	50000							
Surrogate reci 460-00-4	overies: 4-Bromofluorobenzene	108			70-13	n ek			•		•		
2037-26-5	Toluene-d8	100									7		
2037-26-5 17060-07-0	i oluene-as 1,2-Dichloroethane-d4	100 108			70-13					·		-	
		706			70-13	∪ 7a		-	-	-		-	

<u>Matrix</u> Soil Collection Date/Time 14-Oct-14 12:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
	organic Compounds of Volatile Organic Compounds b	v SW846											
8260	of voicine organic composition b	y 011010											
	by method SW846 5035A	Soil (low level)				<u>Initi</u>	al weight: 9.92	<u> </u>					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.7		μg/kg dry	5.7	4.6	1	SW846 8260C	17-Oct-14	18-Oct-14	JEG	1424512	X
67-64-1	Acetone	< 57.0		μg/kg dry	57.0	30.1	1	•	•	•	•	•	X
107-13-1	Acrylonitrile	< 5.7		μg/kg dry	5.7	3.8	1	1	•	ı	•	•	X
71-43-2	Benzene	< 5.7		μg/kg dry	5.7	2.1	1	•	•	•	•	•	х
108-86-1	Bromobenzene	< 5.7		μg/kg dry	5.7	3.8	1	•	•	•		•	Х
74-97-5	Bromochloromethane	< 5.7		µg/kg dry	5.7	5.7	1		•	•	•	•	X
75-27-4	Bromodichloromethane	< 5.7		µg/kg dry	5.7	4,5	1	•	•	•	•	•	Х
75-25-2	Bromoform	< 5.7		μg/kg dry	5.7	5.5	1	•	•	•	•	•	Х
74-83-9	Bromomethane	< 11.4		μg/kg dry	11.4	11.2	1	1	•	ı	•	•	Х
7 8-93- 3	2-Butanone (MEK)	< 57.0		μg/kg dry	57.0	19.2	1	•	•	•	•	•	Х
104-51-8	n-Butylbenzene	< 5.7		μg/kg dry	5.7	4.7	1	•	•	•	•	•	Х
135-98-8	sec-Butylbenzene	< 5.7		µg/kg dry	5.7	3,7	1	•	•	•	•	•	X
98-06-6	tert-Butylbenzene	< 5.7		µg/kg dry	5.7	4,1	1	•	•	•	•	•	X
75-15-0	Carbon disulfide	< 11.4		µg/kg dry	11.4	2.9	1	•	•	•	•	•	Х
56-23-5	Carbon tetrachloride	< 5.7		µg/kg dry	5.7	2.8	1	•	•	•	•	•	Х
108-90-7	Chlorobenzene	< 5.7		μg/kg dry	5.7	2.0	1	•	•	•	•	•	х
75-00-3	Chloroethane	< 11.4		μg/kg dry	11.4	4.9	1	•	•	•	•	•	Х
67-66-3	Chloroform	< 5.7		µg/kg dry	5.7	3.0	1	•	•	•	•	•	х
74-87-3	Chloromethane	< 11.4		µg/kg dry	11.4	11.2	1	•	•	•	•	•	Х
95-49-8	2-Chlorotoluene	< 5.7		μg/kg dry	5.7	2.6	1	•	•	•	•	•	х
106-43-4	4-Chlorotoluene	< 5.7		µg/kg dry	5.7	3.0	1	•	•	•	•	•	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 11.4		μg/kg dry	11.4	7.4	1	•	•	•	•	•	Х
124-48-1	Dibromochloromethane	< 5.7		μg/kg dry	5.7	2.1	1	•	•	•	•	•	X
106-93-4	1,2-Dibromoethane (EDB)	< 5.7		μg/kg dry	5.7	1,3	1	•	•	•	•	•	х
74-95-3	Dibromomethane	< 5.7		μg/kg dry	5.7	3.2	1	•	•	•	•	•	Х
95-50-1	1,2-Dichlorobenzene	< 5.7		μg/kg dry	5.7	2.7	1	•	•	•	•	•	х
541-73-1	1,3-Dichlorobenzene	< 5.7		μg/kg dry	5.7	4.1	1	•	•	ı		•	х
108-46-7	1,4-Dichlorobenzene	< 5.7		μg/kg dry	5.7	3.2	1	•	•	•	•	•	х
75-71-8	Dichlorodifluoromethane (Frecn12)	< 11.4		μg/kg dry	11,4	4.1	1	•	•	•	•	•	X
75-34-3	1,1-Dichloroethane	< 5.7		µg/kg dry	5.7	2.2	1	•	•	•	•	•	X
107-06-2	1,2-Dichloroethane	< 5.7		μg/kg dry	5.7	2.9	1	•	•	•	•	•	х
75-35-4	1,1-Dichloroethene	< 5.7		μg/kg dry	5.7	3.8	1	•		•	•	•	х
156-59-2	cis-1,2-Dichloroethene	< 5.7		µg/kg dry	5.7	1.9	1	•	•	•	•	•	х
156-60-5	trans-1,2-Dichloroethene	< 5.7		μg/kg dry	5.7	3.9	1	•		•	•	•	х
78-87-5	1,2-Dichloropropane	< 5.7		μg/kg dry	5.7	2.6	1	•	•	•	•	•	х
142-28-9	1,3-Dichloropropane	< 5.7		µg/kg dry	5.7	2.0	1	•		•	•	•	X
594-20-7	2,2-Dichloropropane	< 5.7		μg/kg dry	5.7	3.6	1	•		•	•	•	Х
563-58-6	1,1-Dichloropropene	< 5.7		μg/kg dry	5.7	3.5	1	•	•	•	•	•	х
10061-01-5	cis-1,3-Dichloropropene	< 5.7		μg/kg dry	5.7	1.5	1	•		•	•		Х
10061-02-6	trans-1,3-Dichloropropene	< 5.7		μg/kg dry	5.7	2,9	1	•			•		Х
100-41-4	Ethylbenzene	< 5.7		µg/kg dry	5.7	1.9	1				•		Х
87-68-3	Hexachlorobutadiene	< 5.7		µg/kg dry	5.7	2.1	1						Х

<u>Matrix</u> Soil Collection Date/Time 14-Oct-14 12:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	organic Compounds												
	of Volatile Organic Compounds b	y SW846											
<u>8260</u> Bronarod	by method SW846 5035A	Soil (low lovel)				leiti	al weight: 9.92	la.					
591-78-6	2-Hexanone (MBK)	< 57.0	!	μg/kg dry	57.0	13.1	ա weigiii. 5.52 1	SW846 8260C	17-Oct-14	18-Oct-14	JEG	1424512	Х
98-82-8	Isopropylbenzene	< 5.7		µg/kg dry	5.7	5.0	1	1	17-00-14	10-001-14	,	1424512	χ
99-87-6	4-Isopropyltoluene	< 5.7		μ g/kg dry	5.7	3.4	1				•		X
1634-04-4	Methyl tert-butyl ether	< 5.7		μg/kg dry	5.7	3.0	1	ı	•				Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 57.0		µg/kg dry	57,0	17,7	1	•	•	•	•	•	х
75-09-2	Methylene chloride	< 11.4		μg/kg dry	11.4	3.4	1		•	•	π.	•	Х
91-20-3	Naphthalene	< 5.7		µg/kg dry	5.7	3.9	1	•	•	•	=	•	Х
103-65-1	n-Propylbenzene	< 5.7		µg/kg dry	5.7	2.3	1			•		•	х
100-42-5	Styrene	< 5.7		µg/kg dry	5.7	0.3	1	•	•		•	•	х
630-20-6	1,1,1,2-Tetrachloroethane	< 5.7		µg/kg dry	5.7	3.4	1	•	•	•	-	•	x
79-34-5	1,1,2,2-Tetrachloroethane	< 5.7		μg/kg dry	5.7	3.7	1	•	•		•	•	х
127-18-4	Tetrachloroethene	< 5.7		μg/kg dry	5.7	3.9	1	•			•		х
108-88-3	Toluene	< 5.7		μg/kg dry	5.7	2.4	1		•		•		х
87-61-6	1,2,3-Trichlorobenzene	< 5.7		μg/kg dry	5.7	4.0	1	•	•		π		х
120-82-1	1,2,4-Trichlorobenzene	< 5.7		μg/kg dry	5.7	3.3	1		•		-	•	х
108-70-3	1,3,5-Trichlorobenzene	< 5.7		μg/kg dry	5.7	1.3	1						
71-55-6	1,1,1-Trichloroethane	< 5.7		μg/kg dry	5.7	3.2	1	•			-		х
79-00-5	1,1,2-Trichloroethane	< 5.7		μg/kg dry	5.7	2.3	1				=		х
79-01-6	Trichloroethene	< 5.7		μg/kg dry	5.7	1.8	1				,		х
75 -69-4	Trichlorofluoromethane (Freon 11)	< 5.7		µg/kg dry	5.7	3,9	1		•	•	•	•	X
96-18-4	1,2,3-Trichloropropane	< 5.7		μg/kg dry	5.7	3.4	1	•	•	•	•	•	X
95-63-6	1,2,4-Trimethylbenzene	< 5.7		μg/kg dry	5,7	3,5	1	•	•	•	•	•	Х
108-67-8	1,3,5-Trimethylbenzene	< 5.7		µg/kg dry	5.7	3.4	1	•	•	•	•	•	Х
75-01-4	Vinyl chloride	< 5.7		μg/kg dry	5.7	3.8	1	•	•	•	π	•	Х
179601-23-1	m,p-Xylene	< 11.4		μg/kg dry	11.4	3.3	1	•	•	•	π	•	Х
95-47-6	o-Xylene	< 5.7		μg/kg dry	5.7	3.6	1	•	•	•		•	X
109-99-9	Tetrahydrofuran	< 11.4		μg/kg dry	11.4	8.4	1	•	•	•	=	•	
60-29-7	Ethyl ether	< 5.7		µg/kg dry	5.7	5.2	1	•	•	•		•	Х
994-05-8	Tert-amyl methyl ether	< 5.7		μg/kg dry	5.7	3.3	1	•	•	•	=	•	
637-92-3	Ethyl tert-butyl ether	< 5.7		μg/kg dry	5.7	1.7	1	•			•	•	
108-20-3	Di-isopropyl ether	< 5.7		μg/kg dry	5.7	1.5	1	•	•	•	-	•	
75-65-0	Tert-Butanol / butyl alcohol	< 57.0		µg/kg dry	57,0	34,0	1	•	•	•	•	•	X
123-91-1	1,4-Dioxane	< 114		µg/kg dry	114	76.9	1	•	•	•	-	•	X
110-57-6	trans-1,4-Dichloro-2-buten e	< 28.5		µg/kg dry	28.5	14.1	1	•	•	•	•	•	X
84-17-5	Ethanol	< 2280		µg/kg dry	2280	651	1	•	•	•	7	•	
Surrogate rec	coveries:												
460-00-4	4-Bromofluorobenzene	96			70-13	0 %		•	•	•	7	•	
2037-26-5	Toluene-d8	100			70-13	0 %		•	•	•	п	•	
17060-07-0	1,2-Dichloroethane-d4	110			70-13	0 %		•	•	•	•	•	
1868-53-7	Dibromofluoromethane	102			70-13	0 %			•	•	₩	•	
C	Themistry Parameters												

Sample Identification BB-DS-SEDV-06 SB98028-17

Client Project # 08-14218G3

Matrix Soil Collection Date/Time 14-Oct-14 12:30

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters												
% Solids	70.3	SOLb	%			1	SM2540 G Mod.	15-Oct-14	16-Oct-14	TDD	1424283	

Matrix
Surface Water

Collection Date/Time 14-Oct-14 12:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	organic Compounds												
-	anic Compounds by SW846 8260												
	by method SW846 5030 V	<u>Vater MS</u>											
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		µg/l	1.0	0.7	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	Х
57-64- 1	Acetone	< 10.0		µg/l	10.0	3.6	1	•	•	•	=	•	Х
107-13-1	Acrylonitrile	< 0.5		µg/l	0.5	0.5	1	•	•	•	=	•	Х
71-43-2	Benzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
108-86-1	Bromobenzene	< 1.0		µg/l	1,0	0,3	1	•	•	•	=	•	Х
74-97-5	Bromochloromethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	•	•	•	•	•	X
75-25-2	Bromoform	< 1.0		µg/l	1.0	0.6	1	•	•	•	•	•	X
74-83-9	Bromomethane	< 2.0		µg/l	2.0	0.5	1	•	•	•	•	•	Х
78-93-3	2-Butanone (MEK)	< 10.0		µg/l	10.0	3.1	1	•	•	•	•	•	х
104-51-8	n-Butylbenzene	< 1.0		µg/l	1.0	0.4	1		•	•	=	•	Х
135-98-8	sec-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•			•	•	х
98-06-6	tert-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•		•	=	•	х
75-15-0	Carbon disulfide	< 2.0		µg/l	2.0	0.7	1	•	•	•	•	•	х
56-23-5	Carbon tetrachloride	< 1.0		µg/l	1.0	0.4	1	•		•	-	•	X
108-90-7	Chlorobenzene	< 1.0		µg/l	1.0	0.3	1	•			•	•	х
75-00-3	Chloroethane	< 2.0		µg/l	2.0	0.7	1	•		•	•		х
67-66- 3	Chloroform	< 1.0		µg/l	1.0	0.5	1	•		•	•		х
74-87-3	Chloromethane	< 2.0		µg/l	2.0	0.5	1	•		•	•		х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	•			-		х
108-43-4	4-Chlorotoluene	< 1.0		µg/l	1.0	0.3	1	•		•	-		х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		µg/l	2.0	0.5	1	•	•	•	•	•	X
124-48-1	Dibromochloromethane	< 0.5		µg/l	0.5	0.4	1	•			=		х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		µg/l	0.5	0.3	1				,		Х
74-95-3	Dibromomethane	< 1.0		µg/l	1.0	0,4	1				•		х
95-50-1	1,2-Dichlorobenzene	< 1.0		µg/l	1.0	0,4	1				•		х
541-73-1	1,3-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1				•		χ
106-46-7	1,4-Dichlorobenzene	< 1.0		µg/l	1.0	0.5	1				•		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		µg/l	2.0	0.6	1	•	•	•	π	•	Х
75-84-8	1,1-Dichloroethane	< 1.0		µg/l	1.0	0.3	1				•		Х
107-06-2	1,2-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•			•		Х
75-35-4	1,1-Dichloroethene	< 1.0		µg/l	1.0	0.5	1				•		X
156-59-2	cis-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.4	1	•			•		Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.5	1				•		Х
78-87-5	1,2-Dichloropropane	< 1.0		µg/l	1.0	0.3	1				•		Х
142-28-9	1,3-Dichloropropane	< 1.0		hā\	1.0	0.2	1				,		Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	1		•			X
563-58-6	1,1-Dichloropropene	< 1.0		µg/l	1.0	0.4	1				•		X
10061-01-5	cis-1,3-Dichloropropene	< 0.5			0.5	0.4	1				,		X
10061-02-6	trans-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.5	1				,		X
100-41-4	Ethylbenzene	< 1.0		µg/l				1			,		
	•			µg/l	1.0	0.4	1					•	X
87-68-3	Hexachlorobutadiene	< 0.5		µg∕l	0.5	0.4	1	-	·	-	-	-	Х

Matrix
Surface Water

Collection Date/Time 14-Oct-14 12:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
	anic Compounds by SW846 8260												
	by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		µg/l	1.0	0.5	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	Х
9 9-8 7-6	4-Isopropyttoluene	< 1.0		µg/l	1.0	0.5	1	•	•	•	"	•	Х
1634-04-4	Methyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0	2.5	1	•	•	•	•	•	X
75-09-2	Methylene chloride	< 2.0		µg/l	2,0	0,5	1	•	•	•	=	•	X
91-20-3	Naphthalene	< 1.0		µg∕l	1.0	0.5	1	•	•	•	•	•	Х
103-65-1	n-Propylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
100-42-5	Styrene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	X
127-18-4	Tetrachloroethene	< 1.0		µg/l	1.0	0.6	1	•	•	•	7	•	X
108-88-3	Toluene	< 1.0		µg∕l	1.0	0.3	1	•	•	•	=	•	Х
87-61-6	1,2,3-Trichlorobenzene	< 1.0		µg/l	1.0	0.8	1	•	•	•	•	•	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
108-70-3	1,3,5-Trichlorobenzene	< 1.0		µg/l	1.0	0.6	1	•	•	•	•	•	
71-55-6	1,1,1-Trichloroethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
79-00-5	1,1,2-Trichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
79-01-6	Trichloroethene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		µg/l	1.0	0.8	1	•	•	•	π	•	X
96-18-4	1,2,3-Trichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
95-63-6	1,2,4-Trimethylbenzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	-	•	Х
108-67-8	1,3,5-Trimethylbenzene	< 1.0		µg/l	1,0	0,4	1	•	•	•	=	•	Х
75-01-4	Vinyl chloride	< 1.0		µg/l	1.0	1.0	1	•	•	•	•	•	Х
179601-23-1	m,p-Xylene	< 2.0		µg/l	2.0	0.4	1	•	•	•	•	•	Х
95-47-6	o-Xylene	< 1.0		µg/l	1.0	0.4	1	•	•	•	-	•	Х
109-99-9	Tetrahydrofuran	< 2.0		µg/l	2.0	0.8	1	•	•	•	•	•	
60-29-7	Ethyl ether	< 1.0		µg/l	1.0	0.5	1	•		•	•	•	Х
994-05-B	Tert-amyl methyl ether	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
637-92-3	Ethyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1	•	•	•	71		Х
108-20-3	Di-isopropyl ether	< 1.0		µg/l	1.0	0.3	1		•	•	•		Х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		µg/l	10.0	8.9	1	•	•	•	•		x
123-91-1	1,4-Dioxane	< 20.0		µg/l	20.0	14,6	1		•	•	•	•	Х
110-57-6	trans-1,4-Dichloro-2-buten	< 5.0		µg/l	5.0	1.0	1	•	•	Ē	*	•	X
64-17-5	Ethanol	< 400		µg/l	400	80.8	1	•		•	•		х
Surrogate rec	coveries:												
460-00-4	4-Bromofluorobenzene	98			70-13	0 %		•	•	•	•	•	
2037-28-5	Toluene-d8	98			70-13	0%		•	•	•	7	•	
17060-07-0	1,2-Dichloroethane-d4	105			70-13	0%		•	•	•	71		
1868-59-7	Dibromofluoromethane	97			70-13								

Matrix Soil Collection Date/Time 14-Oct-14 12:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	tals by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 2.02		mg/kg dry	2.02	0.717	1	SW846 6010C	21-Oct-14	24-Oct-14	EDT	1424725	X
7440-39-3	Barium	28.7		mg/kg dry	1.35	0.246	1	U∎d	(1)	27-Oct-14	1	1425320	X
7440-43-9	Cadmium	< 0.675		mg/kg dry	0.675	0.0904	1	0.■0	,(1)	24-Oct-14	•	1424725	Х
7440-47-3	Chromium	7.84		mg/kg dry	1.35	0,244	Ì	(1)	1	•	π.	<u> </u>	X
7440-50-8	Copper	10.3		mg/kg dry	1.35	0.185	1			•	3 🖷 23		X
7439-89-6	Iron	10,400		mg/kg dry	5.40	2.45	1	01■0	() 1 (27-Oct-14	(10)	1425320	Х
743 9-96- 5	Manganese	246		mg/kg dry	1.35	0.204	1	300	•	24-Oct-14	•	1424725	х
7440-23-5	Sodium	76.2		mg/kg dry	33.7	7.58	1		1 (1007) 2 1 (1007)		Ħ	Ē	Х
7440-02-0	Nickel	12,0		mg/kg dry	1,35	0.188	1	17 4 0	100	6.0	•	•	X
7439-92-1	Lead	5.56		mg/kg dry	2,02	0,939	1	Ø 1 0	(1)	3. 1 1	•	•	X
7440-68-6	Zinc	37.5		mg/kg dry	1.35	0.337	1	(*)			•	Ť	х
General C	Chemistry Parameters												
	% Solids	69.5		%			1	SM2540 G Mod.	15-Oct-14	16-Oct-14	TDD	1424283	
	Total Organic Carbon	2,850		mg/kg	100	44.9	1	Lloyd Kahn	21-Oct-14	21-Oct-14	DJB	1424886	Х
Toxicity C	Characteristics												
<u> Grain Size -</u>	Reported as % retained.												
Prepared	by method General Prepa	<u>aration</u>											
	Fractional % Sieve #4 (>4750µm)	14.5		% Retained			1	ASTM D422	20-Oct-14	21-Oct-14	EEM	1424693	
	Fractional % Sieve #10 (4750-2000µm)	8.97		% Retained			1		1		π.		
	Fractional % Sieve #20 (2000-850µm)	24.4		% Retained			1	100	:•	010	; T ()	•	
	Fractional % Sieve #40 (850-425µm)	30.5		% Retained)=((1)	1	1	•	Ĭ	
	Fractional % Sieve #60 (425-250µm)	15.7		% Retained			1		5 1		1		
	Fractional % Sieve #100 (250-150µm)	2.95		% Retained			1	10	3 8	(1)	•		
	Fractional % Sieve #200 (150-75µm)	2.30		% Retained			1				я	Ħ	
	Fractional % Sleve #230 (less than 75µm)	0.727		% Retained			1	3∎3	100	% ■	T	•	

Matrix Soil Collection Date/Time 14-Oct-14 12:50

SB98028-	-20												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cen
Volatile O	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424367	
Re-analysis 3260	of Volatile Organic Compounds by	y SW846											
Prepared	by method SW846 5035A	Soil (low level)				<u>Initi</u>	al weight: 11.	47 g					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.3		µg/kg dry	5.3	4.3	1	SW846 8260C	17-Oct-14	18-Oct-14	JEG	1424512	X
67-64- 1	Acetone	< 53.4		µg/kg dry	53.4	28.1	1	500	10	() = (:		•	X
107-13-1	Acrylonitrile	< 5.3		µg/kg dry	5.3	3,6	1	0.00	2.■2	2■;	•		X
71-43-2	Benzene	< 5.3		µg/kg dry	5,3	1.9	1			ESS.	•	Ē	X
108-86-1	Bromobenzene	< 5.3		μg/kg dry	5.3	3.6	1				90		Х
74-97-5	Bromochloromethane	< 5.3		µg/kg dry	5.3	5.3	1	8∎8	::	0.	(1 .)	•	Х
75-27-4	Bromodichloromethane	< 5.3		µg/kg dry	5.3	4.2	1	•	3 1		•		X
75-25-2	Bromoform	< 5.3		µg/kg dry	5.3	5.1	1		10	100		Ü	х
74-83-9	Bromomethane	< 10.7		µg/kg dry	10.7	10.5	1	(In)	9.0	901	•	•	X
78-93-3	2-Butanone (MEK)	< 53.4		µg/kg dry	53.4	18.0	1	g∎g	(1)	(0■)			х
104-51-8	n-Butylbenzene	< 5.3		μg/kg dry	5.3	4.4	Ť		1		•	Ē	Х
135-98-8	sec-Butylbenzene	< 5.3		μg/kg dry	5.3	3.5	1						Х
98-06-6	tert-Butylbenzene	< 5.3		μg/kg dry	5.3	3,8	1	S m C	100	(III)		•	х
75-15-0	Carbon disulfide	< 10.7		μg/kg dry	10,7	2,7	1					â	X
56-23-5	Carbon tetrachloride	< 5.3		μg/kg dry	5.3	2.6	1						Х
108-90-7	Chlorobenzene	< 5.3		μg/kg dry	5.3	1.9	1		3.0		· 1		Х
75-00-3	Chloroethane	< 10.7		μg/kg dry	10.7	4.6	1	98		:3 ■ :	(1)		Х
67-66-3	Chloroform	< 5.3		μg/kg dry	5.3	2.8	1					ě	X
74-87-3	Chloromethane	< 10.7		NEVEL 1886 VES	10.7	10.5	Ť		100		T	ä	X
95-49-8	2-Chlorotoluene	< 5.3		μg/kg dry				5 - 5	100	70 1 0			X
				µg/kg dry	5.3	2,4	1	5 ■0	300	g∎r-			
106-43-4	4-Chlorotoluene	< 5.3		μg/kg dry	5.3	2.8	1	2 2 5		•		- -	X
96-12-9	1,2-Dibromo-3-chloroprop ane	< 10.7		µg/kg dry	10.7	6.9	1	0. - 0	i e			. .	Х
124-48-1	Dibromochloromethane	< 5.3		µg/kg dry	5.3	1.9	1	•			т.	•	Х
106-93-4	1,2-Dibromoethane (EDB)	< 5.3		µg/kg dry	5.3	1.2	1	3 1 8	S.■S	0.00	(1		Х
74- 95- 3	Dibromomethane	< 5.3		µg/kg dry	5.3	3,0	1		1	•	•		X
95-50-1	1,2-Dichlorobenzene	< 5.3		µg/kg dry	5.3	2.5	1				•	1 N	X
541-73-1	1,3-Dichlorobenzene	< 5.3		µg/kg dry	5,3	3,8	1	ti u ti	10	0∎		•	X
108-46-7	1,4-Dichlorobenzene	< 5.3		µg/kg dry	5.3	3.0	1	g a g	3. 9 1	(I .E .)	•		X
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.7		µg/kg dry	10.7	3.9	1	(*)	•		•	Ť	X
75-34-3	1,1-Dichloroethane	< 5.3		μg/kg dry	5.3	2,1	1				T		X
107-06-2	1,2-Dichloroethane	< 5.3		μg/kg dry	5.3	2.7	1	8 8 13		0	(10)	•	X
75-35-4	1,1-Dichloroethene	< 5.3		μg/kg dry	5.3	3.6	1		•	•		/3x (=	X
156-59-2	cis-1,2-Dichloroethene	< 5.3		μg/kg dry	5.3	1.8	1				•	i.	X
158-60-5	trans-1,2-Dichloroethene	< 5.3		μg/kg dry	5.3	3.7	1	t∎#	%∎:	10	31	•	Х
78-87-5	1,2-Dichloropropane	< 5.3		μg/kg dry	5.3	2.4	1	a ≡ q	(1)	8■			Х
142-28-9	1,3-Dichloropropane	< 5.3		μg/kg dry	5.3	1,9	i	•	1			# E	Х
594-20-7	2,2-Dichloropropane	< 5.3		μg/kg dry	5.3	3.4	1				•	Ī	Х
563-58-6	1,1-Dichloropropene	< 5.3		μg/kg dry	5.3	3.2	1	3 m 6		:3 ≡ :	31.	•	Х
10061-01-5	cis-1,3-Dichloropropene	< 5.3		μg/kg dry	5.3	1.4	1	•		100			Х
	:	970 THE SHE		La. Mars	w.w		38						^

<u>Matrix</u> Soil Collection Date/Time 14-Oct-14 12:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
olatile O	rganic Compounds												
•	of Volatile Organic Compounds b	y SW846_											
3260 Prepared	by method SW846 5035A	Soil (low level)				Initi	al weight: 11.4	17 a					
100-41-4	Ethylbenzene	< 5.3		μg/kg dry	5.3	1.8	1	5W846 8260C	17-Oct-14	18-Oct-14	JEG	1424512	Х
77-68-3	Hexachlorobutadiene	< 5.3		μg/kg dry	5.3	1.9	1	1	17-00-14	10-001-14	"	1424512	X
591-78-6	2-Hexanone (MBK)	< 53.4		μ g/kg dry μg/kg dry	53,4	12,3	1						X
98-82-8	Isopropylbenzene	< 5.3		μg/kg dry	5.3	4.7	1				-		X
99-87-6	4-Isopropyltoluene	< 5.3		μ g/kg dry	5,3	3.2	1						X
1634-04-4	Methyl tert-butyl ether	< 5.3		μg/kg dry	5.3	2.8	1				=	•	Х
108-10-1	4-Methyl-2-pentanone	< 53.4		µg/kg dry	53.4	16.6	1				,		Х
	(MIBK)												
75-09-2	Methylene chloride	< 10.7		µg/kg dry	10.7	3.2	1	•	•	•	*	•	Х
91-20-3	Naphthalene	< 5.3		µg/kg dry	5.3	3.6	1	•	•	•	•	•	Х
103-65-1	n-Propylbenzene	< 5.3		µg/kg dry	5.3	2.1	1	•	•	•	•	•	Х
100-42-5	Styrene	< 5.3		µg/kg dry	5.3	0.3	1	•	•	•	•	•	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 5.3		μg/kg dry	5.3	3.2	1	•	•	•	•	•	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 5.3		µg/kg dry	5.3	3.5	1	•	•	•	•	•	Х
127-18-4	Tetrachloroethene	< 5.3		µg/kg dry	5.3	3,6	1	•	•	•	•	•	X
108-88-3	Toluene	< 5.3		µg/kg dry	5.3	2.2	1	•	•	•	•	•	X
87-61-6	1,2,3-Trichlorobenzene	< 5.3		μg/kg dry	5.3	3.8	1	•	•	•	π.	•	Х
120-82-1	1,2,4-Trichlorobenzene	< 5.3		μg/kg dry	5.3	3.1	1	•	•	•	=	•	Х
108-70-3	1,3,5-Trichlorobenzene	< 5.3		μg/kg dry	5.3	1.2	1	•	•	•	•	•	
71-55-6	1,1,1-Trichloroethane	< 5.3		μg/kg dry	5.3	3.0	1	•	•	•	•	•	х
79-00-5	1,1,2-Trichloroethane	< 5.3		µg/kg dry	5.3	2,1	1	•	•	•	•	•	х
79-01-6	Trichloroethene	< 5.3		μg/kg dry	5.3	1.7	1	•	•	•	•	•	X
75-69-4	Trichlorofluoromethane (Freon 11)	< 5.3		µg/kg dry	5.3	3.6	1	•	•	•	п	•	Х
96-18-4	1,2,3-Trichloropropane	< 5.3		μg/kg dry	5.3	3.2	1	•	Ī	•	7	•	Х
95-63-6	1,2,4-Trimethylbenzene	< 5.3		µg/kg dry	5.3	3.3	1	•	•	•	•	•	Х
108-67-8	1,3,5-Trimethylbenzene	< 5.3		μg/kg dry	5.3	3.2	1	•	•	•	•	•	Х
75-01-4	Vinyl chloride	< 5.3		μg/kg dry	5.3	3,6	1	•	•	•	•	•	х
179601-23-1	m,p-Xylene	< 10.7		μg/kg dry	10.7	3.1	1	•	•	•	•	•	Х
95-47-6	o-Xylene	< 5.3		μg/kg dry	5.3	3.4	1	•	•	•	•	•	Х
109-99-9	Tetrahydrofuran	< 10.7		μg/kg dry	10.7	7.8	1	•	•	•	π	•	
60-29-7	Ethyl ether	< 5.3		μg/kg dry	5.3	4.8	1	•	•	•	•	•	х
994-05-8	Tert-amyl methyl ether	< 5.3		μg/kg dry	5.3	3.1	1	•	•	•	-	•	
637-92-3	Ethyl tert-butyl ether	< 5.3		µg/kg dry	5,3	1,6	1	•	•		•	•	
108-20-3	Di-isopropyl ether	< 5.3		μg/kg dry	5.3	1.4	1	•	•		•	•	
75-65-0	Tert-Butanol / butyl alcohol	< 53.4		μg/kg dry	53.4	31.8	1	•	•	•	7	•	Х
123-91-1	1,4-Dioxane	< 107		μg/kg dry	107	71.9	1	•	•	•	7	•	Х
110-57-6	trans-1,4-Dichloro-2-buten	< 26.7		µg/kg dry	26.7	13.1	1	•	•	•	•	•	х
64-17-5	Ethanol	< 2130		μg/kg dry	2130	609	1	•	•	•	7	•	
Surrogate rec	overies:												
460-00-4	4-Bromofluorobenzene	94			70-13	0 %		•	•	•	•	•	
2037-26-5	Toluene-d8	100			70-13	0 %		•	•	•	•	•	
17060-07-0	1,2-Dichloroethane-d4	113			70-13	0 %					•	-	

Sample Identification BB-DS-SEDV-07 SB98028-20

Client Project # 08-14218G3 Matrix Soil Collection Date/Time 14-Oct-14 12:50 Received 14-Oct-14

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared Analyze	l Analyst	Batch	Cert.
Volatile Organic Compounds											

Re-analysis of Volatile Organic Compounds by SW846

8260

Prepared by method SW846 5035A Soil (low level) Initial weight: 11.47 g

1868-53-7 Dibromofluoromethane 104 70-130 % SW846 8260C 17-Oct-14 18-Oct-14 JEG 1424512

General Chemistry Parameters

% Solids 69.5 SOLc % 1 SM2540 G Mod. 15-Oct-14 16-Oct-14 TDD 1424283

Matrix
Surface Water

Collection Date/Time 14-Oct-14 12:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	anic Compounds by SW846 8260												
	by method SW846 5030 V	<u>Vater MS</u>											
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		µg/l	1.0	0.7	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	Х
67-64-1	Acetone	< 10.0		µg/l	10.0	3.6	1	•	•	•	•	•	Х
107-13-1	Acrylonitrile	< 0.5		µg/l	0.5	0.5	1	•	•	•	7	•	Х
71-43-2	Benzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
108-86-1	Bromobenzene	< 1.0		µg/l	1,0	0,3	1	•	•	•	7	•	Х
74-97-5	Bromochloromethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
75-27-4	Bromodichloromethane	< 0.5		µg/l	0.5	0.4	1	•	•	•	7	•	Х
75-25-2	Bromoform	< 1.0		µg/l	1.0	0.6	1	•	•	•	•	•	X
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	•	•	•	•	•	Х
78-93-3	2-Butanone (MEK)	< 10.0		µg/l	10.0	3.1	1		•	•	•	•	X
104-51-8	n-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	7	•	Х
135-98-8	sec-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
98-06-6	tert-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	7	•	Х
75-15-0	Carbon disulfide	< 2.0		µg/l	2.0	0.7	1	•	•	•	π	•	Х
58-23-5	Carbon tetrachloride	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
108-90-7	Chlorobenzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
75-00-3	Chloroethane	< 2.0		µg/l	2.0	0.7	1	•	•	•	7	•	Х
67-86- 3	Chloroform	< 1.0		µg/l	1.0	0.5	1	•	•	•	π	•	Х
74-87-3	Chloromethane	< 2.0		µg∕l	2.0	0.5	1	•	•	•	π	•	Х
95-49-8	2-Chlorotoluene	< 1.0		µg/l	1.0	0.4	1	•	•	•	=	•	X
108-43-4	4-Chlorotoluene	< 1.0		µg/l	1.0	0.3	1	•	•	•	=	•	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		µg/l	2.0	0.5	1	•	•	•	•	•	X
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	•	•	•	•	•	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		µg/l	0.5	0.3	1	•	•	•	•	•	Х
74-95-3	Dibromomethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
95-50-1	1,2-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	π	•	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		µg/l	2.0	0.6	1	•	•	•	Ħ	•	X
75-84-8	1,1-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
107-06-2	1,2-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	=	•	X
75-35-4	1,1-Dichtoroethene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	X
156-59-2	cis-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.4	1	•	•	•	=	•	X
156-60-5	trans-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	X
78-87-5	1,2-Dichloropropane	< 1.0		µg/l	1.0	0.3	1	•	i	•	п	•	Х
142-28-9	1,3-Dichloropropane	< 1.0		µg/l	1.0	0.2	1	•	•	•	π	•	Х
594-20-7	2,2-Dichloropropane	< 1.0		µg/l	1.0	0,3	1	•	•	•	π		X
563-58-6	1,1-Dichloropropene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
10061-01-5	cis-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.4	1	•				•	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.5	1	•		•	•	•	Х
100-41-4	Ethylbenzene	< 1.0		µg/l	1.0	0.4	1	•		•	•	•	х
87-68-3	Hexachlorobutadiene	< 0.5		µg/l	0.5	0.4	1	•		•	•	•	Х
591-78-6	2-Hexanone (MBK)	< 10.0		µg/l	10.0	2,0	1						Х

Matrix
Surface Water

Collection Date/Time 14-Oct-14 12:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Anatyzed	Analyst	Batch	Cer
Volatile O	organic Compounds												
	anic Compounds by SW846 8260												
	by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		µg/l	1.0	0.5	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	Х
9 9-8 7-6	4-Isopropyttoluene	< 1.0		µg/l	1.0	0.5	1	•	•	•	"	•	Х
1634-04-4	Methyl tert-butyl ether	< 1.0		hâ⁄i	1.0	0.4	1	•	•	•	•	•	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0	2.5	1	•	•	•	•	•	X
75-09-2	Methylene chloride	< 2.0		µg/l	2,0	0,5	1	•	•	•	π	•	Х
91-20-3	Naphthalene	< 1.0		µg∕l	1.0	0.5	1	•	•	•	•	•	Х
103-65-1	n-Propylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	#	•	X
100-42-5	Styrene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		µg∕l	1.0	0.4	1	•	•	•	•	•	X
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	X
127-18-4	Tetrachloroethene	< 1.0		µg/l	1.0	0.6	1	Ī	•	•	•	•	X
108-88-3	Toluene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
87-61-6	1,2,3-Trichlorobenzene	< 1.0		µg/l	1.0	0.8	1	•	•	•	7	•	X
120-82-1	1,2,4-Trichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	π.	•	X
108-70-3	1,3,5-Trichlorobenzene	< 1.0		µg/l	1.0	0.6	1	•	•	•	•	•	
71-55-6	1,1,1-Trichloroethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
79-00-5	1,1,2-Trichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
79-01-6	Trichloroethene	< 1.0		µg∕l	1.0	0.4	1	•	•	•	•	•	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		µg/l	1.0	0.8	1	•	•	•	7	•	X
96-18-4	1,2,3-Trichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
95-63-6	1,2,4-Trimethylbenzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
108-67-8	1,3,5-Trimethylbenzene	< 1.0		µg/l	1,0	0.4	1	•	•	•	•	•	Х
75-01-4	Vinyl chloride	< 1.0		µg/l	1.0	1.0	1	•	ı	•	7	•	Х
179601-23-1	m,p-Xylene	< 2.0		µg/l	2.0	0.4	1	•	•	•	•	•	Х
95-47-6	o-Xylene	< 1.0		µg/l	1.0	0.4	1	•		•	-	•	Х
109-99-9	Tetrahydrofuran	< 2.0		µg/l	2.0	0.8	1	•		•	•	•	
60-29-7	Ethyl ether	< 1.0		µg/l	1.0	0.5	1	•		•	•	•	Х
994-05-B	Tert-amyl methyl ether	< 1.0		µg/l	1.0	0.3	1	•		•	•	•	Х
637-92-3	Ethyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1	•		•	71		Х
108-20-3	Di-isopropyl ether	< 1.0		µg/l	1.0	0.3	1			•	•		Х
75-65-0	Tert-Butanol / butyl	< 10.0		µg/l	10.0	8.9	1	•	•	•	•	•	X
123-91-1	1,4-Dioxane	< 20.0		µg/l	20.0	14.6	1			•	•	•	Х
110-57-6	trans-1,4-Dichloro-2-buten	< 5.0		µg/l	5.0	1.0	1	•	•	•	п	•	X
64-17-5	Ethanol	< 400		µg/l	400	80.8	1	•	•	•	•	•	х
Surrogate rec	coveries:												
460-00-4	4-Bromofluorobenzene	101			70-13	0%		•		•	•	•	
2037-26-5	Toluene-d8	98			70-13			•		•	7		
17060-07-0	1,2-Dichloroethane-d4	107			70-13					•	•		
1868-53-7	Dibromofluoromethane	84			70-13								

Matrix Soil Collection Date/Time 14-Oct-14 13:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 2.11		mg/kg dry	2.11	0.745	1	SW846 6010C	21-Oct-14	24-Oct-14	EDT	1424725	X
7440-39-3	Barium	33,3		mg/kg dry	1.40	0.255	1	816	100	27-Oct-14	T	1425320	X
7 440-43- 9	Cadmium	< 0.702		mg/kg dry	0.702	0.0941	1	0.00	(1	24-Oct-14	•	1424725	Х
7440-47-3	Chromium	8.15		mg/kg dry	1,40	0.254	1		•		•	Ĭ	X
7440-50-8	Copper	9.09		mg/kg dry	1.40	0.192	1		•		141		X
7439-89-6	Iron	8,390		rng/kg dry	5.62	2.55	1	3■6	0	27-Oct-14	(1)	1425320	Х
7439-98-5	Manganese	93.6		mg/kg dry	1.40	0.212	1		•	24-Oct-14		1424725	X
7440-23-5	Sodium	79.7		mg/kg dry	35.1	7.88	1				(10)		X
7440-02-0	Nickel	9.14		mg/kg dry	1.40	0.195	1	1780	5.0	5.0	•	•	X
7439-92-1	Lead	5.97		mg/kg dry	2,11	0,977	1	ging	(■)	(III)	•	•	Х
7 440-68-6	Zinc	34.7		mg/kg dry	1.40	0.351	1		•	•	•	Ĭ	Х
General C	Chemistry Parameters												
	% Solids	67.4		%			1	SM2540 G Mod.	15-Oct-14	16-Oct-14	TDD	1424283	
	Total Organic Carbon	828		mg/kg	100	44.9	1	Lloyd Kahn	21-Oct-14	21-Oct-14	DJB	1424886	Х
Toxicity C	Characteristics												
	Reported as % retained. by method General Prepa	aration											
	Fractional % Sieve #4 (>4750µm)	1.20		% Retained			Ĭ	ASTM D422	20-Oct-14	21-Oct-14	EEM	1424693	
	Fractional % Sieve #10 (4750-2000µm)	1.20		% Retained			1	u	•		•		
	Fractional % Sieve #20 (2000-850µm)	6.77		% Retained			1	:•:	0∎0	010		•	
	Fractional % Sieve #40 (850-425µm)	27.9		% Retained			1		•		П	Ť	
	Fractional % Sieve #60 (425-250µm)	44,3		% Retained			1	•			· n		
	Fractional % Sleve #100 (250-150µm)	0.287		% Retained			1	g a g	3.00	奥 斯		•	
	Fractional % Sieve #200 (150-75µm)	17.6		% Retained			1	æ	•		•	iii Ayk	
	Fractional % Sleve #230 (less than 75µm)	0.803		% Retained			1	trad	80 = 0		π.	•	

Matrix Soil Collection Date/Time 14-Oct-14 13:10

SB98028-	-23												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424367	
Re-analysis 3260	of Volatile Organic Compounds by	y SW846											
<u>Prepared</u>	by method SW846 5035A	Soil (low level)				<u>Initi</u>	al weight: 12.	36 g					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.4		µg/kg dry	5.4	4.4	1	SW846 8260C	17-Oct-14	18-Oct-14	JEG	1424512	X
67-64- 1	Acetone	< 54.1		µg/kg dry	54.1	28.5	1	500	(1	() = (:		•	Х
107-13-1	Acrylonitrile	< 5.4		µg/kg dry	5.4	3,6	1	0,00	2.■3	2■3	•	•	X
71-43-2	Benzene	< 5.4		µg/kg dry	5,4	1.9	1		100		•		Х
108-86-1	Bromobenzene	< 5.4		µg/kg dry	5.4	3.6	1	•	•		1		X
74-97-5	Bromochloromethane	< 5.4		µg/kg dry	5.4	5.4	1	8∎8	::	0.	(1 .)	•	Х
75-27-4	Bromodichloromethane	< 5.4		µg/kg dry	5.4	4.2	1	•	3 1		•		X
75-25-2	Bromoform	< 5.4		µg/kg dry	5.4	5.2	1		10	100		,	х
74-83-9	Bromomethane	< 10.8		µg/kg dry	10.8	10.7	1	(In)	9.0	901	•	•	х
78-93-3	2-Butanone (MEK)	< 54.1		µg/kg dry	54.1	18.2	1	g∎g	(1)	(0■)			х
104-51-8	n-Butylbenzene	< 5.4		µg/kg dry	5.4	4.5	Ť		1		•	Ē	Х
135-98-8	sec-Butylbenzene	< 5.4		μg/kg dry	5.4	3.5	1						х
98-06-6	tert-Butylbenzene	< 5.4		μg/kg dry	5.4	3,9	1	S m C	100	(III)			х
75-15-0	Carbon disulfide	< 10.8		μg/kg dry	10.8	2,7	1					à	X
56-23-5	Carbon tetrachloride	< 5.4		μg/kg dry	5.4	2.6	1					Ü	Х
108-90-7	Chlorobenzene	< 5.4		μg/kg dry	5.4	1.9	1		3.0		· 1		Х
75-00-3	Chloroethane	< 10.8		μg/kg dry	10.8	4.7	1	98		:3 ■ :	(1)		Х
67-66-3	Chloroform	< 5.4		SANGE NAME (1993)	5.4	2.8	1		1				X
74-87-3	Chloromethane	< 10.8		μg/kg dry	10.8	10.6	Ť		100		T	ě	X
95-49-8	2-Chlorotoluene	< 5.4		μg/kg dry				5 - 5	100	70 1 0		7.	X
				µg/kg dry	5.4	2,4	1	5 ■0	300	g∎r-			
106-43-4	4-Chlorotoluene	< 5.4		μg/kg dry	5.4	2.9	1	2 2 5		•		- #	X
96-12-8	1,2-Dibromo-3-chloroprop ane	< 10.8		µg/kg dry	10.8	7.0	1	0. - 0	i e			.=	Х
124-48-1	Dibromochloromethane	< 5.4		µg/kg dry	5.4	1.9	1	•			т.		X
106-93-4	1,2-Dibromoethane (EDB)	< 5.4		µg/kg dry	5.4	1.2	1	3 1 8	S.■S	0.00	(.)		Х
74-95-3	Dibromomethane	< 5.4		µg/kg dry	5.4	3,0	1		1	•	•		Х
95-50-1	1,2-Dichlorobenzene	< 5.4		µg/kg dry	5.4	2.5	1					i.	X
541-73-1	1,3-Dichlorobenzene	< 5.4		µg/kg dry	5,4	3,8	1	t a d	10	() = ()			X
108-46-7	1,4-Dichlorobenzene	< 5.4		µg/kg dry	5.4	3.0	1	0.00	(1)	8.■1:	п	•	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.8		µg/kg dry	10.8	3.9	1		•	•	•	ř	X
75-34-3	1,1-Dichloroethane	< 5.4		µg/kg dry	5.4	2.1	1				*# **		X
107-06-2	1,2-Dichloroethane	< 5.4		µg/kg dry	5.4	2.8	1	8.0	0.00	0.	(31 .)	•	Х
75-35-4	1,1-Dichloroethene	< 5.4		µg/kg dry	5.4	3.6	1	•	ì	•		-	X
158-59-2	cis-1,2-Dichloroethene	< 5.4		μg/kg dry	5.4	1.8	1				•	1.7	Х
156-60-5	trans-1,2-Dichloroethene	< 5.4		μg/kg dry	5.4	3.7	1	បាល	10	1	31 1	•	Х
78-87-5	1,2-Dichloropropane	< 5.4		μg/kg dry	5.4	2.4	1	ama				•	Х
142-28-9	1,3-Dichloropropane	< 5.4		μg/kg dry	5.4	1,9	1		ī		7	<u> </u>	X
594-20-7	2,2-Dichloropropane	< 5.4		μg/kg dry	5,4	3,4	1			•	141		х
563-58-6	1,1-Dichloropropene	< 5.4		μg/kg dry	5.4	3.3	1	9∎8	:10	ા∎	(10)		Х
10061-01-5	cis-1,3-Dichloropropene	< 5.4		μg/kg dry	5.4	1.4	1						Х
		area to out		L.Q., Q., 1	5 -1 .457								25

<u>Matrix</u> Soil Collection Date/Time 14-Oct-14 13:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
-	of Volatile Organic Compounds b	y SW846											
3260 Prepared	by method SW846 5035A	Soil (low level)				Initi	al weight: 12.3)e a					
100-41-4	Ethylbenzene	< 5.4		μg/kg dry	5.4	1.8	a wogna 12.c 1	5W846 8260C	17-Oct-14	18-Oct-14	JEG	1424512	х
97-68-3	Hexachlorobutadiene	< 5.4		μg/kg dry	5.4	2.0	1	1		10-001-14	,	1-12-12-12	X
591-78-6	2-Hexanone (MBK)	< 54.1		μg/kg dry	54,1	12,5	1				-		х
98-82-8	Isopropylbenzene	< 5,4		μg/kg dry	5.4	4.7	1				•		X
99-87-6	4-Isopropyltoluene	< 5.4		μg/kg dry	5,4	3,2	1				•		Х
1634-04-4	Methyl tert-butyl ether	< 5.4		μg/kg dry	5.4	2.9	1	•			•		Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 54.1		µg/kg dry	54.1	16.8	1	•	•	•	7	•	Х
75-09-2	Methylene chloride	< 10.8		µg/kg dry	10.8	3.3	1	•			=		х
91-20-3	Naphthalene	< 5.4		μg/kg dry	5.4	3.7	1	•			•		х
103-65-1	n-Propylbenzene	< 5.4		μg/kg dry	5.4	2.2	1	•			•		х
100-42-5	Styrene	< 5.4		μg/kg dry	5.4	0.3	1				•		Х
630-20-6	1,1,1,2-Tetrachloroethane	< 5.4		μg/kg dry	5.4	3.3	1				•		Х
79-34-5	1,1,2,2-Tetrachloroethane	< 5.4		μg/kg dry	5.4	3.6	1				•		Х
127-18-4	Tetrachloroethene	< 5.4		μg/kg dry	5.4	3,7	1	•			•		х
108-88-3	Toluene	< 5.4		μg/kg dry	5,4	2,3	1				•		Х
87-61-6	1,2,3-Trichlorobenzene	< 5.4		μg/kg dry	5.4	3.8	1				•		Х
120-82-1	1,2,4-Trichlorobenzene	< 5.4		μg/kg dry	5.4	3.2	1				•		Х
108-70-3	1,3,5-Trichlorobenzene	< 5.4		μg/kg dry	5.4	1.3	1				•		
71-55-6	1,1,1-Trichloroethane	< 5.4		μg/kg dry	5.4	3.0	1				•		х
79-00-5	1,1,2-Trichloroethane	< 5.4		μg/kg dry	5.4	2,2	1				•		х
79-01-6	Trichloroethene	< 5.4		μg/kg dry	5.4	1,7	1				•		Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 5.4		µg/kg dry	5.4	3.7	1	•	•	•	•	•	X
96-18-4	1,2,3-Trichloropropane	< 5.4		μg/kg dry	5.4	3.3	1	•	•	•	7	•	Х
95-63-6	1,2,4-Trimethylbenzene	< 5.4		μg/kg dry	5.4	3.3	1	•	•	•	=	•	Х
108-67-8	1,3,5-Trimethylbenzene	< 5.4		µg/kg dry	5.4	3.2	1	•	•	•	•	•	х
75-01-4	Vinyl chloride	< 5.4		µg/kg dry	5.4	3.6	1	•			•	•	х
179601-23-1	m,p-Xylene	< 10.8		μg/kg dry	10.8	3.1	1	•	•	•	•	•	X
95-47-6	o-Xylene	< 5.4		μg/kg dry	5.4	3.4	1	•	•	•	•	•	х
109-99-9	Tetrahydrofuran	< 10.8		μg/kg dry	10.8	7.9	1	•	•	•	=	•	
60-29-7	Ethyl ether	< 5.4		µg/kg dry	5.4	4.9	1	•	•	•	•	•	х
994-05-8	Tert-amyl methyl ether	< 5.4		μg/kg dry	5.4	3.2	1	•	•	•	•	•	
637-92-3	Ethyl tert-butyl ether	< 5.4		μg/kg dry	5,4	1.6	1	•	•	•	•	•	
108-20-3	Di-isopropyl ether	< 5.4		μg/kg dry	5.4	1.5	1	•	•	•	π	•	
75-65-0	Tert-Butanol / butyl alcohol	< 54.1		µg/kg dry	54.1	32.3	1	•	•	•	•	•	х
123-91-1	1,4-Dioxane	< 108		μg/kg dry	108	73.0	1	•	•	•	₩	•	Х
110-57-6	trans-1,4-Dichloro-2-buten	< 27.1		µg/kg dry	27.1	13.3	1	•	•	•	•	•	Х
64-17-5	Ethanol	< 2170		µg/kg dry	2170	618	1	•	•	•	п	•	
Surrogate rec													
460-00-4	4-Bromofluorobenzene	96			70-13			•	•	•	"	•	
2037-26-5	Toluene-d8	101			70-13	0%		•	•	•	•	•	
17060-07-0	1,2-Dichloroethane-d4	117			70-1 3	0 %		•	•	•	•	-	

Sample Identification BB-DS-SEDV-08 SB98028-23

Client Project # 08-14218G3 Matrix Soil Collection Date/Time 14-Oct-14 13:10 Received 14-Oct-14

CAS No. Analyte(s) Result Flag Units *RDL MDL Dilution Method Ref. Prepared Analyzed Analyst Batch Cert.

Volatile Organic Compounds

Re-analysis of Volatile Organic Compounds by SW846

8260

Prepared by method SW846 5035A Soil (low level) Initial weight: 12.36 g

1868-53-7 Dibromofluoromethane 104 70-130 % SW846 8260C 17-Oct-14 18-Oct-14 JEG 1424512

General Chemistry Parameters

% Solids 67.4 SOLd % 1 SM2540 G Mod, 15-Oct-14 16-Oct-14 TDD 1424283

Matrix
Surface Water

Collection Date/Time 14-Oct-14 13:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	anic Compounds by SW846 8260												
	by method SW846 5030 V	<u>Vater MS</u>											
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		µg/l	1.0	0.7	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	Х
67-64-1	Acetone	< 10.0		µg/l	10.0	3.6	1						х
107-13-1	Acrylonitrile	< 0.5		µg/l	0.5	0.5	1				•		X
71-43-2	Benzene	< 1.0		µg/l	1.0	0.3	1				•		X
108-86-1	Bromobenzene	< 1.0		µg/l	1,0	0,3	1				•		Х
74-97-5	Bromochloromethane	< 1.0		µg/l	1.0	0.3	1	•			•		х
75-27-4	Bromodichloromethane	< 0.5		µg/l	0.5	0.4	1				•		Х
75-25-2	Bromoform	< 1.0		µg/l	1.0	0.6	1	•			•		х
74-83-9	Bromomethane	< 2.0		µg/l	2.0	0.5	1				•		Х
78-93-3	2-Butanone (MEK)	< 10.0		µg/l	10.0	3.1	1	•			-		х
104-51-8	n-Butylbenzene	< 1.0		µg/l	1.0	0.4	1						х
135-98-8	sec-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•		•	•		Х
98-06-6	tert-Butylbenzene	< 1.0		µg/l	1.0	0.4	1						х
75-15-0	Carbon disulfide	< 2.0		µg/l	2.0	0.7	1	•			•		х
58-23-5	Carbon tetrachloride	< 1.0		µg/l	1.0	0.4	1	•		•			х
108-90-7	Chlorobenzene	< 1.0		µg/l	1.0	0.3	1				•		х
75-00-3	Chloroethane	< 2.0		µg/l	2.0	0.7	1	•			7		х
67-86-3	Chloroform	< 1.0		µg/l	1.0	0.5	1				•		х
74-87-3	Chloromethane	< 2.0		µg/l	2.0	0.5	1	•			7		х
9 5-49-8	2-Chlorotoluene	< 1.0		µg/l	1.0	0,4	1	•			•		х
106-43-4	4-Chlorotoluene	< 1.0		µg/l	1.0	0.3	1	•		•			х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		µg/l	2.0	0.5	1	•	•	•	•	•	X
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	•	•	•	•	•	X
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		µg/l	0.5	0.3	1	•	•	•	•	•	х
74-95-3	Dibromomethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	x
95-50-1	1,2-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	х
541-73-1	1,3-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	-	•	X
108-46-7	1,4-Dichlorobenzene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	х
75-71- 8	Dichlorodifluoromethane (Freon12)	< 2.0		µg/l	2.0	0.6	1	•	•	•	7	•	X
75-34-3	1,1-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
107-06-2	1,2-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	₩.	•	X
75-35-4	1,1-Dichloroethene	< 1.0		µg/1	1.0	0.5	1	•	•	•	•	•	X
156-59-2	cis-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.4	1	•	•	•	π.	•	X
156-60-5	trans-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.5	1	•	•	•	π	•	Х
78-87- 5	1,2-Dichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•	π	•	Х
142-28-9	1,3-Dichloropropane	< 1.0		µg/l	1.0	0.2	1	•	•	•	-	•	Х
594-20-7	2,2-Dichloropropane	< 1.0		µg/l	1.0	0,3	1	•	•	•	π		X
563-58-6	1,1-Dichloropropene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
10061-01-5	cis-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.4	1	•	•	•	=	•	X
10061-02-6	trans-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.5	1	•	•	•	7	•	X
100-41-4	Ethylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
87-68-3	Hexachlorobutadiene	< 0.5		µg/l	0.5	0.4	1	•	•	•	•	•	Х
591-78- 6	2-Hexanone (MBK)	< 10.0		µg/l	10,0	2.0	1	•			•		х

Matrix
Surface Water

Collection Date/Time 14-Oct-14 13:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Anatyzed	Analyst	Batch	Cer
Volatile O	organic Compounds												
	anic Compounds by SW846 8260												
	by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		µg/l	1.0	0.5	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	Х
9 9-8 7-6	4-Isopropyttoluene	< 1.0		µg/l	1.0	0.5	1	•	•	•	"	•	Х
1634-04-4	Methyl tert-butyl ether	< 1.0		hâ⁄i	1.0	0.4	1	•	•	•	•	•	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0	2.5	1	•	•	•	•	•	X
75-09-2	Methylene chloride	< 2.0		µg/l	2,0	0,5	1	•	•	•	π	•	Х
91-20-3	Naphthalene	< 1.0		µg∕l	1.0	0.5	1	•	•	•	•	•	X
103-65-1	n-Propylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	#	•	X
100-42-5	Styrene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		µg∕l	1.0	0.4	1	•	•	•	•	•	X
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	X
127-18-4	Tetrachloroethene	< 1.0		µg/l	1.0	0.6	1	•	•	•	7	•	X
108-88-3	Toluene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
87-61-6	1,2,3-Trichlorobenzene	< 1.0		µg/l	1.0	0.8	1	•	•	•	7	•	X
120-82-1	1,2,4-Trichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	π.	•	X
108-70-3	1,3,5-Trichlorobenzene	< 1.0		µg/l	1.0	0.6	1	•	•	•	•	•	
71-55-6	1,1,1-Trichloroethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	=	•	X
79-00-5	1,1,2-Trichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
79-01-6	Trichloroethene	< 1.0		µg∕l	1.0	0.4	1	•	•	•	•	•	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		µg/l	1.0	0.8	1	•	•	•	7	•	X
96-18-4	1,2,3-Trichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
95-63-6	1,2,4-Trimethylbenzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
108-67-8	1,3,5-Trimethylbenzene	< 1.0		µg/l	1,0	0.4	1	•	•	•	•	•	Х
75-01-4	Vinyl chloride	< 1.0		µg/l	1.0	1.0	1	•	•	•	7	•	Х
179601-23-1	m,p-Xylene	< 2.0		µg/l	2.0	0.4	1	•	•	•	•	•	Х
95-47-6	o-Xylene	< 1.0		µg/l	1.0	0.4	1	•	•	•	-	•	Х
109-99-9	Tetrahydrofuran	< 2.0		µg/l	2.0	0.8	1	•	•	•	•	•	
60-29-7	Ethyl ether	< 1.0		µg/l	1.0	0.5	1	•		•	•	•	Х
994-05-B	Tert-amyl methyl ether	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
637-92-3	Ethyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1	•	•	•	71		Х
108-20-3	Di-isopropyl ether	< 1.0		µg/l	1.0	0.3	1		•	•	•		Х
75-65-0	Tert-Butanol / butyl	< 10.0		µg/l	10.0	8.9	1	•	•	•	•	•	X
123-91-1	1,4-Dioxane	< 20.0		µg/l	20.0	14.6	1	•	•	•	•	•	X
110-57-6	trans-1,4-Dichloro-2-buten	< 5.0		µg/l	5.0	1.0	1	•	•	•	п	•	X
64-17-5	Ethanol	< 400		µg/l	400	80.8	1	•	•	•	•	•	х
Surrogate rec	coveries:												
460-00-4	4-Bromofluorobenzene	99			70-13	0%		•	•	•	•	•	
2037-28-5	Toluene-d8	99			70-13	0%		•	•	•	7	•	
17060-07-0	1,2-Dichloroethane-d4	106			70-13					•	•		
1868-59-7	Dibromofluoromethane	85			70-13								

Matrix Soil Collection Date/Time 14-Oct-14 00:00

DUP-1-86 SB98028				08-142	218G3		Soil	14	-Oct-14 00	:00	14-	Oct-14	
CAS No.	Analyte(s)	Result	Elec	Tinka	*RDL	MDL	Dilution	Method Ref.	Duenous	Analyzed	da album	Dotoh	Com
TENDANO SINING SPOR	F ev sold 1905	Resuu	Flag	Units	"RDL	MUL	Duanon	метной кеј.	Frepurea	Anatyzeu	Anutyst	Daicn	Cen
Volatile O	organic Compounds VOC Extraction	Field		N/A			1	VOC Soil Extraction			BD	1424367	
	VOC EXIZERON	extracted		IVA			B	YOU SUII EXIIACIUI			00	1424307	
(27)	anic Compounds by SW846 8260 by method SW846 5035A					Initi	al weight: 13.i	8 g					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.0		µg/kg dry	5.0	4.0	1	SW846 8260C	16-Oct-14	16-Oct-14	JEG	1424386	X
37-64- 1	Acetone	< 50.0		μg/kg dry	50.0	26.4	1				П	Ē	X
107-13-1	Acrylonitrile	< 5.0		µg/kg dry	5.0	3,3	1	71 ■13	S = 2	(■)		•	X
71-43-2	Benzene	< 5.0		µg/kg dry	5,0	1.8	1				•	ê	X
108-86-1	Bromobenzene	< 5.0		μg/kg dry	5.0	3.4	1	•	100		•		X
4-97-5	Bromochloromethane	< 5.0		µg/kg dry	5.0	5.0	1				п		X
75-27-4	Bromodichioromethane	< 5.0		µg/kg dry	5.0	3.9	1	10	0■:	•	π.	•	X
75-25-2	Bromoform	< 5.0		µg/kg dry	5.0	4.8	1		(1)	•	•		X
74-83-9	Bromomethane	< 10.0		µg/kg dry	10.0	9.9	1			196	•		X
78-93-3	2-Butanone (MEK)	< 50.0		µg/kg dry	50.0	16.8	1	516	10	•	•		Х
104-51-8	n-Butylbenzene	< 5.0		µg/kg dry	5.0	4.1	1	2∎0	8.■1	3.0	•		Х
135-98-8	sec-Butylbenzene	< 5.0		µg/kg dry	5.0	3.2	1				П	*** ***	X
8-06-6	tert-Butylbenzene	< 5.0		µg/kg dry	5.0	3.6	1	•			•	į	X
75-15-0	Carbon disulfide	< 10.0		µg/kg dry	10.0	2,5	1	1	0.	•	(10)	•	X
i8-23-5	Carbon tetrachloride	< 5.0		µg/kg dry	5.0	2.4	1		(a)		•		X
08-90-7	Chlorobenzene	< 5.0		μg/kg dry	5.0	1.7	1	•			•		X
5-00-3	Chloroethane	< 10.0		µg/kg dry	10.0	4.3	1				π.	•	X
77-66-3	Chloroform	< 5.0		µg/kg dry	5.0	2.6	1	181	0∎:	38	•	•	X
4-87-3	Chloromethane	< 10.0		µg/kg dry	10.0	9.8	1	•	(1)		•	Ê	X
15-49-8	2-Chlorotoluene	< 5.0		µg/kg dry	5.0	2,2	1	•			•		X
08-43-4	4-Chlorotoluene	< 5.0		µg/kg dry	5.0	2.6	1	5 1 0	%∎:	900	п	•	X
16-12-8	1,2-Dibromo-3-chloroprop ane	< 10.0		µg/kg dry	10.0	6.5	1	3.■ 3		((П	•	Х
I24-48-1	Dibromochloromethane	< 5.0		µg/kg dry	5.0	1.8	1		190	196	•	Ē	X
106-93-4	1,2-Dibromoethane (EDB)	< 5.0		µg/kg dry	5.0	1.1	1				· 11		X
74-95-3	Dibromomethane	< 5.0		µg/kg dry	5.0	2,8	1	1 🗷	0■:	0.		•	X
95 -5 0-1	1,2-Dichlorobenzene	< 5.0		µg/kg dry	5.0	2.3	1		•		H	Ĭ	X
541-73-1	1,3-Dichlorobenzene	< 5.0		µg/kg dry	5.0	3.6	1	•			П	1.7	X
108-46-7	1,4-Dichlorobenzene	< 5.0		µg/kg dry	5.0	2.8	1	816	∵ ∎:	•	П	•	X
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.0		µg/kg dry	10.0	3.6	1	S. B. S.	3 3 €0	33.00	П	•	Х
75-34-3	1,1-Dichloroethane	< 5.0		µg/kg dry	5.0	1.9	1	10.	1000 2000 2000		П		X
107-06-2	1,2-Dichloroethane	< 5.0		µg/kg dry	5.0	2.5	1	516	% ■ 0	57 1 0	•	•	X
75-35-4	1,1-Dichloroethene	< 5.0		µg/kg dry	5.0	3.3	1	a,∎g		3	Ħ	•	X
1 56 -59-2	cis-1,2-Dichloroethene	< 5.0		µg/kg dry	5.0	1.7	1	•			•	Ë	X
158-60-5	trans-1,2-Dichloroethene	< 5.0		μg/kg dry	5.0	3.4	1	•		•	П	1	X
8-87-5	1,2-Dichloropropane	< 5.0		μg/kg dry	5.0	2.3	1	110		97 = 0	T	•	X
42-28-9	1,3-Dichloropropane	< 5.0		μg/kg dry	5.0	1.7	1	(1)	(1)	8. 0 0	П		X
94-20-7	2,2-Dichloropropane	< 5.0		μg/kg dry	5.0	3.1	1						X
63-58-6	1,1-Dichloropropene	< 5.0		μg/kg dry	5.0	3.0	1				п		X
10061-01-5	cis-1,3-Dichloropropene	< 5.0		µg/kg dry	5.0	1.3	1	111	0■:	□ ■Þ	(T)	•	Х
10061-02-6	trans-1,3-Dichloropropene	< 5.0		μg/kg dry	5.0	2.5	1	•	1	1	•	Ü	X
100-41-4	Ethylbenzene	< 5.0		µg/kg dry	5.0	1.7	1	•	100	æ			Х

Client Project # 08-14218G3 Matrix Soil Collection Date/Time 14-Oct-14 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Anatyzea	Anatyst	Batch	Cert.
Volatile O1	rganic Compounds												
	nic Compounds by SW846 8260												
	by method SW846 5035A						al weight: 13.8	_	40.0-144	40.00.44	IE O	4404000	.,
7-68-3	Hexachlorobutadiene	< 5.0		μg/kg dry	5.0	1.8	1	SW846 8260C	16-Oct-14	16-Oct-14	JEG "	1424386	X
91-78-6	2-Hexanone (MBK)	< 50.0		μg/kg dry	50.0	11.5	1		-		,	-	X
8-82-8	Isopropylbenzene	< 5.0		μg/kg dry	5.0	4,4	1						X
19-87-6 1834-04-4	4-Isopropyltoluene	< 5.0		μg/kg dry	5.0	3.0	1				,		X
08-10-1	Methyl tert-butyl ether	< 5.0		µg/kg dry	5.0	2.6	1						X
	4-Methyl-2-pentanone (MIBK)	< 50.0		µg/kg dry	50.0	15.5	1	-	•				Х
5-09-2	Methylene chloride	< 10.0		µg/kg dry	10.0	3.0	1	•	•	•	7	•	Х
11-20-3	Naphthalene	< 5.0		µg/kg dry	5.0	3.4	1	•	•	•	•	•	Х
03-65-1	n-Propylbenzene	< 5.0		μg/kg dry	5.0	2.0	1	•	•	•	•	•	Х
00-42-5	Styrene	< 5.0		µg/kg dry	5.0	0.3	1	•	•	•	•	•	X
30-20-6	1,1,1,2-Tetrachloroethane	< 5.0		μg/kg dry	5.0	3.0	1	•	•	•	7	•	Х
9-34-5	1,1,2,2-Tetrachloroethane	< 5.0		μg/kg dry	5.0	3.3	1	•	•	•	•	•	Х
27-18-4	Tetrachloroethene	< 5.0		µg/kg dry	5.0	3.4	1	•	•	•	•	•	Х
08-88-3	Toluene	< 5.0		µg/kg dry	5.0	2.1	1	•	•	•	•	•	X
17-61-6	1,2,3-Trichlorobenzene	< 5.0		µg/kg dry	5.0	3,5	1	•	•	•	•	•	Х
20-82-1	1,2,4-Trichlorobenzene	< 5.0		µg/kg dry	5.0	2.9	1	•	•	•	•	•	Х
08-70-3	1,3,5-Trichlorobenzene	< 5.0		µg/kg dry	5.0	1.2	1	•	•	•	•	•	
1-55-6	1,1,1-Trichloroethane	< 5.0		μg/kg dry	5.0	2.8	1	•	•	•	•	•	X
9-00-5	1,1,2-Trichloroethane	< 5.0		µg/kg dry	5.0	2.0	1	•	•	•	•	•	Х
9-01-6	Trichloroethene	< 5.0		µg/kg dry	5.0	1.6	1	•	•	•	•	•	X
75 -69-4	Trichlorofluoromethane (Freon 11)	< 5.0		µg/kg dry	5.0	3.4	1	•	•	•	•	•	X
l6-18-4	1,2,3-Trichloropropane	< 5.0		µg/kg dry	5,0	3,0	1	•	•	•	•	•	Х
15-63-6	1,2,4-Trimethylbenzene	< 5.0		μg/kg dry	5.0	3.1	1	•	•	•	•	•	Х
08-67-8	1,3,5-Trimethylbenzene	< 5.0		µg/kg dry	5.0	3.0	1	•	•	•	•	•	Х
5-01-4	Vinyl chloride	< 5.0		µg/kg dry	5.0	3,3	1	•	•	•	•	•	X
79601-23-1	m,p-Xylene	< 10.0		µg/kg dry	10.0	2.9	1	•	•	•	•	•	X
15-47-6	o-Xylene	< 5.0		μg/kg dry	5.0	3.2	1	•	•	•	•	•	X
09-99-9	Tetrahydrofuran	< 10.0		µg/kg dry	10.0	7.3	1	•	•	•	•	•	
10-29-7	Ethyl ether	< 5.0		μg/kg dry	5.0	4.5	1	•	•	•	•	•	Х
194-05-8	Tert-amyl methyl ether	< 5.0		μg/kg dry	5.0	2.9	1	•	•	•	•	•	
37-92-3	Ethyl tert-butyl ether	< 5.0		μg/kg dry	5.0	1.5	1	•	•	•	•	•	
08-20-3	Di-isopropyl ether	< 5.0		μg/kg dry	5.0	1.4	1	•	•	•	•	•	
5-65-0	Tert-Butanol / butyl alcohol	< 50.0		μg/kg dry	50.0	29.8	1	•	•	•	=		X
23-91-1	1,4-Dioxane	< 99.9		μg/kg dry	99.9	67.4	1	•	•	•		•	Х
10-57-6	trans-1,4-Dichloro-2-buten e	< 25.0		μg/kg dry	25.0	12.3	1	•	•	•	=	•	X
i4-17-5	Ethanol	< 2000		μg/kg dry	2000	570	1	•	•	•	•	•	
Surrogate reco	overies:												
160-00-4	4-Bromofluorobenzene	97			70-13	0 %		•		•	7	•	
2037-26-5	Toluene-d8	98			70-13	0 %		•	•	•	п	•	
	1,2-Dichloroethane-d4	110			70-13	0%		•	•		•		
7060-07-0	1,2-Digitor ocutario-u+	,,,											

Client Project # 08-14218G3

Matrix Soil Collection Date/Time 14-Oct-14 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 2.10		mg/kg dry	2.10	0.742	ĩ	SW846 6010C	21-Oct-14	24-Oct-14	EDT	1424725	X
7440-39-3	Barium	28,6		mg/kg dry	1.40	0.254	1	000	110	27-Oct-14	1	1425320	X
7440-43-9	Cadmium	< 0.699		mg/kg dry	0.699	0.0937	1	0∎0	3.00	24-Oct-14	П	1424725	Х
7440-47-3	Chromium	8.00		mg/kg dry	1.40	0.253	1	(1)	1		П	•	X
7440-50-8	Copper	8.61		mg/kg dry	1.40	0.192	Ĩ	(1)	•		19		X
7439-89-6	Iron	7,770		mg/kg dry	5.59	2.53	1	0 ■ 0	:1	27-Oct-14	π.	1425320	X
743 9-98- 5	Manganese	131		mg/kg dry	1.40	0.211	1	10	1	24-Oct-14	•	1424725	X
7440-23-5	Sodium	79.7		mg/kg dry	35.0	7.85	1				Ħ	Ē	X
7440-02-0	Nickel	9.16		mg/kg dry	1,40	0.194	1	17 4 0	8.00	5.0	•	•	X
7439-92-1	Lead	5.07		mg/kg dry	2,10	0.973	1	0∎0	(1)	.	•		X
7440-68-6	Zinc	32.5		mg/kg dry	1.40	0.350	1	(*)	()		•	### #	Х
General C	Chemistry Parameters												
	% Solids	68.1		%			1	SM2540 G Mod.	15-Oct-14	16-Oct-14	TDD	1424283	
	Total Organic Carbon	828		mg/kg	100	44.9	1	Lloyd Kahn	21-Oct-14	21-Oct-14	DJB	1424886	Х
Toxicity C	Characteristics												
Grain Size -	Reported as % retained.												
Prepared	by method General Prepa	<u>aration</u>											
	Fractional % Sieve #4 (>4750µm)	1.19		% Retained			1	ASTM D422	20-Oct-14	21-Oct-14	EEM	1424693	
	Fractional % Sieve #10 (4750-2000µm)	1.27		% Retained			1),			п	1 T T T T T T T T T T T T T T T T T T T	
	Fractional % Sieve #20 (2000-850µm)	1.98		% Retained			1	100	•	310	; 1	•	
	Fractional % Sieve #40 (850-425µm)	20.7		% Retained			1	(6)		ī	п		
	Fractional % Sieve #60 (425-250µm)	53.8		% Retained			1	<u>(1)</u>	20		п		
	Fractional % Sieve #100 (250-150µm)	15.9		% Retained			1	(■)	.1	3 ■1	•	•	
	Fractional % Sieve #200 (150-75µm)	4.59		% Retained			Ĭ	(*)		•	W	1 2 T.	
	Fractional % Sleve #230 (less than 75µm)	0.554		% Retained			1	000	196	800		•	

Matrix Soil Collection Date/Time 14-Oct-14 00:00

SB98028	-26			U8-142	218G3		Soil	14	-Oct-14 00	:00	14-	Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424367	
(77	anic Compounds by SW846 8260 by method SW846 5035A					Initi	al weight: 12.	87 a					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.0		µg/kg dry	5.0	4.1	1	SW846 8260C	16-Oct-14	17-Oct-14	JEG	1424386	Х
67-64- 1	Acetone	< 50.4		µg/kg dry	50.4	26.6	1			•	•	Ĭ.	X
107-13-1	Acrylonitrile	< 5.0		µg/kg dry	5.0	3,4	1	###	S = 3	% ■0		•	X
71-43-2	Benzene	< 5.0		µg/kg dry	5,0	1,8	1	•			•	ê	X
108-86-1	Bromobenzene	< 5.0		μg/kg dry	5.0	3.4	1		100	1000	•		X
74-97-5	Bromochloromethane	< 5.0		µg/kg dry	5.0	5.0	1				· 		X
75-27-4	Bromodichloromethane	< 5.0		µg/kg dry	5.0	3.9	1	100	0.0	00	п	•	X
75-25-2	Bromoform	< 5.0		µg/kg dry	5.0	4.8	1			•	•	ê	X
74-83-9	Bromomethane	< 10.1		µg/kg dry	10.1	9.9	1			1	•	i.	X
78-93-3	2-Butanone (MEK)	< 50.4		µg/kg dry	50.4	17.0	1	0∎0	(1)	1	₩.	•	X
104-51-8	n-Butylbenzene	< 5.0		µg/kg dry	5.0	4.2	1	34 3	3. 1	8.00	•	•	X
135-98-8	sec-Butylbenzene	< 5.0		µg/kg dry	5.0	3.3	1		•	•	•	Ť	X
98-06-6	tert-Butylbenzene	< 5.0		µg/kg dry	5.0	3.6	1	•			П	1	X
75-15-0	Carbon disulfide	< 10.1		µg/kg dry	10,1	2,5	1	0.0	01	○ ■	•	•	X
56-23-5	Carbon tetrachloride	< 5.0		µg/kg dry	5.0	2.5	1	•			•		X
108-90-7	Chlorobenzene	< 5.0		µg/kg dry	5.0	1.8	1					Ē	X
75-00-3	Chloroethane	< 10.1		µg/kg dry	10.1	4.3	1				Ħ		Х
67-66-3	Chloroform	< 5.0		µg/kg dry	5.0	2.6	1	3 ■ 6	::■:	3∎	1	•	X
74-87-3	Chloromethane	< 10.1		µg/kg dry	10,1	9.9	Ĭ	•			•		X
95-49-8	2-Chlorotoluene	< 5.0		µg/kg dry	5.0	2.3	Ĩ	•			•	# 878	X
108-43-4	4-Chlorotoluene	< 5.0		µg/kg dry	5.0	2.7	1	tr∎d	() 1	3.00	π.	•	X
96-12-8	1,2-Dibromo-3-chloroprop ane	< 10.1		µg/kg dry	10.1	6.6	1	Q.B.S	8 ■1	ALMAY.	Ħ	•	Х
124 -48- 1	Dibromochloromethane	< 5.0		µg/kg dry	5.0	1.8	1		100	100	•	Ē	X
106-93-4	1,2-Dibromoethane (EDB)	< 5.0		µg/kg dry	5.0	1.1	1				Ħ		X
74 -95- 3	Dibromomethane	< 5.0		µg/kg dry	5.0	2.8	1	100	:■:	0.		•	X
95-50-1	1,2-Dichlorobenzene	< 5.0		μg/kg dry	5.0	2.4	1	•	1	•	•		X
541-73-1	1,3-Dichlorobenzene	< 5.0		µg/kg dry	5.0	3.6	1			•	•		X
108-46-7	1,4-Dichlorobenzene	< 5.0		µg/kg dry	5.0	2.8	1	5∎5	(1	10	T	•	X
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.1		µg/kg dry	10.1	3.7	1	(A)	. ■:	以■ ()	п	•	X
75-34-3	1,1-Dichloroethane	< 5.0		µg/kg dry	5.0	2.0	1				•	Ĭ.	X
107-06-2	1,2-Dichloroethane	< 5.0		µg/kg dry	5.0	2.6	1	t∎d	() = (10	•	•	X
75-35-4	1,1-Dichloroethene	< 5.0		µg/kg dry	5.0	3.4	1	製 ■塩	3 ■3	4	•	•	X
156-59-2	cis-1,2-Dichloroethene	< 5.0		µg/kg dry	5.0	1.7	1		10		•	Ĭ	Х
1 58-80- 5	trans-1,2-Dichloroethene	< 5.0		μg/kg dry	5.0	3.5	1	1			п		X
78-87-5	1,2-Dichloropropane	< 5.0		µg/kg dry	5.0	2.3	1	5 1 6	(7■ 0	97 8 0	П	•	X
142-28-9	1,3-Dichloropropane	< 5.0		µg/kg dry	5.0	1.8	1	Q 1 13	/ 1		п	•	X
594-20-7	2,2-Dichloropropane	< 5.0		µg/kg dry	5.0	3.2	1	i.	100				X
563-58-6	1,1-Dichloropropene	< 5.0		μg/kg dry	5.0	3.0	1	•		•	п		X
10061-01-5	cis-1,3-Dichloropropene	< 5.0		µg/kg dry	5.0	1.3	1	11	:■:	O I	, T	•	X
10081-02-6	trans-1,3-Dichloropropene	< 5.0		μg/kg dry	5.0	2.5	1	•	S i 6		•		X
100-41-4	Ethylbenzene	< 5.0		µg/kg dry	5.0	1.7	1	1		i.e.	•		X

Client Project # 08-14218G3 Matrix Soil Collection Date/Time 14-Oct-14 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cen
olatile O	rganic Compounds												
	anic Compounds by SW846 8260 by method SW846 5035A					<u>Initi</u>	al weight: 12.8	37 g					
7-68-3	Hexachlorobutadiene	< 5.0		μg/kg dry	5.0	1.8	1	SW846 8260C	16-Oct-14	17-Oct-14	JEG	1424386	х
591-78-6	2-Hexanone (MBK)	< 50.4		μg/kg dry	50.4	11.6	1				•	•	х
98-82-8	Isopropylbenzene	< 5.0		μg/kg dry	5.0	4,4	1	•		•	•	•	х
99-87-6	4-Isopropyltoluene	< 5.0		μg/kg dry	5.0	3.0	1	•	•	•	•	•	Х
1634-04-4	Methyl tert-butyl ether	< 5.0		μg/kg dry	5.0	2.7	1	•	•		•	•	х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 50.4		μg/kg dry	50.4	15.6	1	•	•	•	•	•	X
75-09-2	Methylene chloride	< 10.1		µg/kg dry	10.1	3.0	1	•	•	•	•	•	Х
91-20-3	Naphthalene	< 5.0		µg/kg dry	5.0	3,4	1	•	•	•	•	•	X
103-65-1	n-Propylbenzene	< 5.0		μg/kg dry	5.0	2.0	1	•	•	•	•	•	X
100-42-5	Styrene	< 5.0		µg/kg dry	5.0	0.3	1	•	•	•	•	•	X
830-20-6	1,1,1,2-Tetrachloroethane	< 5.0		μg/kg dry	5.0	3.0	1	•	•	•	•	•	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 5.0		μg/kg dry	5.0	3.3	1	•	•	•	•	•	X
127-18-4	Tetrachloroethene	< 5.0		μg/kg dry	5.0	3.4	1	•	•	•	•	•	X
108-88-3	Toluene	< 5.0		µg/kg dry	5.0	2,1	1	Ī	•	•	•	•	X
97 - 81-8	1,2,3-Trichlorobenzene	< 5.0		μg/kg dry	5.0	3,6	1	•	•	•	•	•	X
120-82-1	1,2,4-Trichlorobenzene	< 5.0		μg/kg dry	5.0	2.9	1	•	•	•	•	•	Х
108-70-3	1,3,5-Trichlorobenzene	< 5.0		μg/kg dry	5.0	1.2	1	•	•	•	•	•	
71-55-6	1,1,1-Trichloroethane	< 5.0		μg/kg dry	5.0	2.8	1	Ī	•	•	•	•	Х
79-00-5	1,1,2-Trichloroethane	< 5.0		μg/kg dry	5.0	2.0	1	•	•	•	-	•	X
79-01-6	Trichloroethene	< 5.0		μg/kg dry	5.0	1.6	1	•		•	•	•	X
75-69-4	Trichlorofluoromethane (Freon 11)	< 5.0		µg/kg dry	5.0	3.4	1	•	•	•	•	•	X
96-18-4	1,2,3-Trichloropropane	< 5.0		µg/kg dry	5.0	3,0	1	•	•	•	•	•	X
95-63-6	1,2,4-Trimethylbenzene	< 5.0		μg/kg dry	5.0	3.1	1	•	•	•	•	•	X
108-67-8	1,3,5-Trimethylbenzene	< 5.0		µg/kg dry	5.0	3.0	1	•	•	•	•	•	Х
75-01-4	Vinyl chloride	< 5.0		μg/kg dry	5.0	3.4	1	•	•	•	•	•	X
179601-23-1	m,p-Xylene	< 10.1		μg/kg dry	10,1	2.9	1	•	•	•	•	•	X
95-47-6	o-Xylene	< 5.0		μg/kg dry	5.0	3.2	1	•	•	•	-	•	X
109-99-9	Tetrahydrofuran	< 10.1		μg/kg dry	10.1	7.4	1	•	•	•	•	•	
80-29-7	Ethyl ether	< 5.0		μg/kg dry	5.0	4.6	1	•	•	•	•	•	X
994-05-8	Tert-amyl methyl ether	< 5.0		μg/kg dry	5.0	2.9	1	•	•	•	•	•	
637-92-3	Ethyl tert-butyl ether	< 5.0		µg/kg dry	5.0	1.5	1	Ē	•	•	•	•	
108-20-3	Di-isopropyl ether	< 5.0		μg/kg dry	5.0	1.4	1	•		•	•	•	
75-65-0	Tert-Butanol / butyl alcohol	< 50,4		µg/kg dry	50.4	30.0	1	•	•	•	•	•	Х
123-91-1	1,4-Dioxane	< 101		μg/kg dry	101	67.9	1	•	•	•	•	•	X
110-57-8	trans-1,4-Dichloro-2-buten e	< 25.2		µg/kg dry	25.2	12.4	1	•	•	•	•	•	X
64-17-5	Ethanol	< 2020		μg/kg dry	2020	575	1	•	•	•	•	•	
Surrogate rec	overies:												
460-00-4	4-Bromofluorobenzene	94			70-13	0 %		•	•	•	•	•	
2037-2 6- 5	Toluene-d8	100			70-13	0 %		•	•	•	•	•	
7060-07-0	1,2-Dichloroethane-d4	113			70-13	0 %		Ū		•	•	•	
1868-53-7	Dibromofluoromethane	104			70-13	0%		•					

Client Project # 08-14218G3 Matrix Soil Collection Date/Time 14-Oct-14 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	tals by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 2.09		mg/kg dry	2.09	0.741	1	SW846 6010C	21-Oct-14	24-Oct-14	EDT	1424725	X
7440-39-3	Barium	25,0		mg/kg dry	1.39	0.254	1	t∎d	200	27-Oct-14	1	1425320	X
7440-43-9	Cadmium	< 0.697		mg/kg dry	0.697	0.0934	1	a∎c		24-Oct-14	•	1424725	Х
7440-47-3	Chromium	6.19		mg/kg dry	1.39	0.252	1				П	Ť	X
7440-50-8	Copper	8.81		mg/kg dry	1.39	0.191	1			•	3 🖷 23		X
7439-89-6	Iron	7,570		mg/kg dry	5.58	2.53	1	8∎6		27-Oct-14	(10)	1425320	Х
743 9-96- 5	Manganese	232		mg/kg dry	1.39	0.211	1	100		24-Oct-14	•	1424725	х
7440-23-5	Sodium	65.4		mg/kg dry	34.9	7.83	1				Ħ	Ē	X
7440-02-0	Nickel	8.44		mg/kg dry	1,39	0.194	1	17 ≡ 01	(* *)	6.0	•	•	X
7439-92-1	Lead	5.51		mg/kg dry	2,09	0,971	1	g a g		3. 1 1	•	•	X
7440-68-6	Zinc	33.4		mg/kg dry	1.39	0.349	1	(*)	(1)		•	Ť	Х
General C	Chemistry Parameters												
	% Solids	69.2		%			1	SM2540 G Mod.	15-Oct-14	16-Oct-14	TDD	1424283	
	Total Organic Carbon	847		mg/kg	100	44.9	1	Lloyd Kahn	21-Oct-14	21-Oct-14	DJB	1424886	Х
Toxicity C	Characteristics												
<u> Grain Size -</u>	Reported as % retained.												
Prepared	by method General Prepa	<u>aration</u>											
	Fractional % Sieve #4 (>4750µm)	29.4		% Retained			1	ASTM D422	20-Oct-14	21-Oct-14	EEM	1424693	
	Fractional % Sieve #10 (4750-2000µm)	6.63		% Retained			1			•	п	1	
	Fractional % Sieve #20 (2000-850µm)	18.8		% Retained			1	0 0	•	010	; 1	•	
	Fractional % Sieve #40 (850-425µm)	24.6		% Retained)=(1	•	Ĭ	
	Fractional % Sieve #60 (425-250µm)	14.6		% Retained			1		2		п		
	Fractional % Sieve #100 (250-150µm)	3.01		% Retained			1	0.■1	2. 1 :	(J)	•		
	Fractional % Sieve #200 (150-75µm)	2.08		% Retained			1	(*)			•	į.	
	Fractional % Sieve #230 (less than 75µm)	0.929		% Retained			1	\$ 1 €	5. 1 0	1		•	

Client Project # 08-14218G3 <u>Matrix</u> Trip Blank Collection Date/Time 14-Oct-14 08:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	anic Compounds by SW846 8260												
	by method SW846 5035A												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 50.0	D	µg/kg wet	50.0	40.5	50	SW846 8260C	16-Oct-14	16-Oct-14	SJB	1424387	Х
67-64-1	Acetone	< 500	D	µg/kg wet	500	264	50	•					х
107-13-1	Acrylonitrile	< 50.0	D	µg/kg wet	50.0	33.4	50	•			•		Х
71-43-2	Benzene	< 50.0	D	µg/kg wet	50.0	18.0	50	•					Х
108-86-1	Bromobenzene	< 50.0	D	µg/kg wet	50,0	33,7	50	•			7		Х
74-97-5	Bromochloromethane	< 50.0	D	µg/kg wet	50.0	49.6	50	•		•	₩		Х
75-27-4	Bromodichloromethane	< 50.0	D	µg/kg wet	50.0	39.0	50	•					Х
75-25-2	Bromoform	< 50.0	D	µg/kg wet	50.0	47.9	50	•		•			Х
7 4-83-9	Bromomethane	< 100	D	µg/kg wet	100	98.6	50	1		•	•		Х
78-93-3	2-Butanone (MEK)	< 500	D	µg/kg wet	500	169	50				•		х
104-51-8	n-Butylbenzene	< 50.0	D	µg/kg wet	50.0	41.2	50	•		•	π		х
135-98-8	sec-Butylbenzene	< 50.0	D	µg/kg wet	50.0	32.4	50	•		•	•		Х
98-06-6	tert-Butylbenzene	< 50.0	D	µg/kg wet	50.0	35.6	50	•		•	π		Х
75-15-0	Carbon disulfide	< 100	D	µg/kg wet	100	25.0	50	•					х
58-23-5	Carbon tetrachloride	< 50.0	D	µg/kg wet	50.0	24,4	50	•		•	-		х
108-90-7	Chlorobenzene	< 50.0	D	µg/kg wet	50.0	17.5	50	•	•	•	•		Х
75-00-3	Chloroethane	< 100	D	µg/kg wet	100	43.2	50	•		•	•		Х
67-06- 3	Chloroform	< 50.0	D	µg/kg wet	50.0	26.0	50	•	•	•	•		Х
74-87-3	Chloromethane	< 100	D	µg/kg wet	100	98.0	50	•		•	•		х
95-49-8	2-Chlorotoluene	< 50.0	D	μg/kg wet	50.0	22,4	50	•	•	•	•		X
106-43-4	4-Chlorotoluene	< 50.0	D	µg/kg wet	50.0	26.4	50	•			•	•	X
96-12-8	1,2-Dibromo-3-chloroprop ane	< 100	D	µg/kg wet	100	65.0	50	•	•	•	•	•	X
124-48-1	Dibromochloromethane	< 50.0	D	µg/kg wet	50.0	18.0	50	•	•	•	7	•	Х
106-93-4	1,2-Dibromoethane (EDB)	< 50.0	D	µg/kg wet	50.0	11.4	50	•	•	•	•	•	Х
74-95-3	Dibromomethane	< 50.0	D	µg/kg wet	50.0	27.8	50	•	•	•	•	•	X
95-50-1	1,2-Dichlorobenzene	< 50.0	D	µg/kg wet	50.0	23,4	50		•	•	•	•	X
541-73-1	1,3-Dichlorobenzene	< 50.0	D	µg/kg wet	50.0	35.6	50	•	•	•	•	•	X
108-46-7	1,4-Dichlorobenzene	< 50.0	D	µg/kg wet	50.0	27.6	50	•	•	•	•	•	Х
75-71- 8	Dichlorodifluoromethane (Freon12)	< 100	D	µg/kg wet	100	36.4	50	•	•	•	7	•	X
75-84-9	1,1-Dichloroethane	< 50.0	D	µg/kg wet	50.0	19.5	50	•	•	•	•	•	X
107-06-2	1,2-Dichloroethane	< 50.0	D	µg/kg wet	50.0	25.4	50		•	•	π.	•	X
75-35-4	1,1-Dichloroethene	< 50.0	D	µg/kg wet	50.0	33.4	50	•	•	•	•	•	X
156-59-2	cis-1,2-Dichloroethene	< 50.0	D	µg/kg wet	50.0	17.0	50		•	•	₩.	•	X
156-60-5	trans-1,2-Dichloroethene	< 50.0	D	µg/kg wet	50.0	34.4	50	•	•	•	π	•	X
7 8-8 7-5	1,2-Dichloropropane	< 50.0	D	µg/kg wet	50.0	22.6	50	•	•	•	π	•	X
142-28-9	1,3-Dichloropropane	< 50.0	D	µg/kg wet	50.0	17.5	50	•	•	•	-	•	X
594-20-7	2,2-Dichloropropane	< 50.0	D	µg/kg wet	50.0	31,5	50	•	•	•	π		X
563-58-6	1,1-Dichloropropene	< 50.0	D	µg/kg wet	50.0	30,2	50	•	•	•	•	•	X
10061-01-5	cis-1,3-Dichloropropene	< 50.0	D	µg/kg wet	50.0	13.2	50	•	•	•	=	•	X
10061-02-6	trans-1,3-Dichloropropene	< 50.0	D	µg/kg wet	50.0	25.3	50	•	•	•	7	•	X
100-41-4	Ethylbenzene	< 50.0	D	µg/kg wet	50.0	16.8	50		•	•	•	•	X
87-68- 3	Hexachlorobutadiene	< 50.0	D	µg/kg wet	50.0	18.2	50		•	•	•	•	X
591-78-6	2-Hexanone (MBK)	< 500	D	μg/kg wet	500	115	50	•			π.		х

64-17-5	Ethanol	< 20000	D	µg/kg wet	20000	5700	50	•	•	•		
Surrogate reco	overles:											
460-00-4	4-Bromofluorobenzene	106			70-130 S	%		•	•	•	•	•
2037-28-5	Toluene-d8	100			70-130	%		•	•	•	7	•
17060-07-0	1,2-Dichloroethane-d4	111			70-130 9	%		•	•	•	•	•
1868-53-7	Dibromofluoromethane	104			70-130 9	%		•	•	•	7	•

50.0

50.0

500

1000

250

14.8

13.6

298

674

123

50

50

50

50

50

X

Х

X

Re-analysis of Volatile Organic Compounds by SW846

Ethyl tert-butyl ether

Di-isopropyl ether

alcohol 1,4-Dioxane

Tert-Butanol / butyl

trans-1,4-Dichloro-2-buten

< 50.0

< 50.0

< 500

< 1000

< 250

D

D

D

D

D

µg/kg wet

ua/ka wei

µg/kg wet

µg/kg wet

μg/kg wet

8260

637-92-3

108-20-3

75-65-0

123-91-1

110-57-6

Prepared by method SW846 5035A Soil (low level)

Client Project # 08-14218G3 <u>Matrix</u> Trip Blank Collection Date/Time 14-Oct-14 08:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	organic Compounds												
	of Volatile Organic Compounds b	y SW846											
<u>3260</u>		0 11 (1 - 1 - 1)											
	by method SW846 5035A	-											
91-78-8	2-Hexanone (MBK)	< 50.0		µg/kg wet	50.0	11.5	1	SW846 8260C	17-Oct-14	18-Oct-14	JEG "	1424512)
98-82-8 	Isopropylbenzene	< 5.0		µg/kg wet	5.0	4.4	1	•	•	•		•)
9-87-6	4-Isopropyltoluene	< 5.0		µg/kg wet	5.0	3,0	1		•	•	-	•	X
634-04-4	Methyl tert-butyl ether	< 5.0		µg/kg wet	5.0	2.6	1	•	•	•	•	•	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 50.0		µg/kg wet	50,0	15,5	1	•	•	•	"	•	Х
75-09-2	Methylene chloride	< 10,0		µg/kg wet	10.0	3.0	1	•	•	•	•	•	Х
31-20-3	Naphthalene	< 5.0		µg/kg wet	5.0	3.4	1	•	•	•	•	•	Х
103-65-1	n-Propylbenzene	< 5.0		µg/kg wet	5.0	2.0	1	•	•	Ī	π	•	Х
100-42-5	Styrene	< 5.0		µg/kg wet	5.0	0.3	1	•	•	•	•	•	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 5.0		µg/kg wet	5.0	3.0	1	•	•	•	•	•	X
9-34-5	1,1,2,2-Tetrachloroethane	< 5.0		µg/kg wet	5.0	3.3	1	•	•	•	•	•	Х
127-18-4	Tetrachloroethene	< 5.0		µg/kg wet	5.0	3.4	1	•	•	•	•	•	X
108-88-3	Toluene	< 5.0		µg/kg wet	5.0	2.1	1	•	•	•	•	•	Х
17-61-6	1,2,3-Trichlorobenzene	< 5.0		µg/kg wet	5.0	3.6	1	•	•	•	π	•	Х
20-82-1	1,2,4-Trichlorobenzene	< 5.0		µg/kg wet	5.0	2.9	1	•	•	•	•	•	X
08-70-3	1,3,5-Trichlorobenzene	< 5.0		µg/kg wet	5.0	1.2	1	•	•	•	=	•	
1-55-6	1,1,1-Trichloroethane	< 5.0		µg/kg wet	5.0	2.8	1	•	•	•	•	•	Х
9-00-5	1,1,2-Trichloroethane	< 5.0		µg/kg wet	5.0	2.0	1	•	•	•	•	•	Х
9-01-6	Trichloroethene	< 5.0		µg/kg wet	5.0	1.6	1	•	•	•	=	•	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 5.0		µg/kg wet	5.0	3.4	1	•	•	•	п	•	x
96-18-4	1,2,3-Trichloropropane	< 5.0		µg/kg wet	5.0	3.0	1	•		•	-	•	X
15-63-6	1,2,4-Trimethylbenzene	< 5.0		µg/kg wet	5,0	3,1	1	•		•	=	•	Х
08-67-8	1,3,5-Trimethylbenzene	< 5.0		µg/kg wet	5.0	3.0	1	•		•	•	•	Х
75-01-4	Vinyl chloride	< 5.0		µg/kg wet	5.0	3.3	1	•		•	•	•	х
179601-23-1	m,p-Xylene	< 10.0		µg/kg wet	10.0	2.9	1			•	•	•	х
95-47-6	o-Xylene	< 5.0		μg/kg wet	5.0	3.2	1	•		•	π.		х
109-99-9	Tetrahydrofuran	< 10.0		µg/kg wet	10.0	7.3	1				-		
80-29-7	Ethyl ether	< 5.0		µg/kg wet	5.0	4.5	1	•		•	π.		Х
994-05-8	Tert-amyl methyl ether	< 5.0		µg/kg wet	5.0	2.9	1	•				•	
637-92-3	Ethyl tert-butyl ether	< 5.0		µg/kg wet	5.0	1.5	1				•	•	
108-20-3	Di-isopropyl ether	< 5.0		µg/kg wet	5.0	1.4	1			•	-		
75-65-0	Tert-Butanol / butyl	< 50.0		µg/kg wet	50,0	29,8	1	•	•	•	•	•	x
123-91-1	1,4-Dioxane	< 100		µg/kg wet	100	67.4	1	•		•	•		х
110-57-6	trans-1,4-Dichloro-2-buten	< 25.0		µg/kg wet	25.0	12.3	1	•	•	•	7	•	x
34-17-5	Ethanol	< 2000		µg/kg wet	2000	570	1				•		
Surrogate rec				LA. B.u.		-	•						
160-00-4	4-Bromofluorobenzene	96			70-13	0%		•		•	•		
037-26-5	Toluene-d8	102			70-13							•	
7060-07-0	1,2-Dichloroethane-d4	113			70-13								
	Dibromofluoromethane	103			70-13			_			_		

Client Project # 08-14218G3 Matrix
Surface Water

Collection Date/Time 14-Oct-14 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Anatyzea	Anatyst	Batch	Cei
Volatile O	rganic Compounds												
	anic Compounds by SW846 8260 by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		µg/l	1.0	0.7	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	Х
17-64- 1	Acetone	< 10.0		µg/l	10.0	3.6	1	•	•	•	π	•	Х
07-13-1	Acrylonitrile	< 0.5		µg/l	0.5	0.5	1	•	•	•	7	•	X
1-43-2	Benzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	>
08-86-1	Bromobenzene	< 1.0		µg/l	1,0	0,3	1	•	•	•	=	•)
4-97-5	Bromochloromethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	π	•)
5-27-4	Bromodichloromethane	< 0.5		µg/l	0.5	0.4	1	•	•	•	7	•	,
5-25-2	Bromoform	< 1.0		µg/l	1.0	0.6	1	•	•	•	π	•)
4-83-9	Bromomethane	< 2.0		µg/l	2.0	0.5	1	•	•	•	#	•)
78-93-3	2-Butanone (MEK)	< 10.0		µg/l	10.0	3.1	1	•	•	•	-	•	X
04-51-8	n-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	7	•)
35-98-8	sec-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	π	•)
18-06-6	tert-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	π	•)
5-15-0	Carbon disulfide	< 2.0		µg/l	2.0	0.7	1	•	•	•	•	•	,
8-23-5	Carbon tetrachloride	< 1.0		µg/l	1.0	0.4	1	•	•	•	=	•)
08-90-7	Chlorobenzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	π.	•)
5-00-3	Chloroethane	< 2.0		µg/l	2.0	0.7	1	•	•	•	=	•	7
7 -86- 3	Chloroform	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	2
4-87-3	Chloromethane	< 2.0		µg/l	2.0	0.5	1	•	•	•	7	•	7
5-49-8	2-Chlorotoluene	< 1.0		µg/l	1.0	0,4	1	•	•	•	•	•	2
06-43-4	4-Chlorotoluene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•)
8-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		µg/l	2.0	0.5	1	•	•	•	,	•)
24-48-1	Dibromochloromethane	< 0.5		µg∕l	0.5	0.4	1	•	•	•	7	•	,
06-93-4	1,2-Dibromoethane (EDB)	< 0.5		µg/l	0.5	0.3	1	•	•	•	•	•	,
4-95-3	Dibromomethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	,
15-50-1	1,2-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	,
41-73-1	1,3-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•)
06-46-7	1,4-Dichlorobenzene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•)
75-71 -8	Dichlorodifluoromethane (Freon12)	< 2.0		µg/l	2.0	0.6	1	•	•	•	,	•)
5-84-8	1,1-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	2
07-06-2	1,2-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•		•)
5-35-4	1,1-Dichloroethene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	2
56-59-2	cis-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.4	1	•	•	•	=	•	,
56-60-5	trans-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	2
8-8 7-5	1,2-Dichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•	7	•	2
42-28-9	1,3-Dichloropropane	< 1.0		µg/l	1.0	0.2	1	•	•	•	π	•	2
94-20-7	2,2-Dichloropropane	< 1.0		µg/l	1.0	0,3	1	•	•	•	п	•	2
63-58-6	1,1-Dichloropropene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	2
0061-01-5	cis-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.4	1	•				•	
0061-02-6	trans-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	,
00-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1			•	₩		,
77-68-3	Hexachlorobutadiene	< 0.5		µg/l	0.5	0.4	1	•			•)
91-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2,0	1						,

Client Project # 08-14218G3 Matrix
Surface Water

Collection Date/Time 14-Oct-14 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	organic Compounds												
	anic Compounds by SW846 8260												
	by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		µg/l	1.0	0.5	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	Х
9 9-8 7-6	4-Isopropyttoluene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	Х
1634-04-4	Methyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0	2.5	1	•	•	•	•	•	X
75-09-2	Methylene chloride	< 2.0		µg/l	2,0	0,5	1	•	•	•	=	•	X
91-20-3	Naphthalene	< 1.0		µg∕l	1.0	0.5	1	•	•	•	•	•	Х
103-65-1	n-Propylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	7	•	X
100-42-5	Styrene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	X
127-18-4	Tetrachloroethene	< 1.0		µg/l	1.0	0.6	1	•	•	•	п	•	X
108-88-3	Toluene	< 1.0		µg∕l	1.0	0.3	1	•	•	•	π	•	Х
87-61-6	1,2,3-Trichlorobenzene	< 1.0		µg/l	1.0	0.8	1	•	•	•	=	•	X
120-82-1	1,2,4-Trichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
108-70-3	1,3,5-Trichlorobenzene	< 1.0		µg/l	1.0	0.6	1	•	•	•	-	•	
71-55-6	1,1,1-Trichloroethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
79-00-5	1,1,2-Trichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	7	•	Х
79-01-6	Trichloroethene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		µg/l	1.0	0.8	1	•	•	•	7	•	X
96-18-4	1,2,3-Trichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	•	•	•	•	•	X
108-67-8	1,3,5-Trimethylbenzene	< 1.0		µg/l	1,0	0.4	1	•	•	•	•	•	Х
75-01-4	Vinyl chloride	< 1.0		µg/l	1.0	1.0	1	•	•	•	•	•	Х
179601-23-1	m,p-Xylene	< 2.0		µg/l	2.0	0.4	1	•	•	•	•	•	Х
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	•	•	•	•	•	X
109-99-9	Tetrahydrofuran	< 2.0		µg/l	2,0	0.8	1	•	•	•	π	•	
60-29-7	Ethyl ether	< 1.0		µg/l	1.0	0.5	1	•	•	•	-	•	X
994-05-B	Tert-amyl methyl ether	< 1.0		µg/l	1.0	0.3	1	•	•	•	-	•	Х
637-92-3	Ethyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1	•	•	•	=	•	Х
108-20-3	Di-isopropyl ether	< 1.0		µg/l	1.0	0.3	1	•		•	•	•	Х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		µg/l	10.0	8.9	1	•	•	•	•	•	x
123-91-1	1,4-Dioxane	< 20.0		µg/l	20.0	14.6	1	•	•	•	•	•	Х
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		µg/l	5.0	1.0	1	•	•	•	п	•	X
64-17- 5	Ethanol	< 400		µg/l	400	80.8	1	•	•	•	•	•	Х
Surrogate rec	coveries:												
460-00-4	4-Bromofluorobenzene	101			70-13	0 %		•	•	•	•	•	
2037-28-5	Toluene-d8	98			70-13	0 %		•	•	•	п	•	
17060-07-0	1,2-Dichloroethane-d4	107			70-13	0 %		•		•	•	•	
1868-53-7	Dibromofluoromethane	86			70-13	n ek							

Client Project # 08-14218G3 Matrix
Surface Water

Collection Date/Time 14-Oct-14 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	1 геригеи	Analyzed	Anatyst	Daten	Cei
Volatile O	rganic Compounds												
	anic Compounds by SW846 8260 by method SW846 5030 V												
6-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		µg/l	1.0	0.7	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	Х
7- 64 -1	Acetone	< 10.0		µg/l	10.0	3.6	1	•	•	•	π	•	Х
07-13-1	Acrylonitrile	< 0.5		µg/l	0.5	0.5	1	•	•	•	=	•	X
-43-2	Benzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	-	•)
08-86-1	Bromobenzene	< 1.0		µg/l	1,0	0,3	1	•	•	•	=	•	7
1-97-5	Bromochloromethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	=	•	:
5-27-4	Bromodichloromethane	< 0.5		µg/l	0.5	0.4	1	•	•	•	7	•	2
5-25-2	Bromoform	< 1.0		µg/l	1.0	0.6	1	•	•	•	•	•	2
4-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	•	•	•	•	•	7
8-93-3	2-Butanone (MEK)	< 10.0		µg/l	10.0	3.1	1	•	•	•	•	•	,
04-51-8	n-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	2
35-98-8	sec-Butylbenzene	< 1.0		µg∕l	1.0	0.4	1	•	•	•	•	•	,
8-06-6	tert-Butylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	π	•	2
5-15-0	Carbon disulfide	< 2.0		µg/l	2.0	0.7	1	•	•	•	π.	•	
3-23-5	Carbon tetrachloride	< 1.0		µg/l	1.0	0.4	1	•	•	•	-	•	,
08-90-7	Chlorobenzene	< 1.0		µg/l	1.0	0.3	1	•	•	•		•	
-00-3	Chloroethane	< 2.0		µg/l	2.0	0.7	1	•	•	•	=	•	
-86- 3	Chloroform	< 1.0		µg/l	1.0	0.5	1	•	•	•	=	•	
1-87-3	Chloromethane	< 2.0		µg/l	2.0	0.5	1	•		•	=	•	
5-49-8	2-Chlorotoluene	< 1.0		µg/l	1.0	0.4	1	•		•	•	•	
06-43-4	4-Chlorotoluene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	,
3-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		µg/l	2.0	0.5	1	•	•	•	•	•	
24-48-1	Dibromochloromethane	< 0.5		µg/l	0.5	0.4	1	•	•	•	π.	•	
06-93-4	1,2-Dibromoethane (EDB)	< 0.5		µg/l	0.5	0.3	1	•	•	•	-	•	
4-95-3	Dibromomethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	=	•	,
5-50-1	1,2-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•		•	•	•	
41-73-1	1,3-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	=	•	,
06-46-7	1,4-Dichlorobenzene	< 1.0		µg/l	1.0	0.5	1	•	•	•	-	•	:
5-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		µg/l	2.0	0.6	1	•	•	•	*	•	;
i-84-8	1,1-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	
07-06-2	1,2-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	,
5-35-4	1,1-Dichloroethene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	,
56-59-2	cis-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.4	1	•	•	•	=	•	,
56-60-5	trans-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.5	1	•	•	•		•	
3-87-5	1,2-Dichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•	п		
12-28-9	1,3-Dichloropropane	< 1.0		µg/l	1.0	0.2	1	•	•	•	=	•	:
34-20-7	2,2-Dichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	,
63-58-6	1,1-Dichloropropene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	
0061-01-5	cis-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.4	1	•				•	
0061-02-6	trans-1,3-Dichloropropene	< 0.5		µg/l	0.5	0.5	1		•	•	•	•	
00-41-4	Ethylbenzene	< 1.0		µg/l	1.0	0.4	1	•		•			
7-68-3	Hexachlorobutadiene	< 0.5		µg/l	0.5	0.4	1					•	
91-78-6	2-Hexanone (MBK)	< 10.0		hā _l i	10.0	2,0	1					_	

Client Project # 08-14218G3 Matrix
Surface Water

Collection Date/Time 14-Oct-14 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
	anic Compounds by SW846 8260												
	by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		µg/l	1.0	0.5	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	Х
9 9-8 7-6	4-Isopropyltoluene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•		Х
1634-04-4	Methyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0	2.5	1	•	•	•	•	•	Х
75-09-2	Methylene chloride	< 2.0		µg/l	2,0	0,5	1	•	•	•	=	•	X
91-20-3	Naphthalene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	X
103-65-1	n-Propylbenzene	< 1.0		µg/l	1.0	0.4	1	ı	•	•	•	•	X
100-42-5	Styrene	< 1.0		µg/l	1.0	0.4	1	Ī	•	•	•	•	X
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	X
127-18-4	Tetrachloroethene	< 1.0		µg/l	1.0	0.6	1	•	•	•	π	•	Х
108-88-3	Toluene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	Х
87-61-6	1,2,3-Trichlorobenzene	< 1.0		µg/l	1.0	0.8	1	•	•	•	7	•	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
108-70-3	1,3,5-Trichlorobenzene	< 1.0		µg/l	1.0	0.6	1	•	•	•	•	•	
71-55-6	1,1,1-Trichloroethane	< 1.0		µg/l	1.0	0.4	1	i	•	•	•	•	Х
79-00-5	1,1,2-Trichloroethane	< 1.0		µg/l	1.0	0.3	1	Ē	•		π	•	Х
79-01-6	Trichloroethene	< 1.0		µg/l	1.0	0.4	1	Ī	•	•	π	•	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		µg/l	1.0	0.8	1	•	•	Ī	7	•	X
96-18-4	1,2,3-Trichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•		•	X
95-63-6	1,2,4-Trimethylbenzene	< 1.0		µg/l	1.0	0.3	1	•		•	-	•	Х
108-67-8	1,3,5-Trimethylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	-	•	Х
75-01-4	Vinyl chloride	< 1.0		µg/l	1.0	1.0	1	•		•	=	•	Х
179601-23-1	m,p-Xylene	< 2.0		µg/l	2.0	0.4	1	•	•	•	•		Х
95-47-6	o-Xylene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•		Х
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2,0	0,8	1	ī		•			
60-29-7	Ethyl ether	< 1.0		µg/l	1.0	0.5	1	ı		•	-		Х
994-05-8	Tert-amyl methyl ether	< 1.0		µg/l	1.0	0.3	1	•		•	-		Х
637-92-3	Ethyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1				=		х
108-20-3	Di-isopropyl ether	< 1.0		µg/l	1.0	0.3	1				•		X
75-65-0	Tert-Butanol / butyl	< 10.0		µg/l	10.0	8.9	1	•	•	•	•	•	x
123-91-1	1,4-Dioxane	< 20.0		µg/l	20.0	14,6	1	•			-		х
110-57-6	trans-1,4-Dichloro-2-buten	< 5.0		µg/l	5.0	1.0	1	•	•	•	=	•	X
64-17-5	Ethanol	< 400		µg/l	400	80.8	1	•		•	•	•	х
Surrogate rec	coveries:												
460-00-4	4-Bromofluorobenzene	98			70-13	0 %		•	•	•	•	•	
2037-28-5	Toluene-d8	99			70-13	0 %		Ī	•	•	7	•	
17060-07-0	1,2-Dichloroethane-d4	105			70-13	0 %		•	•	•	₩	•	
1868-53-7	Dibromofluoromethane	86			70-13	n &		•					

Received

14-Oct-14

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	anic Compounds by SW846 8260												
	by method SW846 5030 V						_						
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		µg/l	1.0	0.7	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	Х
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	•		•			х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	•			•		х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1			•	•		х
108-86-1	Bromobenzene	< 1.0		μ g/ Ι	1,0	0,3	1				•		х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1				•		х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1				•		Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1				•		х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	•	•		•		Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1				•		X
104-51-8	n-Butylbenzene	< 1.0		μ g/ l	1.0	0.4	1				п		Х
135-98-8	sec-Butylbenzene	< 1.0		µg∕l	1.0	0.4	1				•		X
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1						X
75-15-0	Carbon disulfide	< 2.0		µg/l	2,0	0.4	1						X
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.7	1				-		X
108-90-7	Chlorobenzene	< 1.0 < 1.0			1.0	0.4	1						X
75-00-3	Chloroethane	< 2.0		µg/l				•					
				µg/l	2.0	0.7	1						X
67-86-3 74-67-0	Chloroform	< 1.0		µg/l	1.0	0.5	1				7		X
74-87-3	Chloromethane	< 2.0		µg/l	2.0	0.5	1		-				X
95-49-8	2-Chlorotoluene	< 1.0		µg/l	1.0	0.4	1		-				X
108-43-4	4-Chlorotoluene	< 1.0		μg/l -	1.0	0.3	1	-	-				X
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		µg/l	2.0	0.5	1	•	•	•	"	•	Х
124-48-1	Dibromochloromethane	< 0.5		µg/l	0.5	0.4	1	•	•	•	•	•	X
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		µg/l	0.5	0.3	1	•	•	•	•	•	Х
74-95-3	Dibromomethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
95-50-1	1,2-Dichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	•	•	•	•	•	Х
108-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	•	•	•	•	•	х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		µg/l	2.0	0.6	1	•	•	•	7	•	X
75-34-3	1,1-Dichloroethane	< 1.0		µg/l	1.0	0.3	1			•			х
107-06-2	1,2-Dichloroethane	< 1.0		µg/l	1.0	0.3	1				•		х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1				•		х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1				•		Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/I	1.0	0.5	1				•		Х
7 8-8 7-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	•	•				Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1						X
594-20-7	2,2-Dichloropropane	< 1.0		hā) hā.	1.0	0.3	1				•		X
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1				•		X
10061-01-5	cis-1,3-Dichloropropene	< 0.5			0.5	0.4	1				•		x
10061-02-6	trans-1,3-Dichloropropene	< 0.5		µg/l	0.5						•		
100-41-4				µg/l		0.5	1	-			7		X
	Ethylbenzene	< 1.0		µg/l	1.0	0.4	1	•				•	X
87-68-3	Hexachlorobutadiene	< 0.5		µg/l	0.5	0.4	1	•	-	-	-	-	Х

Client Project # 08-14218G3 <u>Matrix</u> Trip Blank Collection Date/Time 14-Oct-14 08:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Anatyzea	Anatyst	Batch	Cer
Volatile O	organic Compounds												
	anic Compounds by SW846 8260												
	by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		µg/l	1.0	0.5	1	SW846 8260C	16-Oct-14	16-Oct-14	NAA	1424392	Х
9 9-8 7-6	4-Isopropyttoluene	< 1.0		µg/l	1.0	0.5	1	•	•	•	•	•	Х
1634-04-4	Methyl tert-butyl ether	< 1.0		hâ⁄i	1.0	0.4	1	•	•	•	•	•	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0	2.5	1	•	•	•	*	•	X
75-09-2	Methylene chloride	< 2.0		µg/l	2,0	0,5	1	•	•	•	π	•	Х
91-20-3	Naphthalene	< 1.0		µg∕l	1.0	0.5	1	•	•	•	•	•	Х
103-65-1	n-Propylbenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	#	•	X
100-42-5	Styrene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•		X
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		µg∕l	1.0	0.4	1	•	•	•	•	•	X
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		µg/l	0.5	0.5	1	•	•	•	•	•	X
127-18-4	Tetrachloroethene	< 1.0		µg/l	1.0	0.6	1	•	•	•	п	•	X
108-88-3	Toluene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
87-61-6	1,2,3-Trichlorobenzene	< 1.0		µg/l	1.0	0.8	1	•	•	•	π	•	X
120-82-1	1,2,4-Trichlorobenzene	< 1.0		µg/l	1.0	0.4	1	•	•	•	π	•	X
108-70-3	1,3,5-Trichlorobenzene	< 1.0		µg/l	1.0	0.6	1	•	•	•	•	•	
71-55-6	1,1,1-Trichloroethane	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	X
79-00-5	1,1,2-Trichloroethane	< 1.0		µg/l	1.0	0.3	1	•	•	•	7	•	Х
79-01-6	Trichloroethene	< 1.0		µg/l	1.0	0.4	1	•	•	•	•	•	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		µg/l	1.0	0.8	1	•	•	•	π	•	X
96-18-4	1,2,3-Trichloropropane	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
95-63-6	1,2,4-Trimethylbenzene	< 1.0		µg/l	1.0	0.3	1	•	•	•	•	•	X
108-67-8	1,3,5-Trimethylbenzene	< 1.0		µg/l	1,0	0.4	1	•	•	•	•	•	Х
75-01-4	Vinyl chloride	< 1.0		µg/l	1.0	1.0	1	•	ı	•	71	•	Х
179601-23-1	m,p-Xylene	< 2.0		µg/l	2.0	0.4	1	•	•	•	π	•	Х
95-47-6	o-Xylene	< 1.0		µg/l	1.0	0.4	1	•	•	•	=	•	Х
109-99-9	Tetrahydrofuran	< 2.0		µg/l	2.0	0.8	1	•		•	•	•	
60-29-7	Ethyl ether	< 1.0		µg/l	1.0	0.5	1	•		•	•	•	Х
994-05-B	Tert-amyl methyl ether	< 1.0		µg/l	1.0	0.3	1	•		•	•	•	Х
637-92-3	Ethyl tert-butyl ether	< 1.0		µg/l	1.0	0.4	1	•	•	•	•		Х
108-20-3	Di-isopropyl ether	< 1.0		µg/l	1.0	0.3	1		•	•	•	•	Х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		µg/l	10.0	8.9	1	•	•	•	•	•	X
123-91-1	1,4-Dioxane	< 20.0		µg/l	20.0	14.6	1		•	•	•	•	X
110-57-6	trans-1,4-Dichloro-2-buten	< 5.0		µg/l	5.0	1.0	1	•	•	•	п	•	X
64-17-5	Ethanol	< 400		µg/l	400	80.8	1	•	•	•	•	•	х
Surrogate rec	coveries:												
460-00-4	4-Bromofluorobenzene	99			70-13	0%		•	•	•	•	•	
2037-26-5	Toluene-d8	99			70-13	0%			•	•	7	•	
17060-07-0	1,2-Dichloroethane-d4	102			70-13			•		•	•		
1868-53-7	Dibromofluoromethane	99			70-13			-					

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424386 - SW846 5035A Soil (low level)										
Blank (1424386-BLK1)					Pre	pared & Analy	zed: 16-Oct-14			
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 5.0		μg/kg wet	5.0						
Acetone	< 50.0		μg/kg wet	50.0						
Acrylonitrile	< 5.0		μg/kg wet	5.0						
Benzene	< 5.0		μg/kg wet	5.0						
Bromobenzene	< 5.0		μg/kg wet	5.0						
Bromochloromethane	< 5.0		μg/kg wet	5.0						
Bromodichloromethane	< 5.0		μg/kg wet	5.0						
Bromoform	< 5.0		μg/kg wet	5.0						
Bromomethane	< 10.0		μg/kg wet	10.0						
2-Butanone (MEK)	< 50.0		μg/kg wet	50.0						
n-Butylbenzene	< 5.0		μg/kg wet	5.0						
sec-Butylbenzene	< 5.0		µg/kg wet	5.0						
tert-Butylbenzene	< 5.0		μg/kg wet	5.0						
Carbon disulfide	< 10.0		µg/kg wet	10.0						
Carbon tetrachloride	< 5.0		µg/kg wet	5.0						
Chlorobenzene	< 5.0		μg/kg wet	5.0						
Chloroethane	< 10.0		µg/kg wet	10.0						
Chloroform	< 5.0		µg/kg wet	5.0						
Chloromethane	< 10.0		hayka mor	10.0						
2-Chlorotoluene	< 5.0		hayka mer hayka mer	5.0						
4-Chlorotoluene	< 5.0		hg/kg wet	5.0						
1,2-Dibromo-3-chloropropane	< 10.0		pg/kg wet	10.0						
Dibromochioromethane	< 5.0		hãykã mạr	5.0						
1,2-Dibromoethane (EDB)	< 5.0		hg/kg wet	5.0						
Dibromomethane	< 5.0			5.0						
1,2-Dichlorobenzene	< 5.0		µg/kg wet	5.0 5.0						
1,3-Dichlorobenzene			µg/kg wet							
	< 5.0		µg/kg wet	5.0						
1,4-Dichlorobenzene	< 5.0		μg/kg wet	5.0						
Dichlorodifluoromethane (Freon12)	< 10.0		μg/kg wet	10.0						
1,1-Dichloroethane	< 5.0		μg/kg wet	5.0						
1,2-Dichloroethane	< 5.0		µg/kg wet	5.0						
1,1-Dichloroethene	< 5.0		μg/kg wet	5.0						
cis-1,2-Dichloroethene	< 5.0		μg/kg wet	5.0						
trans-1,2-Dichloroethene	< 5.0		µg/kg wet	5.0						
1,2-Dichloropropane	< 5.0		µg/kg wet	5.0						
1,3-Dichloropropane	< 5.0		µg/kg wet	5.0						
2,2-Dichloropropane	< 5.0		µg/kg wet	5.0						
1,1-Dichloropropene	< 5.0		µg/kg wet	5.0						
cis-1,3-Dichloropropene	< 5.0		µg/kg wet	5.0						
trans-1,3-Dichloropropene	< 5.0		µg/kg wet	5.0						
Ethylbenzene	< 5.0		µg/kg wet	5.0						
Hexachlorobutadiene	< 5.0		µg/kg wet	5.0						
2-Hexanone (MBK)	< 50.0		µg/kg wet	50.0						
Isopropylbenzene	< 5.0		µg/kg wet	5.0						
4-isopropyltoluene	< 5.0		μg/kg wet	5.0						
Methyl tert-butyl ether	< 5.0		µg/kg wet	5.0						
4-Methyl-2-pentanone (MIBK)	< 50.0		µg/kg wet	50.0						
Methylene chloride	< 10.0		μ g/kg w et	10.0						
Naphthalene	< 5.0		µg/kg wet	5.0						
n-Propylbenzene	< 5.0		µg/kg wet	5.0						
Styrene	< 5.0		μ g/k g wet	5.0						
1,1,1,2-Tetrachloroethane	< 5.0		μg/kg wet	5.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
tch 1424386 - SW846 5035A Soil (low level)										
Blank (1424386-BLK1)					Pre	pared & Analy	zed: 16-Oct-14			
1,1,2,2-Tetrachloroethane	< 5.0		μg/kg wet	5.0						
Tetrachloroethene	< 5.0		μg/kg wet	5.0						
Toluene	< 5.0		μg/kg wet	5.0						
1,2,3-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,2,4-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,3,5-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,1,1-Trichloroethane	< 5.0		μg/kg wet	5.0						
1,1,2-Trichloroethane	< 5.0		μg/kg wet	5.0						
Trichloroethene	< 5.0		μg/kg wet	5.0						
Trichlorofluoromethane (Freon 11)	< 5.0		μg/kg wet	5.0						
1,2,3-Trichloropropane	< 5.0		μg/kg wet	5.0						
1,2,4-Trimethylbenzene	< 5.0		μg/kg wet	5.0						
1,3,5-Trimethylbenzene	< 5.0		μg/kg wet	5.0						
Vinyl chloride	< 5.0		µg/kg wet	5.0						
m,p-Xylene	< 10.0		µg/kg wet	10.0						
o-Xylene	< 5.0		µg/kg wet	5.0						
Tetrahydrofuran	< 10.0		µg/kg wet	10.0						
Ethyl ether	< 5.0		µg/kg wet	5.0						
Tert-amyl methyl ether	< 5.0		hayka mer	5.0						
Ethyl tert-butyl ether	< 5.0		hayka mer hayka mer	5.0						
Di-isopropyl ether	< 5.0			5.0						
Tert-Butanol / butyl alcohol	< 50.0		µg/kg wet	50.0						
			µg/kg wet							
1,4-Dioxane	< 100		μg/kg wet	100						
trans-1,4-Dichloro-2-butene Ethanol	< 25.0		μg/kg wet	25.0						
	< 2000		µg/kg wet	2000						
Surrogate: 4-Bromofluorobenzene	49.5		µg/kg wet		50.0		99	70-130		
Surrogate: Toluene-d8	49.9		µg/kg wet		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	56.6		µg/kg wet		50.0		113	70-130		
Surrogate: Dibromoftuoromethane	50.2		µg/kg wet		50.0		100	70-130		
LCS (1424386-BS1)					<u>Pre</u>	pared & Analy	zed: 16-Oct-14			
1,1,2-Trichlorotrifluoroethane (Freon 113)	18.9		μg/kg wet		20.0		94	70-130		
Acetone	21.2		µg/kg wet		20.0		106	70-130		
Acrylonitrile	19.3		µg/kg wet		20.0		96	70-130		
Benzene	19.6		µg/kg wet		20.0		98	70-130		
Bromobenzene	20.1		μg/kg wet		20.0		100	70-130		
Bromochloromethane	19.6		µg/kg wet		20.0		98	70-130		
Bromodichloromethane	19.2		µg/kg wet		20.0		96	70-130		
Bromoform	19.8		µg/kg wet		20.0		99	70-130		
Bromomethane	21,4		µg/kg wet		20.0		107	70-130		
2-Butanone (MEK)	16.0		μg/kg wet		20.0		80	70-130		
n-Butylbenzene	19.9		μg/kg wet		20,0		99	70-130		
sec-Butylbenzene	20.4		μg/kg wet		20.0		102	70-130		
tert-Butylbenzene	20.7		μg/kg wet		20.0		104	70-130		
Carbon disulfide	19.6		µg/kg wet		20.0		98	70-130		
Carbon tetrachloride	19.2		µg/kg wet		20,0		96	70-130		
Chlorobenzene	19.7		μg/kg wet		20.0		99	70-130		
Chloroethane	19.2		μg/kg wet		20.0		96	70-130		
Chloroform	18.6		μg/kg wet		20.0		93	70-130		
Chloromethane	19.1		μg/kg wet		20.0		95	70-130		
2-Chlorotoluene	19.7		μg/kg wet		20.0		99	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424386 - SW846 5035A Soil (low level)										
LCS (1424386-BS1)					<u>Pre</u>	pared & Analy	zed: 16-Oct-14	:		
1,2-Dibromo-3-chloropropane	18.0		μg/kg wet		20.0		90	70-130		
Dibromochloromethane	19.5		μg/kg wet		20.0		97	70-130		
1,2-Dibromoethane (EDB)	20.1		μg/kg wet		20.0		101	70-130		
Dibromomethane	19.1		μg/kg wet		20.0		96	70-130		
1,2-Dichlorobenzene	20.2		μg/kg wet		20.0		101	70-130		
1,3-Dichlorobenzene	20.1		μg/kg wet		20.0		101	70-130		
1,4-Dichlorobenzene	18.9		μg/kg wet		20.0		95	70-130		
Dichlorodifluoromethane (Freon12)	19.5		μg/kg wet		20.0		98	70-130		
1,1-Dichloroethane	19.0		μg/kg wet		20.0		95	70-130		
1,2-Dichloroethane	19.2		μg/kg wet		20,0		96	70-130		
1,1-Dichloroethene	19.1		μg/kg wet		20,0		95	70-130		
cis-1,2-Dichloroethene	19.7		μg/kg wet		20,0		98	70-130		
trans-1,2-Dichloroethene	18.9		μg/kg wet		20.0		94	70-130		
1,2-Dichloropropane	19.6		µg/kg wet		20.0		98	70-130		
1,3-Dichloropropane	19.4		µg/kg wet		20.0		97	70-130		
2,2-Dichloropropane	17.2		μg/kg wet		20.0		86	70-130		
1,1-Dichloropropene	19,4		µg/kg wet		20.0		97	70-130		
cis-1,3-Dichloropropene	18.7		µg/kg wet		20.0		94	70-130		
trans-1,3-Dichloropropene	17,8		hayka mer		20.0		89	70-130		
Ethylbenzene	20.3		hg/kg wet		20.0		102	70-130 70-130		
Hexachlorobutadiene	19.5		hg/kg wet		20.0		97	70-130		
2-Hexanone (MBK)	15.5		pg/kg wet		20.0		78	70-130		
Isopropylbenzene	20.1				20,0		101	70-130 70-130		
4-Isopropyltoluene	20.1		µg/kg wet		20.0		101	70-130 70-130		
Methyl tert-butyl ether	19.1		μg/kg wet		20.0		96	70-130 70-130		
4-Methyl-2-pentanone (MIBK)	18.5		µg/kg wet		20.0		93	70-130 70-130		
			µg/kg wet				95 95			
Methylene chloride	19.0		µg/kg wet		20,0			70-130		
Naphthalene	16.9		μg/kg wet		20.0		84	70-130		
n-Propylbenzene	20.8		μg/kg wet		20.0		104	70-130		
Styrene	20.2		µg/kg wet		20.0		101	70-130		
1,1,1,2-Tetrachloroethane	19,6		µg/kg wet		20.0		98	70-130		
1,1,2,2-Tetrachloroethane	20.0		μg/kg wet		20.0		100	70-130		
Tetrachloroethene	18.8		μg/kg wet		20.0		94	70-130		
Toluene	19.0		µg/kg wet		20.0		95	70-130		
1,2,3-Trichlorobenzene	18.3		μg/kg wet		20.0		92	70-130		
1,2,4-Trichlorobenzene	17.3		µg/kg wet		20.0		87	70-130		
1,3,5-Trichlorobenzene	20.6		µg/kg wet		20.0		103	70-130		
1,1,1-Trichloroethane	19.1		µg/kg wet		20,0		96	70-130		
1,1,2-Trichloroethane	19.3		µg/kg wet		20,0		97	70-130		
Trichloroethene	18.9		µg/kg wet		20.0		94	70-130		
Trichlorofluoromethane (Freon 11)	19.0		µg/kg wet		20.0		95	70-130		
1,2,3-Trichloropropane	19.3		µg/kg wet		20.0		96	70-130		
1,2,4-Trimethylbenzene	20.7		µg/kg wet		20.0		103	70-130		
1,3,5-Trimethylbenzene	20.4		μg/kg wet		20.0		102	70-130		
Vinyl chloride	19.4		μg/kg wet		20.0		97	70-130		
m,p-Xylene	20.3		µg/kg wet		20.0		102	70-130		
o-Xylene	20.3		µg/kg wet		20.0		101	70-130		
Tetrahydrofuran	17.9		µg/kg wet		20.0		90	70-130		
Ethyl ether	19.3		μg/kg wet		20.0		97	70-130		
Tert-amyl methyl ether	18.5		µg/kg wet		20,0		93	70-130		
Ethyl tert-butyl ether	19.6		µg/kg wet		20.0		98	70-130		
Di-isopropyl ether	19.7		μg/kg wet		20.0		99	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424386 - SW846 5035A Soil (low level)										
LCS (1424386-BS1)					Pre	pared & Analy	zed: 16-Oct-14			
Tert-Butanol / butyl alcohol	166		μg/kg wet		200		83	70-130		
1,4-Dioxane	162		μg/kg wet		200		81	70-130		
trans-1,4-Dichloro-2-butene	17.2		μg/kg wet		20.0		86	70-130		
Ethanol	393		µg/kg wet		400		98	70-130		
Surrogate: 4-Bromofluorobenzene	51.2		μg/kg wet		50.0		102	70-130		
Surrogate: Toluene-d8	49.9		µg/kg wet		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.6		μg/kg wet		50.0		97	70-130		
Surrogate: Dibromofluoromethane	50.2		μg/kg wet		50.0		100	70-130		
LCS Dup (1424386-BSD1)					Pre	pared & Analy	zed: 16-Oct-14			
1,1,2-Trichlorotrifluoroethane (Freon 113)	19.0		µg/kg wet		20.0	•	95	70-130	0.6	30
Acetone	21,6		μg/kg wet		20,0		108	70-130	2	30
Acrylonitrile	21,1		μg/kg wet		20,0		105	70-130	9	30
Benzene	19.5		µg/kg wet		20.0		97	70-130	0.8	30
Bromobenzene	20.4		pg/kg wet		20.0		102	70-130	2	30
Bromochloromethane	20.2		µg/kg wet		20,0		101	70-130	3	30
Bromodichloromethane	19.6		pg/kg wet		20.0		98	70-130	2	30
Bromoform	21.8		pg/kg wet		20,0		109	70-130	10	30
Bromomethane	21.0		pg/kg wet		20,0		105	70-130	2	30
2-Butanone (MEK)	18.4				20.0		92	70-130 70-130	13	30
n-Butylbenzene	20.8		µg/kg wet		20.0		104	70-130 70-130	5	30
•			µg/kg wet				105			30
sec-Butylbenzene	21.0		µg/kg wet		20.0			70-130	3	
tert-Butylbenzene	21.0		µg/kg wet		20.0		105	70-130	2	30
Carbon disuffide	19.6		µg/kg wet		20.0		98	70-130	0.4	30
Carbon tetrachloride	19.2		µg/kg wet		20.0		96	70-130	0.05	30
Chlorobenzene	20.1		µg/kg wet		20.0		100	70-130	2	30
Chloroethane	18.5		µg/kg wet		20,0		92	70-130	4	30
Chloroform	18.8		µg/kg wet		20.0		94	70-130	0.9	30
Chloromethane	18.9		µg/kg wet		20.0		95	70-130	0.7	30
2-Chlorotoluene	20.8		µg/kg wet		20,0		104	70-130	5	30
4-Chlorotoluene	21.5		µg/kg wet		20,0		108	70-130	5	30
1,2-Dibromo-3-chloropropane	17.9		µg/kg wet		20.0		90	70-130	0.4	30
Dibromochloromethane	20.1		µg/kg wet		20.0		100	70-130	3	30
1,2-Dibromoethane (EDB)	21.1		µg/kg wet		20.0		106	70-130	5	30
Dibromomethane	19.9		µg/kg wet		20.0		99	70-130	4	30
1,2-Dichlorobenzene	20.9		µg/kg wet		20.0		105	70-130	4	30
1,3-Dichlorobenzene	21.0		µg/kg wet		20.0		105	70-130	4	30
1,4-Dichlorobenzene	19.9		µg/kg wet		20.0		99	70-130	5	30
Dichlorodifluoromethane (Freon12)	19,2		µg/kg wet		20.0		96	70-130	2	30
1,1-Dichloroethane	19.0		µg/kg wet		20.0		95	70-130	0.3	30
1,2-Dichloroethane	19.4		µg/kg wet		20.0		97	70-130	1	30
1,1-Dichloroethene	18.9		µg/kg wet		20,0		94	70-130	0.9	30
cis-1,2-Dichloroethene	19.6		µg/kg wet		20.0		98	70-130	0.5	30
trans-1,2-Dichloroethene	19.5		µg/kg wet		20.0		97	70-130	3	30
1,2-Dichloropropane	19.4		µg/kg wet		20.0		97	70-130	1	30
1,3-Dichloropropane	20.2		µg/kg wet		20,0		101	70-130	4	30
2,2-Dichloropropane	17.1		μg/kg wet		20.0		86	70-130	0.3	30
1,1-Dichloropropene	19.7		µg/kg wet		20.0		99	70-130	2	30
cis-1,3-Dichloropropene	19.3		µg/kg wet		20.0		96	70-130	3	30
trans-1,3-Dichloropropene	18.4		µg/kg wet		20.0		92	70-130	3	30
Ethylbenzene	20.8		μg/kg wet		20.0		104	70-130	2	30
Hexachlorobutadiene	19.5		µg/kg wet		20.0		97	70-130	0	30

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
ttch 1424386 - SW846 5035A Soil (low level)										
LCS Dup (1424386-BSD1)					Pre	pared & Analy	/zed: 16-Oct-14			
2-Hexanone (MBK)	18.6		μg/kg wet		20.0		93	70-130	18	30
Isopropylbenzene	20.7		µg/kg wet		20.0		104	70-130	3	30
4-isopropyltoluene	20.8		µg/kg wet		20.0		104	70-130	3	30
Methyl tert-butyl ether	20.3		µg/kg wet		20.0		101	70-130	6	30
4-Methyl-2-pentanone (MIBK)	19.2		µg/kg wet		20.0		96	70-130	4	30
Methylene chloride	18.6		µg/kg wet		20.0		93	70-130	2	30
Naphthalene	17.8		µg/kg wet		20.0		89	70-130	5	30
n-Propylbenzene	21.2		µg/kg wet		20,0		106	70-130	2	30
Styrene	21,2		µg/kg wet		20.0		106	70-130	5	30
1,1,1,2-Tetrachloroethane	19.9		μg/kg wet		20,0		100	70-130	1	30
1,1,2,2-Tetrachloroethane	21.4		µg/kg wet		20,0		107	70-130	7	30
Tetrachloroethene	19.3		µg/kg wet		20,0		97	70-130	3	30
Toluene	19.2		μg/kg wet		20.0		96	70-130	0.6	30
1,2,3-Trichlorobenzene	19.1		µg/kg wet		20.0		96	70-130	4	30
1,2,4-Trichlorobenzene	18.4		µg/kg wet		20.0		92	70-130	6	30
1,3,5-Trichlorobenzene	21.6		µg/kg wet		20.0		108	70-130	5	30
1,1,1-Trichloroethane	19.1		µg/kg wet		20.0		96	70-130	0.1	30
1,1,2-Trichloroethane	19.8		µg/kg wet		20.0		99	70-130	3	30
Trichloroethene	19,2		µg/kg wet		20.0		96	70-130	2	30
Trichlorofluoromethane (Freon 11)	18.6		µg/kg wet		20.0		93	70-130	2	30
1,2,3-Trichloropropane	20.9		μg/kg wet		20.0		105	70-130	8	30
1,2,4-Trimethylbenzene	21.1		μg/kg wet		20.0		106	70-130	2	30
1,3,5-Trimethylbenzene	20.8		µg/kg wet		20,0		104	70-130	2	30
Vinyl chloride	19.2		µg/kg wet		20.0		96	70-130	1	30
m,p-Xylene	20.7		μg/kg wet		20.0		103	70-130	2	30
o-Xylene	20.9		µg/kg wet		20.0		105	70-130	3	30
Tetrahydrofuran	19.2		µg/kg wet		20,0		96	70-130	7	30
Ethyl ether	20.0		µg/kg wet		20.0		100	70-130	3	30
Tert-amyl methyl ether	19.6		µg/kg wet		20.0		98	70-130	6	30
Ethyl tert-butyl ether	20.0		µg/kg wet		20.0		100	70-130	2	30
Di-isopropyl ether	20.4		µg/kg wet		20.0		102	70-130	3	30
Tert-Butanol / butyl alcohol	205		µg/kg wet		200		102	70-130	21	30
1,4-Dioxane	159		μg/kg wet		200		79	70-130	2	30
trans-1,4-Dichloro-2-butene	19.6		µg/kg wet		20.0		98	70-130	13	30
Ethanol	396		µg/kg wet		400		99	70-130	0.8	30
Surrogate: 4-Bromoftuorobenzene	52.1		μg/kg wet		50.0		104	70-130		
Surrogate: Toluene-d8	49.2		µg/kg wet		50.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.3		hayka mer		50.0		99	70-130		
Surrogate: Dibromofluoromethane	48.9		µg/kg wet		50.0		98	70-130		
atch 1424387 - SW846 5035A Soil (high level)	1010		pging wor		22.0		•••	70.00		
Blank (1424387-BLK1)					Pre	pared & Anak	zed: 16-Oct-14			
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 50.0	D	μg/kg wet	50.0						
Acetone	< 500	D	µg/kg wet	500						
Acrylonitrile	< 50.0	D	µg/kg wet	50.0						
Benzene	< 50.0	D	µg/kg wet	50.0						
Bromobenzene	< 50.0	D	μg/kg wet	50.0						
Bromochloromethane	< 50.0	D	µg/kg wet	50.0						
Bromodichloromethane	< 50.0	D	µg/kg wet	50.0						
Bromoform	< 50.0	D	pg/kg wet	50.0						
Bromomethane	< 100	D	µg/kg wet	100						
2-Butanone (MEK)	< 500	D	hg/kg wet	500						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
tch 1424387 - SW846 5035A Soil (high level)										
Blank (1424387-BLK1)					Pre	pared & Analy	zed: 16-Oct-14			
n-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
sec-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
tert-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
Carbon disulfide	< 100	D	μg/kg wet	100						
Carbon tetrachloride	< 50.0	D	μg/kg wet	50.0						
Chlorobenzene	< 50.0	D	μg/kg wet	50.0						
Chloroethane	< 100	D	µg/kg wet	100						
Chloroform	< 50.0	D	μg/kg wet	50.0						
Chloromethane	< 100	D	µg/kg wet	100						
2-Chlorotoluene	< 50.0	D	μg/kg wet	50.0						
4-Chlorotoluene	< 50.0	D	µg/kg wet	50.0						
1,2-Dibromo-3-chloropropane	< 100	D	µg/kg wet	100						
Dibromochloromethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dibromoethane (EDB)	< 50.0	D	µg/kg wet	50.0						
Dibromomethane	< 50.0	D	µg/kg wet	50.0						
1,2-Dichlorobenzene	< 50.0	D	µg/kg wet	50.0						
1,3-Dichlorobenzene	< 50.0	D	µg/kg wet	50.0						
1,4-Dichlorobenzene	< 50.0	D	µg/kg wet	50.0						
Dichlorodifluoromethane (Freon12)	< 100	D	µg/kg wet	100						
1,1-Dichloroethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dichloroethane	< 50.0	D	µg/kg wet	50.0						
1,1-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
cls-1,2-Dichloroethene	< 50.0	D	µg/kg wet	50.0						
trans-1,2-Dichloroethene	< 50.0	D	µg/kg wet	50.0						
1,2-Dichloropropane	< 50.0	D	µg/kg wet	50.0						
1,3-Dichloropropane	< 50.0	D	µg/kg wet	50.0						
2,2-Dichloropropane	< 50.0	D	µg/kg wet	50.0						
1,1-Dichloropropene	< 50.0	D	µg/kg wet	50.0						
cis-1,3-Dichloropropene	< 50.0	D	μg/kg wet	50.0						
trans-1,3-Dichloropropene	< 50.0	D	µg/kg wet	50.0						
Ethylbenzene	< 50.0	D	µg/kg wet	50.0						
Hexachlorobutadiene	< 50.0	D	μg/kg wet	50.0						
2-Hexanone (MBK)	< 500	D	μg/kg wet	500						
Isopropylbenzene	< 50.0	D	µg/kg wet	50.0						
4-Isopropyltoluene	< 50.0	D	µg/kg wet	50.0						
Methyl tert-butyl ether	< 50.0	D	μ g/kg w et	50.0						
4-Methyl-2-pentanone (MIBK)	< 500	D	μg/kg wet	500						
Methylene chloride	< 100	D	µg/kg wet	100						
Naphthalene	< 50.0	D	µg/kg wet	50.0						
n-Propylbenzene	< 50.0	D	µg/kg wet	50.0						
Styrene	< 50.0	D	µg/kg wet	50.0						
1,1,1,2-Tetrachloroethane	< 50.0	D	µg/kg wet	50.0						
1,1,2,2-Tetrachloroethane	< 50.0	D	µg/kg wet	50.0						
Tetrachloroethene	< 50.0	D	μg/kg wet	50.0						
Toluene	< 50.0	D	μg/kg wet	50.0						
1,2,3-Trichlorobenzene	< 50.0	D	µg/kg wet	50.0						
1,2,4-Trichlorobenzene	< 50.0	D	µg/kg wet	50.0						
1,3,5-Trichlorobenzene	< 50.0	D	µg/kg wet	50.0						
1,1,1-Trichloroethane	< 50.0	D	µg/kg wet	50.0						
1,1,2-Trichloroethane	< 50.0	D	µg/kg wet	50.0						
Trichloroethene	< 50.0	D	μ g/kg w et	50.0						
Trichlorofluoromethane (Freon 11)	< 50.0	D	μg/kg wet	50.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424387 - SW846 5035A Soil (high level)										
Blank (1424387-BLK1)					Pre	pared & Analy	zed: 16-Oct-14			
1,2,3-Trichloropropane	< 50.0	D	μg/kg wet	50.0						
1,2,4-Trimethylbenzene	< 50.0	D	µg/kg wet	50.0						
1,3,5-Trimethylbenzene	< 50.0	D	µg/kg wet	50.0						
Vinyl chloride	< 50.0	D	µg/kg wet	50.0						
m,p-Xylene	< 100	D	μg/kg wet	100						
o-Xylene	< 50.0	D	μg/kg wet	50.0						
Tetrahydrofuran	< 100	D	μg/kg wet	100						
Ethyl ether	< 50.0	D	µg/kg wet	50.0						
Tert-amyl methyl ether	< 50.0	D	µg/kg wet	50.0						
Ethyl tert-butyl ether	< 50.0	D	μg/kg wet	50.0						
Di-isopropyl ether	< 50.0	D	μg/kg wet	50.0						
Tert-Butanol / butyl alcohol	< 500	D	µg/kg wet	500						
1.4-Dioxane	< 1000	D	μg/kg wet	1000						
trans-1,4-Dichloro-2-butene	< 250	D	µg/kg wet	250						
Ethanol	< 20000	D	µg/kg wet	20000						
Surrogate: 4-Bromofluorobenzene	30.4		µg/kg wet		30.0		101	70-130		
Surrogate: Toluene-d8	30.1		µg/kg wet		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	39.0		µg/kg wet		30.0		110	70-130		
Surrogate: Dibromofluoromethane	30.7		µg/kg wet		30.0		102	70-130		
LCS (1424387-BS1)						nared & Anak	zed: 16-Oct-14			
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.8	D	µg/kg wet		20.0	parca a Arialy	104	70-130		
Acetone	19.8	D	µg/kg wet		20.0		99	70-130		
Acrylonitrile	19.3	D	µg/kg wet		20.0		97	70-130		
Benzene	20.3	D			20.0		101			
Bromobenzene	20.3 21.4	D	µg/kg wet					70-130		
		D	µg/kg wet		20.0		107	70-130		
Bromochloromethane	21.6		µg/kg wet		20,0		108	70-130		
Bromodichloromethane	21.9	D	µg/kg wet		20.0		109	70-130		
Bromoform	22.4	D	µg/kg wet		20.0		112	70-130		
Bromomethane	17.7	D	µg/kg wet		20,0		89	70-130		
2-Butanone (MEK)	22.0	D -	µg/kg wet		20,0		110	70-130		
n-Butylbenzene	20.7	D	µg/kg wet		20.0		103	70-130		
sec-Butylbenzene	21.8	D	µg/kg wet		20.0		109	70-130		
tert-Butylbenzene	21.9	D	µg/kg wet		20.0		110	70-130		
Carbon disulfide	22.5	D	µg/kg wet		20.0		112	70-130		
Carbon tetrachloride	24.4	D	µg/kg wet		20.0		122	70-130		
Chlorobenzene	20.3	D	µg/kg wet		20.0		101	70-130		
Chloroethane	17.7	D	µg/kg wet		20.0		89	70-130		
Chloroform	20,4	D	µg/kg wet		20.0		102	70-130		
Chloromethane	16.6	D	µg/kg wet		20.0		83	70-130		
2-Chlorotoluene	20.4	D	µg/kg wet		20.0		102	70-130		
4-Chlorotoluene	21.0	D	µg/kg wet		20.0		105	70-130		
1,2-Dibromo-3-chloropropane	18.7	D	µg/kg wet		20,0		94	70-130		
Dibromochloromethane	22.5	D	µg/kg wet		20.0		113	70-130		
1,2-Dibromoethane (EDB)	21.3	D	µg/kg wet		20.0		107	70-130		
Dibromomethane	20.8	D	μg/kg wet		20,0		104	70-130		
1,2-Dichlorobenzene	20.3	D	μg/kg wet		20.0		102	70-130		
1,3-Dichlorobenzene	20.5	D	μg/kg wet		20.0		102	70-130		
1,4-Dichlorobenzene	19.6	D	μg/kg wet		20.0		98	70-130		
Dichlorodifluoromethane (Freon12)	18,4	D	µg/kg wet		20.0		92	70-130		
1,1-Dichloroethane	21.0	D	µg/kg wet		20.0		105	70-130		
1,2-Dichloroethane	21.0	D	µg/kg wet		20.0		105	70-130 70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Limi
Batch 1424387 - SW846 5035A Soil (high level)										
LCS (1424387-BS1)					Pre	pared & Analy	zed: 16-Oct-14	:		
1,1-Dichloroethene	20.5	D	μg/kg wet		20.0		103	70-130		
cis-1,2-Dichloroethene	20.7	D	µg/kg wet		20.0		103	70-130		
trans-1,2-Dichloroethene	20.9	D	µg/kg wet		20.0		104	70-130		
1,2-Dichloropropane	18.7	D	μg/kg wet		20.0		94	70-130		
1,3-Dichloropropane	20.4	D	µg/kg wet		20.0		102	70-130		
2,2-Dichloropropane	22.3	D	μg/kg wet		20.0		111	70-130		
1,1-Dichloropropene	21.2	D	µg/kg wet		20.0		106	70-130		
cls-1,3-Dichloropropene	20.2	D	µg/kg wet		20.0		101	70-130		
trans-1,3-Dichloropropene	19.5	D	µg/kg wet		20.0		97	70-130		
Ethylbenzene	20.9	D	µg/kg wet		20.0		104	70-130		
Hexachlorobutadiene	22.5	D	µg/kg wet		20,0		112	70-130		
2-Hexanone (MBK)	21.0	D	µg/kg wet		20,0		105	70-130		
Isopropylbenzene	21.3	D	µg/kg wet		20.0		106	70-130		
4-Isopropyltoluene	21.3	D	µg/kg wet		20.0		107	70-130		
Methyl tert-butyl ether	21.0	D	µg/kg wet		20.0		105	70-130		
4-Methyl-2-pentanone (MIBK)	20.0	D	μg/kg wet		20.0		100	70-130		
Methylene chloride	19.3	D	μg/kg wet		20.0		96	70-130		
Naphthalene	21.0	D	μg/kg wet		20.0		105	70-130		
n-Propylbenzene	21.4	D	µg/kg wet		20.0		107	70-130		
Styrene	21,2	D	µg/kg wet		20.0		106	70-130		
1,1,1,2-Tetrachioroethane	22,4	D	µg/kg wet		20.0		112	70-130		
1,1,2,2-Tetrachioroethane	18.2	D	μg/kg wet		20.0		91	70-130		
Tetrachloroethene	22.1	D	µg/kg wet		20.0		110	70-130		
Toluene	20.4	D	µg/kg wet		20.0		102	70-130		
1,2,3-Trichlorobenzene	20.9	D	µg/kg wet		20.0		105	70-130		
1,2,4-Trichlorobenzene	19.7	D	µg/kg wet		20.0		98	70-130		
1,3,5-Trichlorobenzene	20.8	D	µg/kg wet		20,0		104	70-130		
1,1,1-Trichloroethane	23.8	D	μg/kg wet		20.0		119	70-130		
1,1,2-Trichloroethane	19.7	D	µg/kg wet		20.0		99	70-130		
Trichloroethene	23.2	D	µg/kg wet		20.0		116	70-130		
Trichlorofluoromethane (Freon 11)	23.6	D	µg/kg wet		20.0		118	70-130		
1,2,3-Trichloropropane	20.2	D	µg/kg wet		20.0		101	70-130		
1,2,4-Trimethylbenzene	21.7	D	µg/kg wet		20.0		108	70-130		
1,3,5-Trimethylbenzene	21.6	D	pg/kg wet		20.0		108	70-130		
Vinyl chloride	24.0	D	µg/kg wet		20.0		120	70-130		
m,p-Xylene	20.9	D	pg/kg wet		20.0		105	70-130		
o-Xylene	20.7	D	pg/kg wet		20.0		104	70-130		
Tetrahydrofuran	16.8	D	hg/kg wet		20,0		84	70-130 70-130		
Ethyl ether	18.8	D	pg/kg wet		20,0		94	70-130 70-130		
Tert-amyl methyl ether	19.4	D	pg/kg wet		20.0		97	70-130 70-130		
Ethyl tert-butyl ether	20.0	D	pg/kg wet		20.0		100	70-130 70-130		
Di-isopropyl ether	20.0 18.5	D	pg/kg wet		20.0		92	70-130 70-130		
Tert-Butanol / butyl alcohol	202	D			20.0		92 101	70-130 70-130		
1,4-Dioxane	202 217	D	µg/kg wet		200		108	70-130 70-130		
trans-1,4-Dichloro-2-butene	19.0	D	µg/kg wet		20.0		95	70-130 70-130		
		D	µg/kg wet							
Ethanol	361	U	µg/kg wet		400		90	70-130		
Surrogate: 4-Bromoftuorobenzene	30.2		µg/kg wet		30.0		101	70-130		
Surrogate: Toluene-d8	30.3		µg/kg wet		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	32.6		µg/kg wet		30.0		109	70-130		
Surrogate: Dibromoftuoromethane	30.9		µg/kg wet		30.0		103	70-130		
LCS Dup (1424387-BSD1)					<u>Pre</u>	pared & Analy	zed: 16-Oct-14	:		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1424387 - SW846 5035A Soil (high level)										
LCS Dup (1424387-BSD1)					<u>Pre</u>	pared & Analy	zed: 16-Oct-14	<u>.</u>		
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.0	D	µg/kg wet		20.0		100	70-130	4	30
Acetone	21.0	D	µg/kg wet		20.0		105	70-130	6	30
Acrylonitrile	19.6	D	µg/kg wet		20.0		98	70-130	1	30
Benzene	20.0	D	μg/kg wet		20.0		100	70-130	1	30
Bromobenzene	21.6	D	µg/kg wet		20.0		108	70-130	0.8	30
Bromochloromethane	21.1	D	µg/kg wet		20.0		106	70-130	2	30
Bromodichloromethane	20.9	D	µg/kg wet		20.0		105	70-130	4	30
Bromoform	21.8	D	µg/kg wet		20.0		109	70-130	3	30
Bromomethane	18.4	D	µg/kg wet		20.0		92	70-130	4	30
2-Butanone (MEK)	18.4	D	μg/kg wet		20.0		92	70-130	18	30
n-Butylbenzene	21.0	D	µg/kg wet		20,0		105	70-130	2	30
sec-Butylbenzene	22.2	D	µg/kg wet		20,0		111	70-130	2	30
tert-Butylbenzene	21.8	D	µg/kg wet		20.0		109	70-130	0.8	30
Carbon disulfide	22.3	D	µg/kg wet		20.0		111	70-130	1	30
Carbon tetrachloride	23.8	D	μg/kg wet		20.0		119	70-130	3	30
Chlorobenzene	20.4	D	μg/kg wet		20.0		102	70-130	0.5	30
Chloroethane	16.8	D	μg/kg wet		20.0		84	70-130	5	30
Chloroform	20.4	D	µg/kg wet		20.0		102	70-130	0.2	30
Chloromethane	16.4	D	µg/kg wet		20.0		82	70-130	1	30
2-Chlorotoluene	21,1	D	µg/kg wet		20.0		106	70-130	3	30
4-Chlorotoluene	21.0	D	µg/kg wet		20.0		105	70-130	0.1	30
1,2-Dibromo-3-chloropropane	20.0	D	μg/kg wet		20.0		100	70-130	7	30
Dibromochioromethane	22.0	D	µg/kg wet		20.0		110	70-130	3	30
1,2-Dibromoethane (EDB)	21.1	D	μg/kg wet		20.0		106	70-130	0.9	30
Dibromomethane	20.4	D	μg/kg wet		20.0		102	70-130	2	30
1,2-Dichlorobenzene	20.8	D	μg/kg wet		20.0		104	70-130	2	30
1,3-Dichlorobenzene	21.0	D	μg/kg wet		20,0		105	70-130	2	30
1,4-Dichlorobenzene	19.6	D	μg/kg wet		20.0		98	70-130	0	30
Dichlorodifluoromethane (Freon12)	17.6	D	μg/kg wet		20.0		88	70-130	4	30
1,1-Dichloroethane	20.6	D	µg/kg wet		20.0		103	70-130	2	30
1,2-Dichloroethane	21,2	D	µg/kg wet		20.0		106	70-130	1	30
1,1-Dichloroethene	19.2	D	µg/kg wet		20.0		96	70-130	7	30
cis-1,2-Dichloroethene	20.5	D	µg/kg wet		20.0		102	70-130	0.9	30
trans-1,2-Dichloroethene	21.0	D	µg/kg wet		20.0		105	70-130	0.7	30
1,2-Dichioropropane	19.0	D	µg/kg wet		20.0		95	70-130	2	30
1,3-Dichloropropane	20.2	D	µg/kg wet		20.0		101	70-130	1	30
2,2-Dichloropropane	21.5	D	µg/kg wet		20.0		107	70-130	4	30
1,1-Dichloropropene	20.7	D	µg/kg wet		20,0		103	70-130	2	30
cis-1,3-Dichloropropene	20.1	D	µg/kg wet		20.0		100	70-130	0.3	30
trans-1,3-Dichloropropene	19.8	D	µg/kg wet		20.0		99	70-130	2	30
Ethylbenzene	20.7	D	µg/kg wet		20.0		104	70-130	0.6	30
Hexachlorobutadiene	22.2	D	µg/kg wet		20.0		111	70-130	1	30
2-Hexanone (MBK)	20.5	D	µg/kg wet		20.0		103	70-130	2	30
Isopropylbenzene	21.6	D	µg/kg wet		20.0		108	70-130	2	30
4-Isopropyltoluene	21.5	D	µg/kg wet		20.0		108	70-130	1	30
Methyl tert-butyl ether	21.0	D	hayka mer		20.0		105	70-130	0.1	30
4-Methyl-2-pentanone (MIBK)	18.8	D	µg/kg wet		20.0		94	70-130	6	30
Methylene chloride	19.5	D	µg/kg wet		20.0		98	70-130	1	30
Naphthalene	21.4	D	µg/kg wet		20.0		107	70-130	2	30
n-Propylbenzene	21.5	D	µg/kg wet		20,0		107	70-130	0.1	30
Styrene	21.8	D	hayka mer hayka mer		20.0		109	70-130	3	30
1,1,1,2-Tetrachloroethane	23.2	D	μ g/kg we t		20.0		116	70-130 70-130	3	30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424387 - SW846 5035A Soil (high level)										
LCS Dup (1424387-BSD1)					Pre	pared & Analy	zed: 16-Oct-14			
1,1,2,2-Tetrachloroethane	18.3	D	μg/kg wet		20.0		92	70-130	0.5	30
Tetrachloroethene	21.6	D	μg/kg wet		20.0		108	70-130	2	30
Toluene	20.2	D	μg/kg wet		20.0		101	70-130	1	30
1,2,3-Trichlorobenzene	21.5	D	μg/kg wet		20.0		108	70-130	3	30
1,2,4-Trichlorobenzene	19.7	D	μg/kg wet		20.0		98	70-130	0.1	30
1,3,5-Trichlorobenzene	20.8	D	μg/kg wet		20.0		104	70-130	0.2	30
1,1,1-Trichloroethane	22.7	D	μg/kg wet		20.0		114	70-130	4	30
1,1,2-Trichioroethane	20.6	D	µg/kg wet		20,0		103	70-130	4	30
Trichloroethene	22,5	D	µg/kg wet		20.0		112	70-130	3	30
Trichlorofluoromethane (Freon 11)	23.2	D	μg/kg wet		20,0		116	70-130	2	30
1,2,3-Trichloropropane	21.5	D	µg/kg wet		20,0		108	70-130	6	30
1,2,4-Trimethylbenzene	21.6	D	µg/kg wet		20,0		108	70-130	0,2	30
1,3,5-Trimethylbenzene	21.7	D			20.0		109	70-130	0.6	30
•		D	µg/kg wet				119			
Vinyl chloride	23.8	D	µg/kg wet		20.0		119	70-130	0.4	30
m,p-Xylene	20.8	D	µg/kg wet		20.0			70-130	0.5	30
o-Xylene	21.4		μg/kg wet		20.0		107	70-130	3	30
Tetrahydrofuran	17.9	D	µg/kg wet		20.0		89	70-130	7	30
Ethyl ether	18.9	D -	µg/kg wet		20.0		94	70-130	0.3	30
Tert-amyl methyl ether	19,2	D	µg/kg wet		20.0		96	70-130	0.8	30
Ethyl tert-butyl ether	20.0	D	µg/kg wet		20.0		100	70-130	0.05	30
Di-isopropyl ether	18.5	D	µg/kg wet		20.0		93	70-130	0.2	30
Tert-Butanol / butyl alcohol	203	D	µg/kg wet		200		101	70-130	0.3	30
1,4-Dioxane	190	D	µg/kg wet		200		95	70-130	13	30
trans-1,4-Dichloro-2-butene	20.9	D	µg/kg wet		20.0		104	70-130	10	30
Ethanol	344	D	pg/kg wet		400		86	70-130	5	30
Surrogate: 4-Bromofluorobenzene	31.4		µg/kg wet		30.0		105	70-130		
Surrogate: Toluene-d8	29.6		µg/kg wet		30.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	32.5		μg/kg wet		30.0		108	70-130		
Surrogate: Dibromofluoromethane	30.5		μg/kg wet		30.0		102	70-130		
Matrix Splke (1424387-MS1)			Source: SB9	98028-17	Pre	pared & Analy	zed: 16-Oct-14	:		
1,1,2-Trichlorotrifluoroethane (Freon 113)	24.5	D	μg/kg dry		20.0	BRL	122	70-130		
Acetone	19.6	D	μg/kg dry		20.0	BRL	98	70-130		
Acrylonitrile	13.6	QM7, D	µg/kg dry		20.0	BRL	68	70-130		
Benzene	21.2	D	μg/kg dary		20.0	BRL	106	70-130		
Bromobenzene	23.4	D	μg/kg dry		20.0	BRL	117	70-130		
Bromochloromethane	21.8	D	µg/kg dry		20.0	BRL	109	70-130		
Bromodichloromethane	22.0	D	μg/kg dary		20.0	BRL	110	70-130		
Bromoform	19,6	D	pg/kg dry		20.0	BRL	98	70-130		
Bromomethane	12,8	QM7, D			20.0	BRL	64	70-130 70-130		
	20.2	D	µg/kg dry			BRL	101			
2-Butanone (MEK)		D	μg/kg dary		20.0			70-130		
n-Butylbenzene	26.0		µg/kg dary		20.0	BRL	130	70-130		
sec-Butylbenzene	26.2	QM7, D	µg/kg dry		20.0	BRL	131	70-130		
tert-Butylbenzene	26.6	QM7, D	µg/kg dry		20.0	BRL	133	70-130		
Carbon disulfide	17.6	D	µg/kg dary		20.0	BRL	88	70-130		
Carbon tetrachloride	25.0	D	µg/kg dry		20,0	BRL	125	70-130		
Chlorobenzene	21.3	D	µg/kg dry		20.0	BRL	106	70-130		
Chloroethane	21.4	D	µg/kg dry		20.0	BRL	107	70-130		
Chloroform	23.4	D	µg/kg dry		20.0	BRL	117	70-130		
Chilofolomi										
Chloromethane	15.5	D	µg√kg dary		20.0	BRL	78	70-130		
	15.5 24.3	D D	µg/kg dry µg/kg dry		20.0 20.0	BRL BRL	78 122	70-130 70-130		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424387 - SW846 5035A Soil (high level)										
Matrix Spike (1424387-MS1)			Source: SB	98028-17	Pre	pared & Analy	zed: 16-Oct-14			
1,2-Dibromo-3-chloropropane	17.7	D	μg/kg dry		20.0	BRL	89	70-130		
Dibromochloromethane	19.8	D	µg/kg dry		20.0	BRL	99	70-130		
1,2-Dibromoethane (EDB)	22.1	D	µg/kg dry		20.0	BRL	110	70-130		
Dibromomethane	21.6	D	µg/kg dry		20.0	BRL	108	70-130		
1,2-Dichlorobenzene	21.7	D	µg/kg dry		20.0	BRL	108	70-130		
1,3-Dichlorobenzene	23.4	D	µg/kg dry		20.0	BRL	117	70-130		
1,4-Dichlorobenzene	21.5	D	µg/kg dry		20.0	BRL	107	70-130		
Dichlorodifluoromethane (Freon12)	22.5	D	µg/kg dry		20.0	BRL	112	70-130		
1,1-Dichloroethane	22,2	D	µg/kg dry		20.0	BRL	111	70-130		
1,2-Dichloroethane	23.6	D	µg/kg dry		20.0	BRL	118	70-130		
1,1-Dichloroethene	17.4	D	μg/kg dry		20,0	BRL	87	70-130		
cis-1,2-Dichloroethene	23.0	D	μg/kg dary		20.0	BRL	115	70-130		
trans-1,2-Dichloroethene	22.1	D	μg/kg dry		20.0	BRL	111	70-130		
1,2-Dichloropropane	19.9	D	µg/kg dry		20.0	BRL	99	70-130		
1,3-Dichloropropane	21.1	D	µg/kg dry		20.0	BRL	105	70-130		
2,2-Dichloropropane	24.8	D	µg/kg dry		20.0	BRL	124	70-130		
1,1-Dichloropropene	24.5	D	µg/kg dry		20.0	BRL	122	70-130		
cis-1,3-Dichloropropene	20.3	D	µg/kg dry		20.0	BRL	101	70-130		
trans-1,3-Dichloropropene	19,9	D	µg/kg dry		20.0	BRL	99	70-130		
Ethylbenzene	22,7	D	µg/kg dry		20.0	BRL	113	70-130		
Hexachlorobutadiene	30.7	QM7, D	µg/kg dry		20.0	BRL	153	70-130		
2-Hexanone (MBK)	20.4	D	pg/kg dry		20.0	BRL	102	70-130		
Isopropylbenzene	24.9	D	µg/kg dry		20.0	BRL	124	70-130		
4-Isopropyltoluene	25.0	D	µg/kg dary		20.0	BRL	125	70-130 70-130		
Methyl tert-butyl ether	23.0	D	µg/kg dry		20.0	BRL	115	70-130		
4-Methyl-2-pentanone (MIBK)	23.8	D	pg/kg day		20.0	BRL	119	70-130		
Methylene chloride	16.2	D	pg/kg day		20.0	BRL	81	70-130		
Naphthalene	22.1	D	pg/kg day		20.0	BRL	110	70-130 70-130		
n-Propylbenzene	25.1	D				BRL	125	70-130 70-130		
• •	23.6	D	µg/kg dry		20.0		118			
Styrene 1,1,1,2-Tetrachloroethane	23.6 22,6	D	µg/kg dry		20.0	BRL BRL	113	70-130 70-130		
* * *		D	µg/kg dry		20.0					
1,1,2,2-Tetrachloroethane	19.5	D	µg/kg dry		20.0	BRL	98	70-130		
Tetrachloroethene	25.1		µg/kg dry		20.0	BRL	125	70-130		
Toluene	22.0	D	µg/kg dry		20.0	BRL	110	70-130		
1,2,3-Trichlorobenzene	22.7	D	µg/kg dry		20,0	BRL	113	70-130		
1,2,4-Trichlorobenzene	22.8	D	µg/kg dry		20.0	BRL	114	70-130		
1,3,5-Trichlorobenzene	24.9	D OMZ D	µg/kg dry		20.0	BRL	124	70-130		
1,1,1-Trichloroethane	27.0	QM7, D	µg/kg dary		20,0	BRL	135	70-130		
1,1,2-Trichloroethane	20.9	D	µg/kg dary		20,0	BRL	104	70-130		
Trichloroethene	24.4	D 0147 D	µg/kg dry		20.0	BRL	122	70-130		
Trichlorofluoromethane (Freon 11)	28.8	QM7, D	µg/kg dry		20.0	BRL	144	70-130		
1,2,3-Trichloropropane	22.4	D	µg/kg dry		20.0	BRL	112	70-130		
1,2,4-Trimethylbenzene	25.8	D	µg/kg dry		20.0	BRL	129	70-130		
1,3,5-Trimethylberizene	25.6	D	µg√kg dary		20.0	BRL	128	70-130		
Vinyl chloride	24.3	D	µg/kg dry		20.0	BRL	122	70-130		
m,p-Xylene	23.8	D	µg/kg dry		20.0	BRL	119	70-130		
o-Xylene	22.3	D -	µg/kg dry		20.0	BRL	112	70-130		
Tetrahydrofuran	15,5	D	µg/kg dry		20.0	BRL	77	70-130		
Ethyl ether	16.0	D	µg/kg dry		20,0	BRL	80	70-130		
Tert-amyl methyl ether	21.3	D	µg/kg dry		20,0	BRL	106	70-130		
Ethyl tert-butyl ether	21.8	D	µg/kg dry		20,0	BRL	109	70-130		
Di-isopropyl ether	18.7	D	µg/kg dry		20.0	BRL	93	70-130		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1424387 - SW846 5035A Soil (high level)										
Matrix Spike (1424387-MS1)			Source: SE	198028-17	Pre	nared & Anak	zed: 16-Oct-14			
Tert-Butanol / butyl alcohol	206	D	µg/kg dry	700020-11	200	BRL	103	70-130		
1,4-Dioxane	190	D	μg/kg day		200	BRL	95	70-130 70-130		
trans-1,4-Dichloro-2-butene	18.2	D	μου/kg dary		20.0	BRL	91	70-130 70-130		
Ethanol	403	D	μου/kg dary		400	BRL	101	70-130		
						DITE				
Surrogate: 4-Bromofluorobenzene	32.1		µg/kg dry		30.0		107	70-130		
Surrogate: Toluene-d8	30.0		µg/kg dary		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	35.5		µg/kg dary		30.0		118	70-130		
Surrogate: Dibromofluoromethane	32.1		µg/kg dry		30.0		107	70-130		
Matrix Spike Dup (1424387-MSD1)			Source: SE	<u> 198028-17</u>			zed: 16-Oct-14			
1,1,2-Trichlorotrifluoroethane (Freon 113)	22,1	D	µg/kg dry		20.0	BRL	110	70-130	10	30
Acetone	19.5	D	µg/kg dry		20.0	BRL	98	70-130	0.5	30
Acrylonitrile	16,4	D	µg/kg dry		20.0	BRL	82	70-130	19	30
Benzene	20.1	D	µg/kg dry		20.0	BRL	101	70-130	5	30
Bromobenzene	21.6	D	µg/kg dry		20.0	BRL	108	70-130	8	30
Bromochloromethane	19.7	D	µg/kg dry		20.0	BRL	99	70-130	10	30
Bromodichloromethane	18.8	D	µg/kg dry		20.0	BRL	94	70-130	16	30
Bromoform	17. <i>4</i>	D	µg/kg dry		20.0	BRL	87	70-130	12	30
Bromomethane	10.5	QM7, D	µg/kg dry		20,0	BRL	53	70-130	19	30
2-Butanone (MEK)	22.0	D	µg/kg dry		20.0	BRL	110	70-130	9	30
n-Butylbenzene	23.5	D	µg/kg dry		20.0	BRL	117	70-130	10	30
sec-Butylbenzene	24.4	D	µg/kg dry		20.0	BRL	122	70-130	7	30
tert-Butylbenzene	24.2	D	µg/kg dry		20.0	BRL	121	70-130	10	30
Carbon disulfide	17.1	D	μg/kg dry		20.0	BRL	86	70-130	3	30
Carbon tetrachloride	21.4	D	µg/kg dry		20.0	BRL	107	70-130	16	30
Chlorobenzene	20.1	D	µg/kg dry		20.0	BRL	100	70-130	6	30
Chloroethane	13.8	QM7, QR5, D	μg/kg dry		20.0	BRL	69	70-130	43	30
Chloroform	20.6	D	µg/kg dry		20.0	BRL	103	70-130	13	30
Chloromethane	14.3	D	µg/kg dry		20.0	BRL	71	70-130	9	30
2-Chlorotoluene	21.7	D	µg/kg dry		20.0	BRL	108	70-130	11	30
4-Chlorotoluene	22.9	D	µg/kg dry		20.0	BRL	114	70-130	7	30
1,2-Dibromo-3-chloropropane	14.8	D	µg/kg dry		20.0	BRL	74	70-130	18	30
Dibromochloromethane	17.7	D	µg/kg dry		20.0	BRL	88	70-130	11	30
1,2-Dibromoethane (EDB)	20.4	D	µg/kg dry		20.0	BRL	102	70-130	8	30
Dibromomethane	19.7	D	μg/kg dry		20.0	BRL	98	70-130	9	30
1,2-Dichlorobenzene	19.6	D	µg/kg dry		20.0	BRL	98	70-130	10	30
1,3-Dichlorobenzene	22.0	D	µg/kg dry		20.0	BRL	110	70-130	6	30
1,4-Dichlorobenzene	19.3	D	µg/kg dry		20.0	BRL	97	70-130	11	30
Dichlorodifluoromethane (Freon12)	17.9	D	µg/kg dry		20.0	BRL	90	70-130	23	30
1,1-Dichloroethane	20.5	D	µg/kg dry		20.0	BRL	102	70-130	8	30
1,2-Dichloroethane	20.1	D	µg/kg dry		20.0	BRL	101	70-130	16	30
1,1-Dichloroethene	20.0	D	µg/kg dry		20.0	BRL	100	70-130	14	30
cis-1,2-Dichloroethene	21.0	D	µg/kg dry		20.0	BRL	105	70-130	9	30
trans-1,2-Dichloroethene	20.4	D	µg/kg dry		20.0	BRL	102	70-130	8	30
1,2-Dichloropropane	19.1	D	µg/kg dry		20.0	BRL	96	70-130	4	30
1,3-Dichloropropane	19.4	D	µg/kg dry		20.0	BRL	97	70-130	9	30
2,2-Dichloropropane	21.0	D	μg/kg dry		20.0	BRL	105	70-130	17	30
1,1-Dichloropropene	22.0	D	µg/kg dry		20.0	BRL	110	70-130	11	30
cis-1,3-Dichloropropene	18.6	D	µg/kg dry		20.0	BRL	93	70-130	9	30
trans-1,3-Dichloropropene	17,4	D	µg/kg dry		20.0	BRL	87	70-130	13	30
Ethylbenzene	21.4	D	µg/kg dry		20.0	BRL	107	70-130	6	30
Hexachlorobutadiene	25.2	D	µg/kg dry		20.0	BRL	126	70-130	20	30

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
ntch 1424387 - SW846 5035A Soil (high level)										-
Matrix Spike Dup (1424387-MSD1)			Source: SB	98028-1 <u>7</u>	Pre	pared & Analy	zed: 16-Oct-14	<u>L</u>		
2-Hexanone (MBK)	18.9	D	µg/kg dry		20.0	BRL	95	70-130	7	30
Isopropylbenzene	22.5	D	μg/kg dry		20.0	BRL	113	70-130	10	30
4-Isopropyttoluene	22.3	D	µg/kg dry		20.0	BRL	111	70-130	12	30
Methyl tert-butyl ether	20.3	D	µg/kg dry		20.0	BRL	102	70-130	12	30
4-Methyl-2-pentanone (MIBK)	19.1	D	µg/kg dry		20.0	BRL	96	70-130	22	30
Methylene chloride	16.8	D	μg/kg dry		20.0	BRL	84	70-130	3	30
Naphthalene	18.7	D	μg/kg dry		20.0	BRL	94	70-130	16	30
n-Propylbenzene	23.4	D	µg/kg dry		20.0	BRL	117	70-130	7	30
Styrene	22,1	D	μg/kg dary		20.0	BRL	110	70-130	6	30
1,1,1,2-Tetrachloroethane	20.2	D	μg/kg dry		20,0	BRL	101	70-130	11	30
1,1,2,2-Tetrachloroethane	18.3	D	μg/kg dry		20,0	BRL	92	70-130	6	30
Tetrachloroethene	23.0	D	μg/kg dary		20,0	BRL	115	70-130	9	30
Toluene	20.7	D	μg/kg dary		20.0	BRL	103	70-130	6	30
1,2,3-Trichlorobenzene	19.3	D	µg/kg dry		20.0	BRL	97	70-130	16	30
1,2,4-Trichlorobenzene	19.7	D	µg/kg dry		20.0	BRL	99	70-130	15	30
1,3,5-Trichlorobenzene	22.2	D	μg/kg dry		20.0	BRL	111	70-130	11	30
1,1,1-Trichloroethane	23.2	D	µg/kg dry		20.0	BRL	116	70-130	15	30
1,1,2-Trichloroethane	20.1	D	μg/kg dry		20.0	BRL	100	70-130	4	30
Trichloroethene	22,4	D	µg√kg dary		20.0	BRL	112	70-130	9	30
Trichlorofluoromethane (Freon 11)	23.2	D	pg/kg dry		20.0	BRL	116	70-130	22	30
1,2,3-Trichloropropane	20.5	D	pg/kg dary		20.0	BRL	103	70-130	9	30
1,2,4-Trimethylberizene	23.6	D	pg/kg dry		20.0	BRL	118	70-130	9	30
1,3,5-Trimethylbenzene	23.3	D	pg/kg dry		20.0	BRL	117	70-130	9	30
Vinyl chloride	20.8	D	pg/kg dry		20,0	BRL	104	70-130 70-130	18	30
m,p-Xylene	21.3	D	μg/kg dary		20.0	BRL	106	70-130	11	30
o-Xylene	21.4	D	pg/kg day pg/kg day		20.0	BRL	107	70-130	4	30
Tetrahydrofuran	15.7	D	pg/kg dry		20.0	BRL	78	70-130	1	30
Ethyl ether	18.8	D	pg/kg dry		20.0	BRL	94	70-130	16	30
Tert-amyl methyl ether	19.2	D			20.0	BRL	96	70-130 70-130	11	30
Ethyl tert-butyl ether	19.3	D	µg/kg dry		20.0	BRL	96	70-130 70-130	12	30
•		D	µg/kg dry				90 89			
Di-isopropyl ether	17.8		μg/kg dry		20.0	BRL		70-130	5	30
Tert-Butanol / butyl alcohol	196	D	μg/kg dry		200	BRL	98	70-130	5	30
1,4-Dioxane	210	D	µg√kg dary		200	BRL	105	70-130	10	30
trans-1,4-Dichloro-2-butene	17.5	D	µg√kg dary		20.0	BRL	87	70-130	4	30
Ethanol	344	D	µg/kg dry		400	BRL	86	70-130	16	30
Surrogate: 4-Bromoftuorobenzene	31.5		µg/kg dry		30.0		105	70-130		
Surrogate: Toluene-d8	29.9		µg√kg dry		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	32.2		µg√kg dry		30.0		107	70-130		
Surrogate: Dibromofluoromethane	30.8		µg/kg dry		30.0		103	70-130		
itch 1424392 - SW846 5030 Water MS										
Blank (1424392-BLK1)					<u>Pre</u>	pared & Analy	zed: 16-Oct-14	<u> </u>		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.0		μg/l	1.0						
Acetone	< 10.0		μg/l	10.0						
Acrylonitrile	< 0.5		μg/l	0.5						
Benzene	< 1.0		μg/l	1.0						
Bromobenzene	< 1.0		μ g/ l	1.0						
Bromochloromethane	< 1.0		μg/l	1.0						
Bromodichloromethane	< 0.5		μg/l	0.5						
Bromoform	< 1.0		μg/l	1.0						
Bromomethane	< 2.0		μg/l	2.0						
2-Butanone (MEK)	< 10.0		μg/l	10.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
ntch 1424392 - SW846 5030 Water MS										
Blank (1424392-BLK1)					Pre	pared & Analy	zed: 16-Oct-14	<u>.</u>		
n-Butylbenzene	< 1.0		μg/l	1.0						
sec-Butylbenzene	< 1.0		μg/l	1.0						
tert-Butylbenzene	< 1.0		μ g/ l	1.0						
Carbon disulfide	< 2.0		μg/l	2.0						
Carbon tetrachloride	< 1.0		μg/l	1.0						
Chlorobenzene	< 1.0		μ g/ l	1.0						
Chloroethane	< 2.0		μg/l	2.0						
Chloroform	< 1.0		μg/l	1.0						
Chloromethane	< 2.0		μg/l	2.0						
2-Chlorotoluene	< 1.0		μg/l	1.0						
4-Chlorotoluene	< 1.0		μg/l	1.0						
1,2-Dibromo-3-chloropropane	< 2.0		μg/l	2.0						
Dibromochloromethane	< 0.5		μg/l	0.5						
1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5						
Dibromomethane	< 1.0		μg/l	1.0						
1,2-Dichlorobenzene	< 1.0		μg/l	1.0						
1,3-Dichlorobenzene	< 1.0		μg/l	1.0						
1,4-Dichlorobenzene	< 1.0		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0						
1,1-Dichloroethane	< 1.0		μg/l	1.0						
1,2-Dichloroethane	< 1.0		μg/l	1.0						
1,1-Dichloroethene	< 1.0		μg/l	1.0						
cls-1,2-Dichloroethene	< 1.0		μg/l	1.0						
trans-1,2-Dichloroethene	< 1.0		μg/l	1.0						
1,2-Dichloropropane	< 1.0		μg/l	1.0						
1,3-Dichloropropane	< 1.0		μg/l	1.0						
2,2-Dichloropropane	< 1.0		μg/l	1.0						
1,1-Dichloropropene	< 1.0		μg/l	1.0						
cis-1,3-Dichloropropene	< 0.5		μg/l	0.5						
trans-1,3-Dichloropropene	< 0.5		μg/l	0.5						
Ethylbenzene	< 1.0		μg/l	1.0						
Hexachlorobutadiene	< 0.5		μg/l	0.5						
2-Hexanone (MBK)	< 10.0		μg/l	10.0						
Isopropylbenzene	< 1.0		μg/l	1.0						
4-Isopropyltoluene	< 1.0		μg/l	1.0						
Methyl tert-butyl ether	< 1.0		μ g/ l	1.0						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0						
Methylene chloride	< 2.0		μg/l	2.0						
Naphthalene	< 1.0		μg/l	1.0						
n-Propylbenzene	< 1.0		µg/l	1.0						
Styrene	< 1.0		μg/l	1.0						
1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0						
1,1,2,2-Tetrachloroethane	< 0.5		µg/l	0.5						
Tetrachloroethene	< 1.0		μ g/ l	1.0						
Toluene	< 1.0		μ g/ l	1.0						
1,2,3-Trichlorobenzene	< 1.0		μ g/ Ι	1.0						
1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0						
1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0						
1,1,1-Trichloroethane	< 1.0		μg/l	1.0						
1,1,2-Trichloroethane	< 1.0		μg/l	1.0						
Trichloroethene	< 1.0		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424392 - SW846 5030 Water MS										
Blank (1424392-BLK1)					Pre	pared & Analy	zed: 16-Oct-14			
1,2,3-Trichloropropane	< 1.0		µg/l	1.0						
1,2,4-Trimethylbenzene	< 1.0		µg/l	1.0						
1,3,5-Trimethylbenzene	< 1.0		µg/l	1.0						
Vinyl chloride	< 1.0		μg/l	1.0						
m,p-Xylene	< 2.0		μg/l	2.0						
o-Xylene	< 1.0		µg/l	1.0						
Tetrahydrofuran	< 2.0		µg/l	2.0						
Ethyl ether	< 1.0		µg/l	1.0						
Tert-amyl methyl ether	< 1.0		µg/l	1.0						
Ethyl tert-butyl ether	< 1.0		μg/l	1.0						
Di-isopropyl ether	< 1.0		μg/l	1.0						
Tert-Butanol / butyl alcohol	< 10.0		μ g/ l	10.0						
1,4-Dioxane	< 20.0		μg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.0		μg/l	5.0						
Ethanol	< 400		μg/l	400						
Surrogate: 4-Bromoftuorobenzene	49.6		µg/l		50.0		99	70-130		
Surrogate: Toluene-d8	48.1		μg/l		50.0		96	70-130		
Surrogate: 1,2-Dichloroethane-d4	42.0		μg/l		50.0		84	70-130		
Surrogate: Dibromoftuoromethane	43.2				50.0		86	70-130		
-	40.2		µg/l							
LCS (1424392-BS1)	24.2				·	pared & Analy	zed: 16-Oct-14			
1,1,2-Trichlorotrifluoroethane (Freon 113)	21.0		μg/l		20.0		105	70-130		
Acetone	20.5		hā/j		20.0		102	70-130		
Acrylonitrile	21.7		µg/l		20.0		108	70-130		
Benzene	21.9		µg/l		20.0		109	70-130		
Bromobenzene	21.4		µg/i		20.0		107	70-130		
Bromochloromethane	23.4		µg/l		20.0		117	70-130		
Bromodichloromethane	21,2		µg/l		20.0		106	70-130		
Bromoform	20.3		µg/l		20.0		102	70-130		
Bromomethane	24.1		µg/l		20,0		120	70-130		
2-Butanone (MEK)	12.8		µg/l		20,0		64	70-130		
n-Butylbenzene	23.1		µg/l		20.0		116	70-130		
sec-Butylbenzene	22.8		µg/l		20.0		114	70-130		
tert-Butylbenzene	23.5		µg/l		20.0		118	70-130		
Carbon disulfide	22.7		μg/l		20.0		113	70-130		
Carbon tetrachloride	20.9		µg/l		20.0		105	70-130		
Chlorobenzene	20.3		µg/l		20.0		101	70-130		
Chloroethane	24.1		μg/l		20.0		121	70-130		
Chloroform	21,4		µg/l		20.0		107	70-130		
Chloromethane	24.0		μg/l		20.0		120	70-130		
2-Chlorotoluene	21.6		µg/l		20.0		108	70-130		
4-Chlorotoluene	22.0		µg/l		20.0		110	70-130		
1,2-Dibromo-3-chloropropane	21.9		μ g/ l		20.0		110	70-130		
Dibromochloromethane	21.4		μg/l		20.0		107	70-130		
1,2-Dibromoethane (EDB)	22.6		μg/l		20.0		113	70-130		
Dibromomethane	21.9		μg/l		20,0		110	70-130		
1,2-Dichlorobenzene	21.0		hā\J		20.0		105	70-130		
1,3-Dichlorobenzene	21.4		μg/l		20.0		107	70-130		
1,4-Dichlorobenzene	18.9		μ 9 /Ι		20.0		95	70-130		
Dichlorodifluoromethane (Freon12)	23.0		hā\j		20.0		115	70-130		
1,1-Dichloroethane	22.4				20.0		112	70-130 70-130		
i, i-Didilioloctriarie	<i>22.</i> 4		μg/l		20.0		114	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1424392 - SW846 5030 Water MS										
LCS (1424392-BS1)					Pre	pared & Analy	zed: 16-Oct-14			
1,1-Dichloroethene	20.8		μg/l		20.0		104	70-130		
cis-1,2-Dichloroethene	21.6		μg/l		20.0		108	70-130		
trans-1,2-Dichloroethene	21.7		μg/l		20.0		109	70-130		
1,2-Dichloropropane	21.9		µg/l		20.0		109	70-130		
1,3-Dichloropropane	21.2		μ g/ l		20.0		106	70-130		
2,2-Dichloropropane	25.0		μg/l		20.0		125	70-130		
1,1-Dichloropropene	22.0		µg/l		20.0		110	70-130		
cls-1,3-Dichloropropene	20.4		µg/l		20.0		102	70-130		
trans-1,3-Dichloropropene	20,5		µg/l		20.0		103	70-130		
Ethylbenzene	22.1		μg/l		20,0		111	70-130		
Hexachlorobutadiene	21.1		µg/l		20,0		105	70-130		
2-Hexanone (MBK)	22.3		µg/l		20,0		111	70-130		
Isopropylbenzene	20.9		μg/l		20.0		104	70-130		
4-Isopropyltoluene	21.9		μg/l		20.0		109	70-130		
Methyl tert-butyl ether	18.2		μg/l		20.0		91	70-130		
4-Methyl-2-pentanone (MIBK)	22.6		μg/l		20.0		113	70-130		
Methylene chloride	20.2		μ g/ l		20.0		101	70-130		
Naphthalene	21.3		μ g/ l		20.0		106	70-130		
n-Propylbenzene	22.6		μg/l		20.0		113	70-130		
Styrene	23.5		μg/l		20,0		118	70-130		
1,1,1,2-Tetrachioroethane	22,2		μ g/ l		20.0		111	70-130		
1,1,2,2-Tetrachioroethane	22.2		μg/l		20.0		111	70-130		
Tetrachloroethene	21.2		µg/l		20,0		106	70-130		
Toluene	20.9		μ g/ l		20,0		105	70-130		
1,2,3-Trichlorobenzene	22.7		μg/l		20.0		114	70-130		
1,2,4-Trichlorobenzene	22.5		μ g/ l		20.0		112	70-130		
1,3,5-Trichlorobenzene	21.7		μ g/ l		20,0		108	70-130		
1,1,1-Trichloroethane	21.6		μ g/ l		20.0		108	70-130		
1,1,2-Trichloroethane	21.0		μ g/ Ι		20.0		105	70-130		
Trichloroethene	20.3		μg/l		20.0		102	70-130		
Trichlorofluoromethane (Freon 11)	21,5		μg/l		20.0		107	70-130		
1,2,3-Trichloropropane	21.1		μg/I		20.0		106	70-130		
1,2,4-Trimethylbenzene	23.3		μg/l		20.0		117	70-130		
1,3,5-Trimethylbenzene	22.9		μg/l		20.0		114	70-130		
Vinyl chloride	23.5		μ g/ l		20.0		118	70-130		
m,p-Xylene	21.7		μg/l		20.0		108	70-130		
o-Xylene	22.5		μg/l		20,0		112	70-130		
Tetrahydrofuran	19.9		μ g/ Ι		20,0		99	70-130		
Ethyl ether	20.0		μg/l		20,0		100	70-130		
Tert-arryl methyl ether	20.0		μg/l		20.0		100	70-130		
Ethyl tert-butyl ether	20.6		μg/l		20.0		103	70-130		
Di-isopropyl ether	18.0		μg/l		20.0		90	70-130		
Tert-Butanol / butyl alcohol	189		μg/l		200		94	70-130		
1,4-Dioxane	222		μg/l		200		111	70-130		
trans-1,4-Dichloro-2-butene	18.7		μg/I		20.0		94	70-130		
Ethanol	485		µg/l		400		121	70-130		
Surrogate: 4-Bromofluorobenzene	50.7		hā\J		50.0		101	70-130		
Surrogate: Toluene-d8	50.5		μg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.0		μg/l		50.0		100	70-130		
Surrogate: Dibromofluoromethane	53.7		ha\j		50.0		107	70-130		
LCS Dup (1424392-BSD1)	<i>50.1</i>		ha.			pared & Analy				

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
tch 1424392 - SW846 5030 Water MS										
LCS Dup (1424392-BSD1)					<u>Pre</u>	pared & Analy	zed: 16-Oct-14	<u> </u>		
1,1,2-Trichlorotrifluoroethane (Freon 113)	17.7		μg/l		20.0		89	70-130	17	20
Acetone	18.9		µg/l		20.0		95	70-130	8	20
Acrylonitrile	20.6		μg/l		20.0		103	70-130	5	20
Benzene	19.0		µg/l		20.0		95	70-130	14	20
Bromobenzene	19.1		µg/l		20.0		95	70-130	12	20
Bromochloromethane	21.2		µg/l		20.0		106	70-130	10	20
Bromodichloromethane	18.8		µg/l		20.0		94	70-130	12	20
Bromoform	19.1		µg/l		20,0		96	70-130	6	20
Bromomethane	20.4		µg/l		20.0		102	70-130	18	20
2-Butanone (MEK)	25.0	QR5	μg/l		20.0		125	70-130	65	20
n-Butylbenzene	20.3		µg/l		20,0		101	70-130	13	20
sec-Butylbenzene	19.7		µg/l		20,0		99	70-130	14	20
tert-Butylbenzene	20.2		μg/l		20.0		101	70-130	16	20
Carbon disulfide	19.5		µg/l		20.0		97	70-130	15	20
Carbon tetrachloride	18.0		µg/l		20.0		90	70-130	15	20
Chlorobenzene	18.1		µg/l		20.0		90	70-130	11	20
Chloroethane	19.9		µg/l		20.0		100	70-130	19	20
Chloroform	18.8		µg/l		20.0		94	70-130	13	20
Chloromethane	19,7		µg/l		20.0		99	70-130	20	20
2-Chlorotoluene	20.1		µg/l		20.0		100	70-130	7	20
4-Chlorotoluene	19.8		µg/l		20.0		99	70-130	10	20
1,2-Dibromo-3-chloropropane	20.5		μg/l		20.0		102	70-130	7	20
Dibromochloromethane	19.4		µg/l		20.0		97	70-130	10	20
1,2-Dibromoethane (EDB)	20.2		µg/l		20.0		101	70-130	11	20
Dibromomethane	19.4		μg/l		20.0		97	70-130	12	20
1,2-Dichlorobenzene	19.2		µg/l		20.0		96	70-130	9	20
1,3-Dichlorobenzene	19.2		µg/l		20,0		96	70-130	11	20
1,4-Dichlorobenzene	17. <i>4</i>		µg/l		20.0		87	70-130	8	20
Dichlorodifluoromethane (Freon12)	19.0		µg/l		20.0		95	70-130	19	20
1,1-Dichloroethane	12.9	QM9, QR5	µg/l		20.0		65	70-130	54	20
1,2-Dichloroethane	18.5		µg/l		20.0		92	70-130	13	20
1,1-Dichloroethene	17.8		µg/l		20.0		89	70-130	16	20
cis-1,2-Dichloroethene	20.9		µg/l		20.0		104	70-130	4	20
trans-1,2-Dichloroethene	18.3		μ g/ l		20.0		92	70-130	17	20
1,2-Dichloropropane	19.2		µg∕l		20,0		96	70-130	13	20
1,3-Dichloropropane	19.1		µg/l		20.0		95	70-130	10	20
2,2-Dichloropropane	20.7		μg/l		20.0		104	70-130	19	20
1,1-Dichloropropene	18.4		µg/l		20,0		92	70-130	18	20
cis-1,3-Dichloropropene	18.5		μ g/ l		20.0		93	70-130	10	20
trans-1,3-Dichloropropene	18.6		μg/l		20.0		93	70-130	10	20
Ethylbenzene	19.8		µg/l		20.0		99	70-130	11	20
Hexachlorobutadiene	18.9		μ g/ l		20.0		95	70-130	11	20
2-Hexanone (MBK)	20.0		μg/l		20.0		100	70-130	11	20
Isopropylbenzene	18.9		μg/l -		20.0		95	70-130	10	20
4-Isopropyltoluene	20.0	~	μg/l		20.0		100	70-130	9	20
Methyl tert-butyl ether	10.2	QM9, QR5	μ g/ l		20.0		51	70-130	57	20
4-Methyl-2-pentanone (MIBK)	20.6		μg/l -		20.0		103	70-130	9	20
Methylene chloride	18.1		µg/l		20.0		90	70-130	11	20
Naphthalene	20.3		μg/l		20,0		101	70-130	5	20
n-Propylbenzene	19.4		µg/l		20.0		97	70-130	18	20

alyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
tch 1424392 - SW846 5030 Water MS										
LCS Dup (1424392-BSD1)					<u>Pre</u>	pared & Analy	zed: 16-Oct-14			
1,1,1,2-Tetrachloroethane	20.7		μg/l		20.0		104	70-130	7	20
1,1,2,2-Tetrachloroethane	21.1		μg/l		20.0		105	70-130	5	20
Tetrachloroethene	18.2		μg/l		20.0		91	70-130	15	20
Toluene	18.3		μg/l		20.0		91	70-130	14	20
1,2,3-Trichlorobenzene	21.2		μ g/ l		20.0		106	70-130	7	20
1,2,4-Trichlorobenzene	20.9		μg/I		20.0		104	70-130	7	20
1,3,5-Trichlorobenzene	19.5		μg/l		20.0		98	70-130	11	20
1,1,1-Trichloroethane	18.7		µg/l		20.0		94	70-130	14	20
1,1,2-Trichloroethane	19,1		µg/l		20.0		96	70-130	10	20
Trichloroethene	17.6		μg/l		20,0		88	70-130	15	20
Trichlorofluoromethane (Freon 11)	18.0		μg/l		20.0		90	70-130	17	20
1,2,3-Trichloropropane	19.7		μg/l		20,0		99	70-130	7	20
1,2,4-Trimethylbenzene	20.5		μg/l		20.0		103	70-130	13	20
1,3,5-Trimethylbenzene	20.6		μg/l		20.0		103	70-130	11	20
Vinyl chloride	19.3		μ g/ l		20.0		96	70-130	20	20
m,p-Xylene	19.3		μg/l		20.0		96	70-130	12	20
o-Xylene	19.7				20.0		99	70-130	13	20
Tetrahydrofuran	19.4		µg/l		20.0		97	70-130 70-130	2	20
Ethyl ether	18,4		µg/l		20.0		92	70-130 70-130	9	20
Tert-amyl methyl ether	18.6		µg/l		20.0		93		9 7	20
• •	18.7		μg/l				93	70-130		
Ethyl tert-butyl ether			μg/l		20.0		93 104	70-130	10	20
Di-isopropyl ether	20.8		µg/l		20.0			70-130	15	20
Tert-Butanol / butyl alcohol	176		µg/i		200		88	70-130	7	20
1,4-Dioxane	189		μg/l		200		94	70-130	16	20
trans-1,4-Dichloro-2-butene	18.2		μg/l -		20.0		91	70-130	3	20
Ethanol	454		µg/l		400		113	70-130	7	20
Surrogate: 4-Bromofituorobenzene	50.8		µg∕l		50.0		102	70-130		
Surrogate: Toluene-d8	50.3		µg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.8		µg/l		50.0		98	70-130		
Surrogate: Dibromofluoromethane	54.9		µg/l		50.0		110	70-130		
<u> Matrix Spike (1424392-MS1)</u>			Source: SE	<u> 98028-18</u>	<u>Pre</u>	pared & Analy	zed: 16-Oct-14			
1,1,2-Trichlorotrifluoroethane (Freon 113)	21.6		µg/l		20.0	BRL	108	70-130		
Acetone	16.6		µg/l		20.0	BRL	83	70-130		
Acrylonitrile	18.9		μg/l		20.0	BRL	94	70-130		
Benzene	19.8		μg/l		20.0	BRL	99	70-130		
Bromobenzene	20.7		μg/l		20.0	BRL	104	70-130		
Bromochloromethane	18.8		μg/l		20.0	BRL	94	70-130		
Bromodichloromethane	19.6		μ g/ l		20.0	BRL	98	70-130		
Bromoform	19.9		µg/l		20.0	BRL	99	70-130		
Bromomethane	20.4		μg/l		20.0	BRL	102	70-130		
2-Butanone (MEK)	17.8		µg/l		20.0	BRL	89	70-130		
n-Butylbenzene	24.8		μ g/ l		20,0	BRL	124	70-130		
sec-Butylbenzene	23.5		μg/l		20.0	BRL	117	70-130		
tert-Butylbenzene	23.8		μg/l		20.0	BRL	119	70-130		
Carbon disulfide	18.8		μg/l		20,0	BRL	94	70-130		
Carbon tetrachloride	19.9		μg/l		20.0	BRL	99	70-130		
Chlorobenzene	19.6		μg/l		20.0	BRL	98	70-130		
Chloroethane	21.0		μg/l		20.0	BRL	105	70-130		
Chloroform	16.6		hā\j		20.0	BRL	83	70-130		
	10.0		HAN.		20.0			75-130		
Chloromethane	20.2		μ g/ l		20.0	BRL	101	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424392 - SW846 5030 Water MS										
Matrix Spike (1424392-MS1)		Se	ource: SE	98028-18	Pre	pared & Analy	zed: 16-Oct-14			
4-Chlorotoluene	22.2		µg/l		20.0	BRL	111	70-130		
1,2-Dibromo-3-chloropropane	18.3		μg/l		20.0	BRL	92	70-130		
Dibromochloromethane	20.6		μg/I		20.0	BRL	103	70-130		
1,2-Dibromoethane (EDB)	20.2		μg/l		20.0	BRL	101	70-130		
Dibromomethane	19.7		μg/l		20.0	BRL	99	70-130		
1.2-Dichlorobenzene	19.8		μg/l		20.0	BRL	99	70-130		
1,3-Dichlorobenzene	21.6		µg/l		20.0	BRL	108	70-130		
1,4-Dichlorobenzene	18.8		µg/l		20,0	BRL	94	70-130		
Dichlorodifluoromethane (Freon12)	21.0		μg/l		20.0	BRL	105	70-130		
1,1-Dichloroethane	20.8		μg/l		20,0	BRL	104	70-130		
1,2-Dichloroethane	18.8		μg/l		20,0	BRL	94	70-130		
1,1-Dichloroethene	19.2		μg/l		20,0	BRL	96	70-130		
cis-1,2-Dichloroethene	20.5		μg/l		20.0	BRL	102	70-130		
trans-1,2-Dichloroethene	19.3		μg/l		20.0	BRL	97	70-130		
1,2-Dichloropropane	20.0		µg/l		20.0	BRL	100	70-130		
1,3-Dichloropropane	19.6				20.0	BRL	98	70-130		
2,2-Dichloropropane	22.5		µg/l		20.0	BRL	113			
• •			µg/l					70-130		
1,1-Dichloropropene	20.8		µg/l		20.0	BRL	104	70-130		
cis-1,3-Dichloropropene	19.5		μg/l		20.0	BRL	98	70-130		
trans-1,3-Dichloropropene	19.5		µg/l		20.0	BRL	97	70-130		
Ethylbenzene	21.9		µg/l		20.0	BRL	109	70-130		
Hexachlorobutadiene	22.6		µg/l		20.0	BRL	113	70-130		
2-Hexanone (MBK)	17.3		µg/l		20,0	BRL	86	70-130		
Isopropylbenzene	21.2		µg/l		20.0	BRL	106	70-130		
4-Isopropyltoluene	22.9		µg/l		20.0	BRL	11 4	70-130		
Methyl tert-butyl ether	15.5		µg/l		20.0	BRL	77	70-130		
4-Methyl-2-pentanone (MIBK)	18.1		µg/l		20,0	BRL	90	70-130		
Methylene chloride	18.2		µg/l		20.0	BRL	91	70-130		
Naphthalene	18.5		µg/l		20.0	BRL	92	70-130		
n-Propylbenzene	24.3		μg/l		20.0	BRL	121	70-130		
Styrene	23.2		µg/l		20.0	BRL	116	70-130		
1,1,1,2-Tetrachloroethane	22.0		µg/l		20.0	BRL	110	70-130		
1,1,2,2-Tetrachloroethane	21.2		μg/l		20.0	BRL	106	70-130		
Tetrachloroethene	21.1		μg/l		20.0	BRL	105	70-130		
Toluene	19.6		μg/I		20.0	BRL	98	70-130		
1,2,3-Trichlorobenzene	21.4		μg/I		20.0	BRL	107	70-130		
1,2,4-Trichlorobenzene	22.6		μg/l		20.0	BRL	113	70-130		
1,3,5-Trichlorobenzene	22.4		μg/l		20,0	BRL	112	70-130		
1,1,1-Trichloroethane	20.2		μg/l		20.0	BRL	101	70-130		
1,1,2-Trichloroethane	19.7		µg/l		20.0	BRL	99	70-130		
Trichloroethene	18.1		μg/l		20.0	BRL	90	70-130		
Trichlorofluoromethane (Freon 11)	20.0		μg/l		20.0	BRL	100	70-130		
1,2,3-Trichloropropane	18.8		μg/l		20.0	BRL	94	70-130		
1,2,4-Trimethylbenzene	23.4		μg/l		20.0	BRL	117	70-130		
1,3,5-Trimethylbenzene	23.6				20.0	BRL	118	70-130		
Vinyl chloride	20.9		µg/l ug/l		20.0	BRL	104	70-130 70-130		
m,p-Xylene	20.9		µg/l		20.0	BRL	109	70-130 70-130		
			µg/l							
o-Xylene	21.9 47.9		µg/l		20.0	BRL	109	70-130		
Tetrahydrofuran	17.8		µg/l		20,0	BRL	89	70-130		
Ethyl ether	18.0		μg/l		20,0	BRL	90	70-130		
Tert-amyl methyl ether Ethyl tert-butyl ether	18.5 14.0		μ g/ 1 μ g/ 1		20,0 20.0	BRL BRL	92 70	70-130 70-130		

alyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Limi
tch 1424392 - SW846 5030 Water MS										
Matrix Spike (1424392-MS1)			Source: SE	398028-18	Pre	pared & Analy	zed: 16-Oct-14	<u>.</u>		
Di-isopropyl ether	18.2		µg/l		20.0	BRL	91	70-130		
Tert-Butanol / butyl alcohol	167		μ g/ Ι		200	BRL	83	70-130		
1,4-Dioxane	173		μg/l		200	BRL	87	70-130		
trans-1,4-Dichloro-2-butene	17.8		μ g/ l		20.0	BRL	89	70-130		
Ethanol	385		μ g/ l		400	BRL	96	70-130		
Surrogate: 4-Bromoftuorobenzene	51.9		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	48 .7		μg/l		50.0		97	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.8		μ g/ Ι		50.0		100	70-130		
Surrogate: Dibromoftuoromethane	45.8		μ g/ Ι		50.0		92	70-130		
Matrix Spike Dup (1424392-MSD1)			Source: SE	198028-18	Pre	nared & Analy	zed: 16-Oct-14			
1,1,2-Trichiorotrifiuoroethane (Freon 113)	21,4		µg/l	7000 <u>20-10</u>	20.0	BRL	107	: 70-130	0.7	20
Acetone	21.8	QR5			20.0	BRL	109	70-130	27	20
Acrylonitrile	21.0	4110	μg/l		20.0	BRL	113	70-130 70-130		20
Acryoniulie Benzene			hð/J						18 7	20
	21.3		µg/l		20.0	BRL	106	70-130 70-130	7	
Bromoblersmethane	21.6		µg/l		20,0	BRL	108	70-130	4	20
Bromochloromethane	20.0		μ g/ l		20.0	BRL	100	70-130	6	20
Bromodichloromethane	21.0		µg/l		20,0	BRL	105	70-130	7	20
Bromoform -	21.6		µg/l		20,0	BRL	108	70-130	8	20
Bromomethane	21.6		µg/l		20.0	BRL	108	70-130	6	20
2-Butanone (MEK)	19.6		µg/l		20.0	BRL	98	70-130	10	20
n-Butylbenzene	24.9		µg/l		20.0	BRL	124	70-130	0.5	20
sec-Butylbenzene	23.6		µg/l		20.0	BRL	118	70-130	0.6	20
tert-Butylbenzene	24.2		µg/l		20.0	BRL	121	70-130	2	20
Carbon disulfide	18.8		µg/I		20.0	BRL	94	70-130	0.05	20
Carbon tetrachloride	20.4		µg/l		20.0	BRL	102	70-130	3	20
Chlorobenzene	20.6		μg/l		20.0	BRL	103	70-130	5	20
Chloroethane	21.8		µg/l		20.0	BRL	109	70-130	4	20
Chloroform	17.8		μg/l		20.0	BRL	89	70-130	7	20
Chloromethane	20.5		μg/l		20,0	BRL	102	70-130	2	20
2-Chlorotoluene	20.6		µg∕l		20,0	BRL	103	70-130	2	20
4-Chlorotoluene	23.0		μg/l		20.0	BRL	115	70-130	3	20
1,2-Dibromo-3-chloropropane	22.5		μg/l		20.0	BRL	112	70-130	20	20
Dibromochloromethane	21.5		µg/l		20.0	BRL	108	70-130	4	20
1,2-Dibromoethane (EDB)	22.0		μg/l		20.0	BRL	110	70-130	9	20
Dibromomethane	21.0		μg/l		20.0	BRL	105	70-130	7	20
1,2-Dichlorobenzene	21.8		μg/l		20.0	BRL	109	70-130	9	20
1,3-Dichlorobenzene	22.0		μg/l		20.0	BRL	110	70-130	1	20
1,4-Dichlorobenzene	20.0		µg/l		20,0	BRL	100	70-130	6	20
Dichlorodifluoromethane (Freon12)	20,5		μg/l		20.0	BRL	102	70-130	3	20
1,1-Dichloroethane	21.6		μg/l		20.0	BRL	108	70-130	4	20
1,2-Dichloroethane	20.1		μg/l		20,0	BRL	101	70-130	7	20
1,1-Dichloroethene	19.6		μg/l		20,0	BRL	98	70-130	2	20
cis-1,2-Dichloroethene	21.4		μg/l		20.0	BRL	107	70-130	4	20
trans-1,2-Dichloroethene	20.0		μg/l		20.0	BRL	100	70-130	4	20
1,2-Dichloropropane	21.8		µg∕l		20,0	BRL	109	70-130	8	20
1,3-Dichloropropane	20.9		μg/l		20.0	BRL	104	70-130	6	20
2,2-Dichloropropane	22.3		µg/I		20.0	BRL	112	70-130	1	20
1,1-Dichloropropene	22.3 21.1				20.0	BRL	106	70-130 70-130	1	20
cis-1,3-Dichloropropene	20.3		µg/l		20.0	BRL	101			20
			µg/l					70-130 70-130	4	
trans-1,3-Dichloropropene	19.6		µg/l		20.0	BRL	98	70-130	0.9	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424392 - SW846 5030 Water MS										
Matrix Splke Dup (1424392-MSD1)			Source: SE	398028-18	Pre	pared & Analy	zed: 16-Oct-14	:		
Hexachlorobutadiene	22.3		μg/l		20.0	BRL	112	70-130	1	20
2-Hexanone (MBK)	22.8	QR5	μg/l		20.0	BRL	114	70-130	27	20
Isopropylbenzene	22.1		µg/l		20.0	BRL	110	70-130	4	20
4-Isopropyltoluene	23.4		µg/l		20.0	BRL	117	70-130	2	20
Methyl tert-butyl ether	17.3		μg/I		20.0	BRL	87	70-130	11	20
4-Methyl-2-pentanone (MIBK)	23.6	QR5	μg/l		20.0	BRL	118	70-130	27	20
Methylene chloride	18.9		µg/l		20.0	BRL	94	70-130	3	20
Naphthalene	22.9	QR5	µg/l		20,0	BRL	114	70-130	21	20
n-Propylbenzene	24.8		µg/l		20.0	BRL	124	70-130	2	20
Styrene	23.9		μg/l		20,0	BRL	120	70-130	3	20
1,1,1,2-Tetrachloroethane	23.6		µg/l		20,0	BRL	118	70-130	7	20
1,1,2,2-Tetrachloroethane	25.0		µg/l		20,0	BRL	125	70-130	16	20
Tetrachloroethene	20.6		μg/l		20.0	BRL	103	70-130	2	20
Toluene	20.6		µg/l		20.0	BRL	103	70-130	5	20
1,2,3-Trichlorobenzene	23.8		μg/l		20.0	BRL	119	70-130	11	20
1,2,4-Trichlorobenzene	23.8		μg/l		20.0	BRL	119	70-130	5	20
1,3,5-Trichlorobenzene	23.1		μg/l		20.0	BRL	115	70-130	3	20
1,1,1-Trichloroethane	20.5		μg/l		20.0	BRL	102	70-130	1	20
1,1,2-Trichloroethane	21.6		μg/l		20.0	BRL	108	70-130	9	20
Trichloroethene	19.3		µg/l		20.0	BRL	97	70-130	7	20
Trichlorofluoromethane (Freon 11)	20.2		µg/l		20.0	BRL	101	70-130	1	20
1,2,3-Trichloropropane	21.9		μg/l		20.0	BRL	110	70-130	15	20
1,2,4-Trimethylbenzene	23.7		µg/l		20.0	BRL	119	70-130	1	20
1,3,5-Trimethylbenzene	24.1		µg/l		20.0	BRL	121	70-130	2	20
Vinyl chloride	20.6		μg/l		20.0	BRL	103	70-130	1	20
m,p-Xylene	22.7		μg/l		20.0	BRL	114	70-130	4	20
o-Xylene	23.1		μg/l		20,0	BRL	115	70-130	5	20
Tetrahydrofuran	21.1		μ g/ Ι		20.0	BRL	105	70-130	17	20
Ethyl ether	20.2		μ g/ Ι		20.0	BRL	101	70-130	11	20
Tert-amyl methyl ether	20.3		μg/l		20.0	BRL	102	70-130	9	20
Ethyl tert-butyl ether	15,6		μ g/ l		20.0	BRL	78	70-130	10	20
Di-isopropyl ether	18.6		μ g/ l		20.0	BRL	93	70-130	2	20
Tert-Butanol / butyl alcohol	200		μg/l		200	BRL	100	70-130	18	20
1,4-Dioxane	217	QR5	μg/l		200	BRL	109	70-130	22	20
trans-1,4-Dichloro-2-butene	19.3		μg/l		20.0	BRL	97	70-130	8	20
Ethanol	480	QR5	μg/l		400	BRL	120	70-130	22	20
Surrogate: 4-Bromofkuorobenzene	51.6		µg/I		50.0		103	70-130		
Surrogate: Toluene-d8	49.6		µg/l		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.9		µg/l		50.0		100	70-130		
Surrogate: Dibromoftuoromethane	45.9		µg/l		50.0		92	70-130		
latch 1424395 - SW846 5030 Water MS										
Blank (1424395-BLK1)					Pre	pared & Analy	zed: 16-Oct-14	:		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.0		µg/l	1.0						
Acetone	< 10.0		µg/l	10.0						
Acrylonitrile	< 0.5		µg/l	0.5						
Benzene	< 1.0		μg/l	1.0						
Bromobenzene	< 1.0		μg/l	1.0						
Bromochloromethane	< 1.0		µg/l	1.0						
Bromodichloromethane	< 0.5		µg/l	0.5						
Bromoform	< 1.0		µg/l	1.0						
Bromomethane	< 2.0		μg/l	2.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424395 - SW846 5030 Water MS										
Blank (1424395-BLK1)					<u>Pre</u>	pared & Analy	/zed: 16-Oct-14	:		
2-Butanone (MEK)	< 10.0		µg/l	10.0						
n-Butylbenzene	< 1.0		µg/l	1.0						
sec-Butylbenzene	< 1.0		μg/l	1.0						
tert-Butylbenzene	< 1.0		µg/l	1.0						
Carbon disulfide	< 2.0		μg/l	2.0						
Carbon tetrachloride	< 1.0		µg/l	1.0						
Chlorobenzene	< 1.0		μg/l	1.0						
Chlorcethane	< 2.0		μg/l	2.0						
Chloroform	< 1.0		μg/l	1.0						
Chloromethane	< 2.0		μg/l	2.0						
2-Chlorotoluene	< 1.0		μg/l	1.0						
4-Chlorotoluene	< 1.0		μg/l	1.0						
1,2-Dibromo-3-chloropropane	< 2.0		μg/l	2.0						
Dibromochloromethane	< 0.5		μg/l	0.5						
1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5						
Dibromomethane	< 1.0		μg/l	1.0						
1,2-Dichlorobenzene	< 1.0		μg/l	1.0						
1,3-Dichlorobenzene	< 1.0		µg/l	1.0						
1,4-Dichlorobenzene	< 1.0		µg/l	1.0						
Dichlorodifluoromethane (Freon12)	< 2.0		µg/l	2.0						
1,1-Dichloroethane	< 1.0		μg/l	1.0						
1,2-Dichloroethane	< 1.0		μg/l	1.0						
1,1-Dichloroethene	< 1.0		μg/l	1.0						
cis-1,2-Dichloroethene	< 1.0		μg/l	1.0						
trans-1,2-Dichloroethene	< 1.0		μg/l	1.0						
1,2-Dichloropropane	< 1.0		μg/l	1.0						
1,3-Dichloropropane	< 1.0		μ g/ l	1.0						
2,2-Dichloropropane	< 1.0		μ g/ l	1.0						
1,1-Dichloropropene	< 1.0		μ g/ l	1.0						
cis-1,3-Dichloropropene	< 0.5		μg/l	0.5						
trans-1,3-Dichloropropene	< 0.5		μg/l	0.5						
Ethylbenzene	< 1.0		μg/I	1.0						
Hexachlorobutadiene	< 0.5		μg/l	0.5						
2-Hexanone (MBK)	< 10.0		μg/l	10.0						
Isopropylbenzene	< 1.0		μg/l	1.0						
4-Isopropyltoluene	< 1.0		μg/l	1.0						
Methyl tert-butyl ether	< 1.0		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0						
Methylene chloride	< 2.0		μg/l	2.0						
Naphthalene	< 1.0		μg/l	1.0						
n-Propylbenzene	< 1.0		μg/l	1.0						
Styrene	< 1.0		μg/l	1.0						
1,1,1,2-Tetrachloroethane	< 1.0		µg∕l	1.0						
1,1,2,2-Tetrachloroethane	< 0.5		μ g/ l	0.5						
Tetrachloroethene	< 1.0		μg/l	1.0						
Toluene	< 1.0		hā,	1.0						
1,2,3-Trichlorobenzene	< 1.0		μ g/ i	1.0						
1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0						
1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0						
1,1,1-Trichloroethane	< 1.0		μg/l	1.0						
1,1,2-Trichloroethane	< 1.0		hā\I	1.0						
Trichloroethene	< 1.0		и у и ру/I	1.0						

.nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424395 - SW846 5030 Water MS										
Blank (1424395-BLK1)					<u>Pre</u>	pared & Analy	zed: 16-Oct-14			
Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0						
1,2,3-Trichloropropane	< 1.0		μg/l	1.0						
1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0						
1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.0		μ g/ l	1.0						
m,p-Xylene	< 2.0		μg/I	2.0						
o-Xylene	< 1.0		μg/l	1.0						
- Tetrahydrofuran	< 2.0		µg/l	2.0						
Ethyl ether	< 1.0		μg/l	1.0						
Tert-amyl methyl ether	< 1.0		μg/l	1.0						
Ethyl tert-butyl ether	< 1.0		µg/l	1.0						
Di-isopropyl ether	< 1.0		μg/l	1.0						
Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0						
1,4-Dioxane	< 20.0		μg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.0		µg/l	5.0						
Ethanol	< 400		μg/l	400						
				-100			400			
Surrogate: 4-Bromoftuorobenzene	50.2		μg/l -		50.0		100	70-130		
Surrogate: Toluene-d8	49.4		µg/l		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.1		µg/i		50.0		102	70-130		
Surrogate: Dibromofluoromethane	49.6		µg∕l		50.0		99	70-130		
LCS (1424395-BS1)					<u>Pre</u>	pared & Analy	zed: 16-Oct-14			
1,1,2-Trichlorotrifluoroethane (Freon 113)	22.3		µg/l		20.0		112	70-130		
Acetone	19.4		µg/l		20.0		97	70-130		
Acrylonitrile	21.8		µg/l		20.0		109	70-130		
Benzene	21.2		µg/l		20.0		106	70-130		
Bromobenzene	21.2		μg/l		20.0		106	70-130		
Bromochloromethane	23.8		µg/l		20.0		119	70-130		
Bromodichloromethane	21.9		μg/l		20.0		109	70-130		
Bromoform	24.5		μg/l		20,0		122	70-130		
Bromomethane	19.7		μg/l		20,0		98	70-130		
2-Butanone (MEK)	23.2		μg/l		20.0		116	70-130		
n-Butylbenzene	20.8		μg/l		20.0		104	70-130		
sec-Butylbenzene	22.2		µg/l		20.0		111	70-130		
tert-Butylbenzene	22.4		μg/l		20.0		112	70-130		
Carbon disulfide	21.2		μg/l		20.0		106	70-130		
Carbon tetrachloride	23.8		μg/l		20.0		119	70-130		
Chlorobenzene	20.7		μ g/ l		20.0		104	70-130		
Chloroethane	22.5		µg/l		20.0		113	70-130		
Chloroform	21.1		μ g/ l		20.0		105	70-130		
Chloromethane	19.3		μg/l		20.0		97	70-130		
2-Chlorotoluene	20.9		µg/l		20.0		104	70-130		
4-Chlorotoluene	21.4		μ g/ l		20,0		107	70-130		
1,2-Dibromo-3-chloropropane	20.6		µg/l		20.0		103	70-130		
Dibromochloromethane	23.6		μg/l		20.0		118	70-130		
1,2-Dibromoethane (EDB)	21.4		μg/l		20,0		107	70-130		
Dibromomethane	21.0		hā\J		20.0		105	70-130		
1,2-Dichlorobenzene	21.0		µg/1		20.0		105	70-130		
1,3-Dichlorobenzene	21.2				20.0		106	70-130 70-130		
1,4-Dichlorobenzene	19.7		µg/l				98			
Dichlorodifluoromethane (Freon12)	19.7 26.2		μg/l		20.0 20.0		131	70-130 70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch 1424395 - SW846 5030 Water MS										
LCS (1424395-BS1)					Pre	pared & Analy	zed: 16-Oct-14	,		
1,2-Dichloroethane	21.0		μg/l		20.0		105	- 70-130		
1,1-Dichloroethene	22.4		μg/l		20.0		112	70-130		
cis-1,2-Dichloroethene	23.5		μg/l		20.0		118	70-130		
trans-1,2-Dichloroethene	21.3		μg/l		20.0		107	70-130		
1,2-Dichloropropane	20.4		μg/l		20.0		102	70-130		
1,3-Dichloropropane	20.1		μg/l		20.0		101	70-130		
2,2-Dichloropropane	23.5		μg/l		20.0		117	70-130		
1,1-Dichloropropene	22.2		μg/l		20,0		111	70-130		
cis-1,3-Dichloropropene	22,4		μg/l		20.0		112	70-130		
trans-1,3-Dichloropropene	23.2		μg/l		20,0		116	70-130		
Ethylbenzene	21.9		μg/l		20,0		110	70-130		
Hexachlorobutadiene	21.6		μg/l		20,0		108	70-130		
2-Hexanone (MBK)	22.1		hā\j		20.0		110	70-130		
Isopropylbenzene	21.1		μg/l		20.0		106	70-130		
4-Isopropyltoluene	21.5		µg∕l		20.0		107	70-130		
Methyl tert-butyl ether	21.9		µg/l		20.0		110	70-130		
4-Methyl-2-pentanone (MIBK)	21.5		μg/l		20.0		107	70-130		
Methylene chloride	19.9		hā\.		20.0		99	70-130		
Naphthalene	21,1		hā\j		20.0		106	70-130		
n-Propylbenzene	21.3		µg/i		20.0		107	70-130		
Styrene	21.6				20.0		108	70-130 70-130		
1,1,1,2-Tetrachioroethane	23.0		µg/l		20.0		115	70-130		
1,1,2,1-Tetrachloroethane	20.8		µg/l		20.0		104	70-130 70-130		
Tetrachloroethene	20.9		µg/l		20.0		104	70-130		
Toluene	20.5		µg/l		20.0		103	70-130 70-130		
1,2,3-Trichlorobenzene	20. 0 21.0		µg/l		20.0		105	70-130 70-130		
1,2,4-Trichlorobenzene	20.9		µg/l				105			
			µg/l		20,0		112	70-130		
1,3,5-Trichlorobenzene	22.4		µg/l		20.0		114	70-130		
1,1,1-Trichloroethane	22.7		µg/l		20.0			70-130		
1,1,2-Trichloroethane	21.1		µg/l		20.0		106	70-130		
Trichloroethene	20,4		µg/l		20.0		102	70-130		
Trichlorofluoromethane (Freon 11)	22.2		µg/l		20.0		111	70-130		
1,2,3-Trichloropropane	21.0		µg/l		20.0		105	70-130		
1,2,4-Trimethylbenzene	22.4		µg/l		20.0		112	70-130		
1,3,5-Trimethylbenzene	22.2		µg/l		20.0		111	70-130		
Vinyl chloride	23.9		µg/l		20.0		119	70-130		
m,p-Xylene	21.6		µg/l		20,0		108	70-130		
o-Xylene	22.2		µg/l		20,0		111	70-130		
Tetrahydrofuran	21.7		µg/l		20,0		109	70-130		
Ethyl ether	22.6		µg/l		20.0		113	70-130		
Tert-amyl methyl ether	18.8		µg/l		20.0		94	70-130		
Ethyl tert-butyl ether	21.9		µg/l		20.0		110	70-130		
Di-isopropyl ether	23.2		µg/l		20.0		116	70-130		
Tert-Butanol / butyl alcohol	195		µg/l		200		98	70-130		
1,4-Dioxane	195		μg/l . •		200		98	70-130		
trans-1,4-Dichloro-2-butene	22,1		µg/l		20.0		110	70-130		
Ethanol	311		µg/l		400		78	70-130		
Surrogate: 4-Bromoftuorobenzene	50.6		μg/l		50.0		101	70-130		
Surrogate: Toluene-d8	50.6		µg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.2		µg/l		50.0		100	70-130		
Surrogate: Dibromoftuoromethane	51.3		μg/l		50.0		103	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
ntch 1424395 - SW846 5030 Water MS										
LCS Dup (1424395-BSD1)					Pre	pared & Analy	zed: 16-Oct-14			
1,1,2-Trichlorotrifluoroethane (Freon 113)	21.2		μg/l		20.0		106	70-130	5	20
Acetone	21.9		μg/l		20.0		110	70-130	12	20
Acrylonitrile	22.4		μg/l		20.0		112	70-130	3	20
Benzene	19.8		μg/l		20.0		99	70-130	7	20
Bromobenzene	20.6		μ g/ l		20.0		103	70-130	3	20
Bromochloromethane	23.9		μ g/ l		20.0		120	70-130	0.4	20
Bromodichloromethane	21.2		μg/l		20.0		106	70-130	3	20
Bromoform	23.6		μg/l		20.0		118	70-130	3	20
Bromomethane	18.9		μ g/ l		20.0		95	70-130	4	20
2-Butanone (MEK)	20.0		μg/l		20,0		100	70-130	15	20
n-Butylbenzene	19.9		μg/l		20.0		100	70-130	4	20
sec-Butylbenzene	21.0		μg/l		20,0		105	70-130	6	20
tert-Butylbenzene	20.8		μg/l		20.0		104	70-130	7	20
Carbon disulfide	20.0		μg/l		20.0		100	70-130	6	20
Carbon tetrachloride	21.3		μg/l		20.0		107	70-130	11	20
Chlorobenzene	19.4		μg/l		20.0		97	70-130	7	20
Chloroethane	21.5		μg/l		20.0		107	70-130	5	20
Chloroform	21.0				20.0		105	70-130	0.5	20
Chloromethane	17.6		μg/l μg/l		20.0		88	70-130 70-130	9	20
2-Chlorotoluene	19.7				20.0		98	70-130 70-130	6	20
4-Chlorotoluene	20,3		µg/l		20.0		101	70-130	5	20
1,2-Dibromo-3-chloropropane	20.3 19.8		µg/l		20.0		99			20
• •			µg/l					70-130	4	
Dibromochioromethane	23.0		μ g/ i		20,0		115	70-130	3	20
1,2-Dibromoethane (EDB)	20.9		µg/l		20.0		105	70-130	2	20
Dibromomethane	20.7		μg/l		20.0		103	70-130	1 -	20
1,2-Dichlorobenzene	20.1		μg/l -		20.0		100	70-130	5	20
1,3-Dichlorobenzene	20.2		μg/l -		20,0		101	70-130	5	20
1,4-Dichlorobenzene	18.8		μg/l -		20.0		94	70-130	4	20
Dichlorodifluoromethane (Freon12)	21.4		µg/l		20.0		107	70-130	20	20
1,1-Dichloroethane	20.0		µg/l		20.0		100	70-130	11	20
1,2-Dichloroethane	20.2		hô/I		20.0		101	70-130	4	20
1,1-Dichloroethene	20.6		µg/l		20.0		103	70-130	9	20
cis-1,2-Dichloroethene	19.6		µg/l		20.0		98	70-130	18	20
trans-1,2-Dichloroethene	20.4		µg/l		20.0		102	70-130	5	20
1,2-Dichloropropane	19.2		µg/l		20,0		96	70-130	6	20
1,3-Dichloropropane	20.1		µg∕i		20.0		101	70-130	0.1	20
2,2-Dichloropropane	22.0		μg/l		20,0		110	70-130	6	20
1,1-Dichloropropene	20.3		µg/l		20,0		102	70-130	9	20
cis-1,3-Dichloropropene	21.9		μg/l		20,0		109	70-130	2	20
trans-1,3-Dichloropropene	23.1		μg/l		20.0		115	70-130	0.6	20
Ethylbenzene	20.6		µg/l		20.0		103	70-130	6	20
Hexachlorobutadiene	20.7		µg/l		20.0		104	70-130	4	20
2-Hexanone (MBK)	21.9		µg/l		20.0		110	70-130	0.8	20
Isopropylbenzene	20.1		μg/l		20.0		101	70-130	5	20
4-Isopropyltoluene	20.0		μg/l		20.0		100	70-130	7	20
Methyl tert-butyl ether	21.1		µg/l		20.0		106	70-130	4	20
4-Methyl-2-pentanone (MIBK)	21.5		µg/l		20.0		108	70-130	0.3	20
Methylene chloride	20.5		μg/l		20.0		102	70-130	3	20
Naphthalene	21.0		μg/l		20.0		105	70-130	0.6	20
n-Propylbenzene	20.2		μg/l		20,0		101	70-130	6	20
Styrene	20.5		μg/l		20.0		103	70-130	5	20
1,1,1,2-Tetrachloroethane	21.9		µg/l		20.0		109	70-130	5	20

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424395 - SW846 5030 Water MS										
LCS Dup (1424395-BSD1)					Pre	pared & Analy	zed: 16-Oct-14			
1,1,2,2-Tetrachloroethane	20.5		μg/l		20.0		103	70-130	1	20
Tetrachloroethene	19.9		μg/l		20.0		100	70-130	5	20
Toluene	19.9		μ g/ l		20.0		99	70-130	4	20
1,2,3-Trichlorobenzene	20.4		μg/l		20.0		102	70-130	3	20
1,2,4-Trichlorobenzene	20.6		μ g/ l		20.0		103	70-130	2	20
1,3,5-Trichlorobenzene	21.2		μg/I		20.0		106	70-130	6	20
1,1,1-Trichloroethane	21.0		μg/l		20.0		105	70-130	8	20
1,1,2-Trichloroethane	20.8		µg/l		20.0		104	70-130	1	20
Trichloroethene	19,4		µg/l		20.0		97	70-130	5	20
Trichlorofluoromethane (Freon 11)	20.7		μg/l		20,0		104	70-130	7	20
1,2,3-Trichloropropane	20.7		μ g/ 1		20,0		103	70-130	1	20
1,2,4-Trimethylbenzene	21.3		μg/l		20.0		106	70-130	5	20
1,3,5-Trimethylbenzene	20.7		μg/l		20.0		104	70-130	7	20
Vinyl chloride	21.2		μg/l		20.0		106	70-130	12	20
m,p-Xylene	20.9		µg/l		20.0		104	70-130 70-130	3	20
o-Xylene	20. 9 21.0				20.0		105	70-130 70-130	6	20
Tetrahydrofuran	21.0 21.7		µg/l		20.0		108	70-130 70-130	0.3	20
•			µg/l							
Ethyl ether	22.1		µg/l		20.0		110	70-130	2	20
Tert-amyl methyl ether	18,2		hô/j		20.0		91	70-130	3	20
Ethyl tert-butyl ether	21.7		µg∕i		20.0		108	70-130	1	20
Di-isopropyl ether	19.0		µg/l		20.0		95	70-130	20	20
Tert-Butanol / butyl alcohol	202		μg/l		200		101	70-130	3	20
1,4-Dioxane	188		µg/l		200		94	70-130	4	20
trans-1,4-Dichloro-2-butene	22.4		µg/i		20.0		112	70-130	1	20
Ethanol	321		µg/l		400		80	70-130	3	20
Surrogate: 4-Bromofluorobenzene	50.9		µg∕i		50.0		102	70-130		
Surrogate: Toluene-d8	50.5		µg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.4		µg/l		50.0		101	70-130		
Surrogate: Dibromofluoromethane	51.9		µg/l		50.0		104	70-130		
atch 1424512 - SW846 5035A Soil (low level)										
Blank (1424512-BLK1)					Pre	pared & Analy	zed: 17-Oct-14			
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 5.0		µg/kg wet	5.0						
Acetone	< 50.0		µg/kg wet	50.0						
Acrylonitrile	< 5.0		µg/kg wet	5.0						
Benzene	< 5.0		µg/kg wet	5.0						
Bromobenzene	< 5.0		µg/kg wet	5.0						
Bromochloromethane	< 5.0		μg/kg wet	5.0						
Bromodichloromethane	< 5.0		μg/kg wet	5.0						
Bromoform	< 5.0		μg/kg wet	5.0						
Bromomethane	< 10.0		μg/kg wet	10.0						
2-Butanone (MEK)	< 50.0		μg/kg wet	50.0						
n-Butylbenzene	< 5.0		μg/kg wet	5.0						
sec-Butylbenzene	< 5.0		μg/kg wet	5.0						
tert-Butylbenzene	< 5.0		µg/kg wet	5.0						
Carbon disulfide	< 10.0		µg/kg wet	10.0						
Carbon tetrachloride	< 5.0		µg/kg wet	5.0						
Chlorobenzene	< 5.0		µg/kg wet	5.0						
Chloroethane	< 10 0		ug/kg wat	10.11						
Chloroethane Chloroform	< 10.0 < 5.0		µg/kg wet ug/kg wet	10.0 5.0						
Chloroethane Chloroform Chloromethane	< 10.0 < 5.0 < 10.0		µg/kg wet µg/kg wet	5.0 10.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
itch 1424512 - SW846 5035A Soil (low level)										
Blank (1424512-BLK1)					Pre	pared & Analy	zed: 17-Oct-14			
4-Chlorotoluene	< 5.0		μg/kg wet	5.0						
1,2-Dibromo-3-chloropropane	< 10.0		μg/kg wet	10.0						
Dibromochloromethane	< 5.0		μg/kg wet	5.0						
1,2-Dibromoethane (EDB)	< 5.0		μg/kg wet	5.0						
Dibromomethane	< 5.0		μg/kg wet	5.0						
1,2-Dichlorobenzene	< 5.0		μg/kg wet	5.0						
1,3-Dichlorobenzene	< 5.0		µg/kg wet	5.0						
1,4-Dichlorobenzene	< 5.0		μg/kg wet	5.0						
Dichlorodifluoromethane (Freon12)	< 10.0		μg/kg wet	10.0						
1,1-Dichloroethane	< 5.0		μg/kg wet	5.0						
1,2-Dichloroethane	< 5.0		µg/kg wet	5.0						
1,1-Dichloroethene	< 5.0		μg/kg wet	5.0						
cis-1,2-Dichloroethene	< 5.0		μg/kg wet	5.0						
trans-1,2-Dichloroethene	< 5.0		µg/kg wet	5.0						
1,2-Dichloropropane	< 5.0		μg/kg wet	5.0						
1,3-Dichloropropane	< 5.0		μg/kg wet	5.0						
2,2-Dichloropropane	< 5.0		μg/kg wet	5.0						
1,1-Dichloropropene	< 5.0		μg/kg wet	5.0						
cis-1,3-Dichloropropene	< 5.0		µg/kg wet	5.0						
trans-1,3-Dichloropropene	< 5.0		μg/kg wet	5.0						
Ethylbenzene	< 5.0		μg/kg wet	5.0						
Hexachlorobutadiene	< 5.0		μg/kg wet	5.0						
2-Hexanone (MBK)	< 50.0		μg/kg wet	50.0						
Isopropylbenzene	< 5.0		μg/kg wet	5.0						
4-Isopropyltoluene	< 5.0		μg/kg wet	5.0						
Methyl tert-butyl ether	< 5.0		μg/kg wet	5.0						
4-Methyl-2-pentanone (MIBK)	< 50.0		μg/kg wet	50.0						
Methylene chloride	< 10.0		μg/kg wet	10.0						
Naphthalene	< 5.0		μg/kg wet	5.0						
n-Propylbenzene	< 5.0		μg/kg wet	5.0						
Styrene	< 5.0		μg/kg wet	5.0						
1,1,1,2-Tetrachloroethane	< 5.0		μg/kg wet	5.0						
1,1,2,2-Tetrachloroethane	< 5.0		μg/kg wet	5.0						
Tetrachloroethene	< 5.0		μg/kg wet	5.0						
Toluene	< 5.0		μg/kg wet	5.0						
1,2,3-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,2,4-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,3,5-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,1,1-Trichloroethane	< 5.0		μg/kg wet	5.0						
1,1,2-Trichloroethane	< 5.0		μg/kg wet	5.0						
Trichloroethene	< 5.0		μg/kg wet	5.0						
Trichlorofluoromethane (Freon 11)	< 5.0		μg/kg wet	5.0						
1,2,3-Trichloropropane	< 5.0		μg/kg wet	5.0						
1,2,4-Trimethylbenzene	< 5.0		μg/kg wet	5.0						
1,3,5-Trimethylbenzene	< 5.0		μg/kg wet	5.0						
Vinyl chloride	< 5.0		µg/kg wet	5.0						
m,p-Xylene	< 10.0		µg/kg wet	10.0						
o-Xylene	< 5.0		μg/kg wet	5.0						
Tetrahydrofuran	< 10.0		μg/kg wet	10.0						
Ethyl ether	< 5.0		µg/kg wet	5.0						
Tert-amyl methyl ether	< 5.0		µg/kg wet	5.0						
Ethyl tert-butyl ether	< 5.0		µg/kg wet	5.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424512 - SW846 5035A Soil (low level)										
Blank (1424512-BLK1)					Pre	pared & Analy	zed: 17-Oct-14			
Di-isopropyl ether	< 5.0		μg/kg wet	5.0						
Tert-Butanol / butyl alcohol	< 50.0		µg/kg wet	50.0						
1,4-Dioxane	< 100		µg/kg wet	100						
trans-1,4-Dichloro-2-butene	< 25.0		μg/kg wet	25.0						
Ethanol	< 2000		µg/kg wet	2000						
Surrogate: 4-Bromofluorobenzene	48.6		µg/kg wet		50.0		97	70-130		
Surrogate: Toluene-dB	49.7		µg/kg wet		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.6		µg/kg wet		50.0		109	70-130		
Surrogate: Dibromoftuoromethane	49.9		µg/kg wet		50.0		100	70-130		
LCS (1424512-BS1)					Pre	pared & Analy	zed: 17-Oct-14			
1,1,2-Trichlorotrifluoroethane (Freon 113)	18,6		μg/kg wet		20.0	,,	93	70-130		
Acetone	20,7		µg/kg wet		20.0		103	70-130		
Acrylonitrile	20.9		µg/kg wet		20.0		104	70-130		
Benzene	19.8		hg/kg wet		20.0		99	70-130 70-130		
Bromobenzene	20.1				20,0		100	70-130 70-130		
Bromochloromethane			µg/kg wet							
	20.5		μg/kg wet		20.0		103	70-130		
Bromodichloromethane	19.6		µg/kg wet		20,0		98	70-130		
Bromoform	21.3		µg/kg wet		20,0		107	70-130		
Bromomethane	21.0		µg/kg wet		20.0		105	70-130		
2-Butanone (MEK)	22.8		µg/kg wet		20.0		114	70-130		
n-Butylbenzene	19.6		µg/kg wet		20.0		98	70-130		
sec-Butylbenzene	20.3		µg/kg wet		20.0		102	70-130		
tert-Butylbenzene	20.6		µg/kg wet		20.0		103	70-130		
Carbon disulfide	18.9		µg/kg wet		20.0		94	70-130		
Carbon tetrachloride	18.6		µg/kg wet		20.0		93	70-130		
Chlorobenzene	20.1		µg/kg wet		20.0		100	70-130		
Chloroethane	19.7		µg/kg wet		20.0		98	70-130		
Chloroform	19.0		µg/kg wet		20.0		95	70-130		
Chloromethane	19.0		µg/kg wet		20,0		95	70-130		
2-Chlorotoluene	20.7		µg/kg wet		20,0		103	70-130		
4-Chlorotoluene	20.7		μg/kg wet		20.0		104	70-130		
1,2-Dibromo-3-chloropropane	18.5		µg/kg wet		20.0		93	70-130		
Dibromochloromethane	19.9		μg/kg wet		20.0		99	70-130		
1,2-Dibromoethane (EDB)	21.1		μg/kg wet		20.0		105	70-130		
Dibromomethane	19.8		μg/kg wet		20.0		99	70-130		
1,2-Dichlorobenzene	20.6		μg/kg wet		20.0		103	70-130		
1,3-Dichlorobenzene	20.6		µg/kg wet		20.0		103	70-130		
1,4-Dichlorobenzene	19,2		µg/kg wet		20.0		96	70-130		
Dichlorodifluoromethane (Freon12)	18,4		µg/kg wet		20.0		92	70-130		
1,1-Dichloroethane	19.3		µg/kg wet		20.0		96	70-130		
1,2-Dichloroethane	19.4		pg/kg wet		20.0		97	70-130		
1,1-Dichloroethene	19.1				20,0		96			
			µg/kg wet					70-130		
cis-1,2-Dichloroethene	20.0		μg/kg wet		20.0		100	70-130		
trans-1,2-Dichloroethene	19.2		µg/kg wet		20.0		96	70-130		
1,2-Dichloropropane	20.0		µg/kg wet		20.0		100	70-130		
1,3-Dichloropropane	20.0		µg/kg wet		20.0		100	70-130		
2,2-Dichloropropane	17.2		µg/kg wet		20.0		86	70-130		
1,1-Dichloropropene	19.3		µg/kg wet		20.0		97	70-130		
cis-1,3-Dichloropropene	19.6		µg/kg wet		20.0		98	70-130		
trans-1,3-Dichloropropene	18.3		µg/kg wet		20.0		91	70-130		
Ethylbenzene	20.4		μg/kg wet		20.0		102	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1424512 - SW846 5035A Soil (low level)										
LCS (1424512-BS1)					Pre	pared & Analy	zed: 17-Oct-14	<u>.</u>		
Hexachlorobutadiene	19.0		µg/kg wet		20.0		95	70-130		
2-Hexanone (MBK)	16.2		µg/kg wet		20.0		81	70-130		
Isopropylbenzene	20.5		µg/kg wet		20.0		102	70-130		
4-Isopropyltoluene	20.5		μg/kg wet		20.0		102	70-130		
Methyl tert-butyl ether	20.7		μg/kg wet		20.0		103	70-130		
4-Methyl-2-pentanone (MIBK)	19.4		µg/kg wet		20.0		97	70-130		
Methylene chloride	19.4		µg/kg wet		20.0		97	70-130		
Naphthalene	17.9		µg/kg wet		20.0		89	70-130		
n-Propylbenzene	20.5		µg/kg wet		20.0		102	70-130		
Styrene	21.3		μg/kg wet		20.0		107	70-130		
1,1,1,2-Tetrachloroethane	20.0		μg/kg wet		20,0		100	70-130		
1,1,2,2-Tetrachloroethane	20.7		µg/kg wet		20.0		104	70-130		
Tetrachloroethene	18.6		μg/kg wet		20.0		93	70-130		
Toluene	19.5		µg/kg wet		20.0		98	70-130		
1,2,3-Trichlorobenzene	18.8		µg/kg wet		20.0		94	70-130		
1,2,4-Trichlorobenzene	17.6		µg/kg wet		20.0		88	70-130		
1,3,5-Trichlorobenzene	20.3		µg/kg wet		20.0		102	70-130		
1,1,1-Trichloroethane	19.2		µg/kg wet		20.0		96	70-130		
1,1,2-Trichloroethane	20.0		hayka mer		20.0		100	70-130		
Trichloroethene	19,2		hg/kg wet		20.0		96	70-130		
Trichlorofluoromethane (Freon 11)	18.0				20.0		90	70-130		
1,2,3-Trichloropropane	20.4		µg/kg wet		20.0		102	70-130		
• •	21.1		µg/kg wet				105			
1,2,4-Trimethylbenzene			μg/kg wet		20,0		103	70-130		
1,3,5-Trimethylbenzene	20.7 19.5		µg/kg wet		20.0			70-130		
Vinyl chloride			µg/kg wet		20.0		97	70-130		
m,p-Xylene	20.5		µg/kg wet		20.0		102	70-130		
o-Xylene	21.0		µg/kg wet		20,0		105	70-130		
Tetrahydrofuran	18.7		µg/kg wet		20.0		93	70-130		
Ethyl ether	21.3		µg/kg wet		20.0		106	70-130		
Tert-amyl methyl ether	19.8		µg/kg wet		20.0		99	70-130		
Ethyl tert-butyl ether	20.7		µg/kg wet		20.0		103	70-130		
Di-isopropyl ether	20.6		µg/kg wet		20.0		103	70-130		
Tert-Butanol / butyl alcohol	183		µg/kg wet		200		91	70-130		
1,4-Dioxane	193		µg/kg wet		200		97	70-130		
trans-1,4-Dichloro-2-butene	17.9		µg/kg wet		20.0		90	70-130		
Ethanol	392		µg/kg wet		400		98	70-130		
Surrogate: 4-Bromofluorobenzene	51.4		µg/kg wet		50.0		103	70-130		
Surrogate: Toluene-d8	49.9		µg/kg wet		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.6		µg/kg wet		50.0		97	70-130		
Surrogate: Dibromoftuoromethane	50.3		µg/kg wet		50.0		101	70-130		
LC\$ Dup (1424512-B\$D1)					Pre	pared & Analy	zed: 17-Oct-14			
1,1,2-Trichlorotrifluoroethane (Freon 113)	16.7		µg/kg wet		20.0	,	84	70-130	11	30
Acetone	20.9		µg/kg wet		20.0		104	70-130	1	30
Acrylonitrile	21.0		µg/kg wet		20.0		105	70-130	0.3	30
Benzene	18.6		pg/kg wet		20,0		93	70-130	6	30
Bromobenzene	19.6		pg/kg wet		20.0		98	70-130	2	30
Bromochloromethane	19.3		µg/kg wet		20.0		96	70-130 70-130	6	30
Bromodichloromethane	18.7				20.0		93	70-130 70-130	5	30
Bromoform	21.0		µg/kg wet				93 105		2	30 30
			µg/kg wet		20.0			70-130 70-190		
Bromomethane	19.1		µg/kg wet		20.0		95	70-130	9	30

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Limi
ntch 1424512 - SW846 5035A Soil (low level)										
LCS Dup (1424512-BSD1)					<u>Pre</u>	pared & Analy	zed: 17-Oct-14	:		
n-Butylbenzene	18.7		μg/kg wet		20.0		94	70-130	5	30
sec-Butylbenzene	19.3		μg/kg wet		20.0		96	70-130	5	30
tert-Butylbenzene	19.9		µg/kg wet		20.0		100	70-130	3	30
Carbon disulfide	17.9		μg/kg wet		20.0		90	70-130	5	30
Carbon tetrachloride	17.0		μg/kg wet		20.0		85	70-130	9	30
Chlorobenzene	19.4		μg/kg wet		20.0		97	70-130	4	30
Chloroethane	18.0		µg/kg wet		20.0		90	70-130	9	30
Chloroform	17.6		µg/kg wet		20.0		88	70-130	8	30
Chloromethane	18,1		µg/kg wet		20.0		91	70-130	5	30
2-Chlorotoluene	19.4		μg/kg wet		20,0		97	70-130	6	30
4-Chlorotoluene	19.9		µg/kg wet		20.0		100	70-130	4	30
1,2-Dibromo-3-chloropropane	18.4		µg/kg wet		20,0		92	70-130	0.9	30
Dibromochloromethane	19.3		µg/kg wet		20.0		96	70-130	3	30
1,2-Dibromoethane (EDB)	20.1		pg/kg wet		20.0		100	70-130	5	30
Dibromomethane	19.2		pg/kg wat		20.0		96	70-130 70-130	3	30
1,2-Dichlorobenzene	19.4		µg/kg wet		20.0		97	70-130	6	30
1,3-Dichlorobenzene	20.0				20.0		100	70-130 70-130	3	30
1,4-Dichlorobenzene	18.3		µg/kg wet		20.0		91	70-130 70-130	5	30
•	17,3		µg/kg wet		20.0		86		6	
Dichlorodifluoromethane (Freon12)			µg/kg wet					70-130		30
1,1-Dichloroethane	17.6		µg/kg wet		20.0		88	70-130	9	30
1,2-Dichloroethane	18.6		μg/kg wet		20.0		93	70-130	4	30
1,1-Dichloroethene	17.8		µg/kg wet		20.0		89	70-130	7	30
cis-1,2-Dichloroethene	18.7		µg/kg wet		20.0		94	70-130	7	30
rans-1,2-Dichloroethene	17.7		µg/kg wet		20.0		88	70-130	8	30
1,2-Dichloropropane	18.8		µg/kg wet		20.0		94	70-130	6	30
1,3-Dichloropropane	19.5		µg/kg wet		20.0		98	70-130	2	30
2,2-Dichloropropane	15.9		µg/kg wet		20,0		80	70-130	8	30
1,1-Dichloropropene	18.0		µg/kg wet		20.0		90	70-130	7	30
cis-1,3-Dichloropropene	18.3		µg/kg wet		20.0		91	70-130	7	30
trans-1,3-Dichloropropene	17.8		µg/kg wet		20.0		89	70-130	2	30
Ethylbenzene	20.0		µg/kg wet		20.0		100	70-130	2	30
Hexachlorobutadiene	17.2		µg/kg wet		20.0		86	70-130	10	30
2-Hexanone (MBK)	16.7		µg/kg wet		20.0		83	70-130	3	30
sopropylbenzene	19.6		µg/kg wet		20.0		98	70-130	4	30
4-Isopropyltoluene	19.0		µg/kg wet		20.0		95	70-130	7	30
Methyl tert-butyl ether	20.1		µg/kg wet		20.0		101	70-130	3	30
4-Methyl-2-pentanone (MIBK)	19.5		µg/kg wet		20.0		98	70-130	0.6	30
Methylene chloride	17.7		µg/kg wet		20,0		89	70-130	9	30
Naphthalene	17.0		µg/kg wet		20,0		85	70-130	5	30
n-Propylbenzene	19.6		µg/kg wet		20.0		98	70-130	5	30
Styrene	20.8		µg/kg wet		20.0		104	70-130	2	30
1,1,1,2-Tetrachloroethane	19.2		µg/kg wet		20.0		96	70-130	4	30
1,1,2,2-Tetrachloroethane	21.1		µg/kg wet		20.0		106	70-130	2	30
Tetrachloroethene	17.7		μg/kg wet		20.0		88	70-130	5	30
Toluene	18.6		μg/kg wet		20.0		93	70-130	5	30
1,2,3-Trichlorobenzene	17.9		µg/kg wet		20.0		90	70-130	5	30
1,2,4-Trichlorobenzene	16.7		µg/kg wet		20.0		83	70-130	5	30
1,3,5-Trichlorobenzene	19.6		μg/kg wet		20.0		98	70-130	3	30
1,1,1-Trichloroethane	17.2		μg/kg wet		20.0		86	70-130	11	30
1,1,2-Trichloroethane	19.6		µg/kg wet		20,0		98	70-130	2	30
Trichloroethene	18.0		µg/kg wet		20.0		90	70-130	7	30
Trichlorofluoromethane (Freon 11)	16.6		µg/kg wet		20.0		83	70-130	8	30

maluta(s)	Dan-14	Ele-	T Tmit-	*RDL	Spike	Source	%REC	%REC	RPD	RPD
analyte(s)	Result	Flag	Units	*KUL	Level	Result	70KEC	Limits	KPD	Limit
latch 1424512 - SW846 5035A Soil (low level)										
LCS Dup (1424512-BSD1)					<u>Pre</u>	pared & Analy	zed: 17-Oct-14	<u>!</u>		
1,2,3-Trichloropropane	20.3		µg/kg wet		20.0		102	70-130	0.2	30
1,2,4-Trimethylbenzene	20.4		µg/kg wet		20.0		102	70-130	3	30
1,3,5-Trimethylbenzene	20.1		µg/kg wet		20.0		101	70-130	3	30
Vinyl chloride	17.7		µg/kg wet		20.0		88	70-130	10	30
m,p-Xylene	19.9		µg/kg wet		20.0		100	70-130	3	30
o-Xylene	20.6		µg/kg wet		20.0		103	70-130	2	30
Tetrahydrofuran	18.5		µg/kg wet		20.0		92	70-130	1	30
Ethyl ether	20.5		µg/kg wet		20.0		102	70-130	4	30
Tert-amyl methyl ether	19.3		μg/kg wet		20.0		96	70-130	3	30
Ethyl tert-butyl ether	19.8		µg/kg wet		20,0		99	70-130	4	30
Di-isopropyl ether	19.8		µg/kg wet		20,0		99	70-130	4	30
Tert-Butanol / butyl alcohol	195		µg/kg wet		200		97	70-130	6	30
1,4-Dioxane	173		µg/kg wet		200		87	70-130	11	30
trans-1,4-Dichloro-2-butene	17.6		µg/kg wet		20.0		88	70-130	2	30
Ethanol	383		µg/kg wet		400		96	70-130	2	30
Surrogate: 4-Bromoftuorobenzene	52.4		µg/kg wet		50.0		105	70-130		
Surrogate: Toluene-d8	50.0		µg/kg wet		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.2		µg/kg wet		50.0		96	70-130		
Surrogate: Dibromoffuoromethane	49.0		µg/kg wet		50.0		98	70-130		
Matrix Spike (1424512-MS1)	10.10			98028-17RE		nered & Anek	zed: 17-Oct-14			
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.5		µg/kg dry		20.0	BRL	102	<u>.</u> 70-130		
Acetone	54.8	QM7			20.0	55.0	-0.9	70-130 70-130		
Acrylonitrile	21.2	SQIIII	μg/kg dary		20.0	BRL	106	70-130 70-130		
•			μg/kg dry							
Benzene	19.6		μg/kg dry		20.0	BRL	98	70-130		
Bromobenzene	14.8		μg/kg dry		20.0	BRL	74	70-130		
Bromochloromethane	19.9		µg/kg dry		20.0	BRL	99	70-130		
Bromodichloromethane	17,4		µg/kg dary		20.0	BRL	87	70-130		
Bromoform	16.0		µg/kg dary		20.0	BRL	80	70-130		
Bromomethane	20.2		µg/kg dry		20,0	BRL	101	70-130		
2-Butanone (MEK)	26.0	QM7	µg/kg dry		20,0	16,7	46	70-130		
n-Butylbenzene	16.1		µg/kg dary		20.0	BRL	80	70-130		
sec-Butylbenzene	17 <i>.4</i>		µg/kg dry		20.0	BRL	87	70-130		
tert-Butylbenzene	17.8		µg/kg dry		20.0	BRL	89	70-130		
Carbon disulfide	19.7		µg/kg dry		20.0	0.5	96	70-130		
Carbon tetrachloride	19.1		µg/kg dry		20.0	BRL	95	70-130		
Chlorobenzene	16.4		µg/kg dry		20.0	BRL	82	70-130		
Chloroethane	20.2		µg/kg dry		20.0	BRL	101	70-130		
Chloroform	18.8		μg/kg dry		20.0	BRL	94	70-130		
Chloromethane	19.6		µg/kg dry		20.0	BRL	98	70-130		
2-Chlorotoluene	15.8		µg/kg dry		20.0	BRL	79	70-130		
4-Chlorotoluene	15.3		µg/kg dry		20,0	BRL	76	70-130		
1,2-Dibromo-3-chloropropane	13.5	QM7	µg/kg dry		20.0	BRL	68	70-130		
Dibromochloromethane	16.5		μg/kg dary		20.0	BRL	83	70-130		
1,2-Dibromoethane (EDB)	19.5		μg/kg dry		20.0	BRL	97	70-130		
Dibromomethane	19.0		µg/kg dry		20,0	BRL	95	70-130		
1,2-Dichlorobenzene	12.6	QM7	µg/kg dry		20.0	BRL	63	70-130		
1,3-Dichlorobenzene	13.2	QM7	μg/kg dry		20.0	BRL	66	70-130		
1,4-Dichlorobenzene	12.5	QM7	μg/kg dry		20.0	BRL	63	70-130		
Dichlorodifluoromethane (Freon12)	21.8		μg/kg dry		20.0	BRL	109	70-130		
1,1-Dichloroethane	19.3		μg/kg dry		20.0	BRL	96	70-130		
1,2-Dichloroethane	18.9		µg/kg dry		20.0	BRL	94	70-130 70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
ntch 1424512 - SW846 5035A Soil (low level)										
Matrix Spike (1424512-MS1)			Source: SB9	8028-17RE1	Pre	pared & Analy	zed: 17-Oct-14			
1,1-Dichloroethene	21.1		μg/kg dry		20.0	BRL	106	70-130		
cis-1,2-Dichloroethene	19.6		μg/kg dry		20.0	BRL	98	70-130		
trans-1,2-Dichloroethene	19.9		μg/kg dry		20.0	BRL	99	70-130		
1,2-Dichloropropane	19.0		μg/kg dry		20.0	BRL	95	70-130		
1,3-Dichloropropane	18.7		μg/kg dry		20.0	BRL	94	70-130		
2,2-Dichloropropane	19.5		μg/kg dry		20.0	BRL	98	70-130		
1,1-Dichloropropene	20.7		μg/kg dry		20.0	BRL	104	70-130		
cis-1,3-Dichioropropene	15.4		μg/kg dry		20,0	BRL	77	70-130		
trans-1,3-Dichloropropene	14.3		μg/kg dry		20.0	BRL	72	70-130		
Ethylbenzene	18.9		μg/kg dary		20,0	BRL	95	70-130		
Hexachlorobutadiene	12.2	QM7	μg/kg dary		20.0	BRL	61	70-130		
2-Hexanone (MBK)	14.9		μg/kg dary		20.0	BRL	74	70-130		
Isopropylbenzene	18.3		μg/kg dry		20.0	BRL	91	70-130		
4-Isopropyltoluene	17.0		μg/kg dry		20.0	BRL	85	70-130		
Methyl tert-butyl ether	21.1		µg/kg dry		20.0	BRL	106	70-130		
4-Methyl-2-pentanone (MIBK)	19.8		µg/kg dry		20.0	BRL	99	70-130		
Methylene chloride	19.3		µg/kg dry		20.0	0.7	93	70-130		
Naphthalene	7.2	QM7	µg/kg dry		20.0	BRL	36	70-130		
n-Propylbenzene	17,9		μg/kg dry		20.0	BRL	90	70-130		
Styrene	11.5	QM7	µg/kg dry		20.0	BRL	58	70-130		
1,1,1,2-Tetrachloroethane	17,2		μg/kg dry		20.0	BRL	86	70-130		
1,1,2,2-Tetrachloroethane	18.4		µg/kg dry		20.0	BRL	92	70-130		
Tetrachloroethene	19.2		µg/kg dry		20.0	BRL	96	70-130		
Toluene	18.9		μg/kg dry		20,0	BRL	95	70-130		
1,2,3-Trichlorobenzene	7.2	QM7	µg/kg dry		20.0	BRL	36	70-130		
1,2,4-Trichlorobenzene	7.5	QM7	μg/kg dry		20.0	BRL	38	70-130		
1,3,5-Trichlorobenzene	10.6	QM7	μg/kg dry		20,0	BRL	53	70-130		
1,1,1-Trichloroethane	19.7		μg/kg dry		20.0	BRL	98	70-130		
1,1,2-Trichloroethane	18.8		μg/kg dry		20.0	BRL	94	70-130		
Trichloroethene	19.1		μg/kg dry		20.0	BRL	95	70-130		
Trichlorofluoromethane (Freon 11)	20,2		μg/kg dry		20.0	BRL	101	70-130		
1,2,3-Trichloropropane	18.5		μg/kg dry		20.0	BRL	92	70-130		
1,2,4-Trimethylbenzene	16.3		μg/kg dry		20.0	BRL	82	70-130		
1,3,5-Trimethylbenzene	16.7		µg/kg dry		20.0	BRL	83	70-130		
Vinyl chloride	20.9		µg/kg dry		20.0	BRL	104	70-130		
m,p-Xylene	18.7		µg/kg dry		20.0	BRL	93	70-130		
o-Xylene	17.9		μg/kg dry		20.0	BRL	90	70-130		
Tetrahydrofuran	22.5		µg/kg dary		20,0	BRL	113	70-130		
Ethyl ether	20.7		µg/kg dry		20,0	BRL	103	70-130		
Tert-arryl methyl ether	19.7		µg/kg dry		20.0	BRL	98	70-130		
Ethyl tert-butyl ether	20.1		μg/kg dry		20.0	BRL	101	70-130		
Di-isopropyl ether	20.7		µg/kg dry		20.0	BRL	104	70-130		
Tert-Butanol / butyl alcohol	236		µg/kg dry		200	BRL	118	70-130		
1,4-Dioxane	275	QM7	μg/kg dry		200	BRL	138	70-130		
trans-1,4-Dichloro-2-butene	9.4	QM7	μg/kg dry		20.0	BRL	47	70-130		
Ethanol	436		μg/kg dry		400	86.3	87	70-130		
Surrogate: 4-Bromofluorobenzene	51.7		µg/kg dry		50.0		103	70-130		
Surrogate: Toluene-d8	51.7 50.2		μουλου oury μουλου oury		50.0		100	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	50.2 53.2		μg/kg day μg/kg day		50.0		106	70-130 70-130		
Surrogate: 1,2-Dichioroethane	53.2 52.0		µg/kg dary µg/kg dary		50.0		104	70-130 70-130		
Metrix Spike Dup (1424512-MSD1)	JE.U		Source: SB9				14 Analyzed:			

anlysto(a)	Danile	Plac	T Terito	*DD1	Spike	Source	0/DEC	%REC	רוממ	RPI
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
atch 1424512 - SW846 5035A Soil (low level)										
Matrix Spike Dup (1424512-MSD1)			Source: SB	98028-17RE1	Pre	pared: 17-Oct	14 Analyzed:	18-Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	22.2		µg/kg dry		20.0	BRL	111	70-130	8	30
Acetone	23.1	QM7, QR5	µg/kg dry		20.0	60.0	-185	70-130	NR	30
Acrylonitrile	22.6		µg/kg dry		20.0	BRL	113	70-130	6	30
Benzene	22.1		µg/kg dry		20.0	BRL	110	70-130	12	30
Bromobenzene	18.2		µg/kg dry		20.0	BRL	91	70-130	20	30
Bromochloromethane	21.6		µg/kg dry		20.0	BRL	108	70-130	8	30
Bromodichloromethane	20.0		µg/kg dry		20.0	BRL	100	70-130	14	30
Bromoform	19,4		µg/kg dry		20.0	BRL	97	70-130	19	30
Bromomethane	21.3		µg/kg dry		20.0	BRL	106	70-130	5	30
2-Butanone (MEK)	13.7	QM7, QR5	μg/kg dry		20.0	18.2	-23	70-130	NR	30
n-Butylbenzene	18.6		µg/kg dry		20,0	BRL	93	70-130	15	30
sec-Butylbenzene	19.8		µg/kg dry		20.0	BRL	99	70-130	13	30
tert-Butylbenzene	20.2		µg/kg dry		20.0	BRL	101	70-130	13	30
Carbon disuffide	18.9		µg/kg dry		20.0	0.5	92	70-130	5	30
Carbon tetrachloride	21.5		µg/kg dry		20.0	BRL	107	70-130	12	30
Chlorobenzene	20.1		µg/kg dry		20.0	BRL	100	70-130	20	30
Chloroethane	21.9		μg/kg dry		20.0	BRL	110	70-130	8	30
Chloroform	20.4		µg/kg dry		20.0	BRL	102	70-130	9	30
Chloromethane	19.5		µg/kg dry		20.0	BRL	98	70-130	0.4	30
2-Chlorotoluene	18,4		μg/kg dry		20.0	BRL	92	70-130	15	30
4-Chlorotoluene	18.5		µg/kg dry		20.0	BRL	93	70-130	19	30
1,2-Dibromo-3-chloropropane	17.7		µg/kg dry		20.0	BRL	88	70-130	27	30
Dibromochloromethane	19.4		μg/kg dry		20.0	BRL	97	70-130	18	30
1,2-Dibromoethane (EDB)	21.9		µg/kg dry		20.0	BRL	110	70-130	12	30
Dibromomethane	21.2		μg/kg dry		20.0	BRL	106	70-130	11	30
1,2-Dichlorobenzene	15.5		μg/kg dry		20,0	BRL	78	70-130	21	30
1,3-Dichlorobenzene	15.9		μg/kg dry		20.0	BRL	79	70-130	19	30
1,4-Dichlorobenzene	15.1		μg/kg dry		20.0	BRL	76	70-130	19	30
Dichlorodifluoromethane (Freon12)	23.4		µg/kg dry		20.0	BRL	117	70-130	7	30
1,1-Dichloroethane	21,4		μg/kg dry		20.0	BRL	107	70-130	10	30
1,2-Dichloroethane	20.8		μg/kg dry		20.0	BRL	104	70-130	10	30
1,1-Dichloroethene	22.7		μg/kg dry		20.0	BRL	113	70-130	7	30
cis-1,2-Dichloroethene	21.5		μg/kg dry		20.0	BRL	107	70-130	9	30
trans-1,2-Dichloroethene	21.7		µg/kg dry		20.0	BRL	109	70-130	9	30
1,2-Dichloropropane	21.4		µg/kg dry		20.0	BRL	107	70-130	12	30
1,3-Dichloropropane	21.2		µg/kg dry		20.0	BRL	106	70-130	13	30
2,2-Dichloropropane	21.7		μg/kg dary		20,0	BRL	108	70-130	11	30
1,1-Dichloropropene	22.6		μg/kg dary		20,0	BRL	113	70-130	8	30
cis-1,3-Dichloropropene	17.7		µg/kg dry		20.0	BRL	88	70-130	14	30
trans-1,3-Dichloropropene	17.1		μg/kg dary		20.0	BRL	85	70-130	18	30
Ethylbenzene	21.8		µg/kg dry		20.0	BRL	109	70-130	14	30
Hexachlorobutadiene	15.0		µg/kg dry		20.0	BRL	75	70-130	21	30
2-Hexanone (MBK)	11.0	QM7	μg/kg dry		20.0	BRL	55	70-130	30	30
Isopropylbenzene	20.8		μg/kg dry		20.0	BRL	104	70-130	13	30
4-Isopropyltoluene	19.6		μg/kg dry		20.0	BRL	98	70-130	14	30
Methyl tert-butyl ether	22,7		μg/kg dry		20.0	BRL	114	70-130	7	30
4-Methyl-2-pentanone (MIBK)	19.6		µg/kg dary		20.0	BRL	98	70-130	1	30
Methylene chloride	20.8		μg/kg dry		20.0	0.8	100	70-130	7	30
Naphthalene	7.6	QM7	μg/kg dary		20.0	BRL	38	70-130	6	30
n-Propylbenzene	20.8		μg/kg dary		20.0	BRL	104	70-130	15	30
Styrene	17.3	QR5	μg/kg dary		20.0	BRL	86	70-130 70-130	40	30

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424512 - SW846 5035A Soil (low level)										
Matrix Spike Dup (1424512-MSD1)			Source: SE	98028-17RE	<u>1 Pre</u>	pared: 17-Oct	-14 Analyzed:	18-Oct-14		
1,1,1,2-Tetrachloroethane	20.6		µg/kg dry		20.0	BRL	103	70-130	18	30
1,1,2,2-Tetrachloroethane	21.0		μg/kg dry		20.0	BRL	105	70-130	14	30
Tetrachloroethene	20.9		µg/kg dry		20.0	BRL	105	70-130	9	30
Toluene	21.1		µg/kg dry		20.0	BRL	105	70-130	11	30
1,2,3-Trichlorobenzene	7.8	QM7	µg/kg dry		20.0	BRL	39	70-130	9	30
1,2,4-Trichlorobenzene	8.4	QM7	µg/kg dry		20.0	BRL	42	70-130	11	30
1,3,5-Trichlorobenzene	12.8	QM7	µg/kg dry		20.0	BRL	64	70-130	18	30
1,1,1-Trichloroethane	22.0		µg/kg dry		20.0	BRL	110	70-130	11	30
1,1,2-Trichloroethane	21.5		µg/kg dry		20.0	BRL	108	70-130	14	30
Trichloroethene	21.2		µg/kg dry		20.0	BRL	106	70-130	10	30
Trichlorofluoromethane (Freon 11)	21.6		µg/kg dry		20.0	BRL	108	70-130	7	30
1,2,3-Trichloropropane	21.4		µg/kg dry		20,0	BRL	107	70-130	14	30
1,2,4-Trimethylbenzene	18.6		µg/kg dry		20.0	BRL	93	70-130	13	30
1,3,5-Trimethylbenzene	19.1		μg/kg dry		20.0	BRL	96	70-130	14	30
Vinyl chloride	22.3		µg/kg dry		20.0	BRL	112	70-130	7	30
m,p-Xylene	21.6		μg/kg dry		20.0	BRL	108	70-130	14	30
o-Xylene	21.0		µg/kg dry		20.0	BRL	105	70-130	16	30
Tetrahydrofuran	22.1		μ g/kg dr y		20.0	BRL	110	70-130	2	30
Ethyl ether	22.5		µg/kg dry		20.0	BRL	112	70-130	8	30
Tert-amyl methyl ether	21,4		μg/kg dry		20.0	BRL	107	70-130	9	30
Ethyl tert-butyl ether	22.5		μg/kg dry		20.0	BRL	112	70-130	11	30
Di-isopropyl ether	22.3		µg/kg dry		20.0	BRL	111	70-130	7	30
Tert-Butanol / butyl alcohol	230		μg/kg dry		200	BRL	115	70-130	3	30
1,4-Dioxane	252		μg/kg dry		200	BRL	126	70-130	9	30
trans-1,4-Dichloro-2-butene	11.6	QM7	μg/kg dry		20.0	BRL	58	70-130	22	30
Ethanol	303	QM7, QR5	µg/kg dry		400	94.1	52	70-130	50	30
Surrogate: 4-Bromoftuorobenzene	51.8		µg/kg dry		50.0		104	70-130		
Surrogate: Toluene-d8	49.6		µg/kg dry		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.0		µg/kg dry		50.0		104	70-130		
Surrogate: Dibromofluoromethane	51.1		μg/kg dry		50.0		102	70-130		

alyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
tch 1424725 - SW846 3050B										
Blank (1424725-BLK1)					Pre	pared: 21-Oct-1	14 Analyzed:	: 23-Oct-14		
Sodium	< 24.0		mg/kg wet	24.0						
Manganese	< 0.959		mg/kg wet	0.959						
Chromium	< 0.959		mg/kg wet	0.959						
Arsenic	< 1.44		mg/kg wet	1.44						
Nickel	< 0.959		mg/kg wet	0.959						
Lead	< 1.44		mg/kg wet	1.44						
Zinc	< 0.959		mg/kg wet	0.959						
Соррег	< 0.959		mg/kg wet	0.959						
Cadmium	< 0.480		mg/kg wet	0.480						
Duplicate (1424725-DUP1)			Source: SB	98028-16	Prei	pared: 21-Oct-1	I4 Analyzed:	24-Oct-14		
Manganese	157		mg/kg dry	1.32		159	,,		1	20
Sodium	71.4		mg/kg dry	33.0		78.4			9	20
Chromium	7.62		mg/kg dry	1.32		8.40			10	20
Nickel	9.06		mg/kg dry	1.32		9.94			9	20
Lead	4.42		mg/kg dry	1.98		4.19			5	20
Zinc	33.8		mg/kg dry	1.32		34.8			3	20
Cadmium	0,164	J	mg/kg dry	0.660		0.141			15	20
Arsenic	< 1.98		mg/kg dry	1.98		BRL				20
Copper	8,41		mg/kg dry	1.32		9.38			11	20
••	* i		Source: SB		Dm	pared: 21-Oct-1	I Anahmad	04 On 14	•••	_,
<u>Matrix Spike (1424725-MS1)</u> Manganese	362			1.36	169	159	120	75-125		
Sodium	1170	QM8	mg/kg dry mg/kg dry	33.9	847	78.4	129	75-125 75-125		
Zinc	182	QINO		1.36	169		87	75-125 75-125		
zing Lead	149		mg/kg dry	2.03	169	34.8 4.19	86	75-125 75-125		
Nickel	157		mg/kg dry	1.36	169	9.94	86	75-125 75-125		
Arsenic	140		mg/kg dry mg/kg dry	2.03	169	BRL	83	75-125 75-125		
Cadmium	153			2.03 0.678	169	0.141	90	75-125 75-125		
	169		mg/kg dry	1.36	169	9.38	94	75-125 75-125		
Copper Chromium	160		mg/kg dry	1.36	169	9.36 8.40	90	75-125 75-125		
	100		mg/kg dry							
Matrix Spike Dup (1424725-MSD1)		0110	Source: SB			pared: 21-Oct-1			_	
Sodium	1130	QM8	mg/kg dry	33.1	828	78.4	127	75-125	4	20
Manganese	342		mg/kg dry	1.32	166	159	111	75-125	6	20
Copper	168		mg/kg dry	1.32	166	9.38	96	75-125	0.7	20
Chromium	156		mg/kg dry	1.32	166	8.40	89	75-125	3	20
Cadmium	151		mg/kg dry	0.662	166	0.141	91	75-125	1	20
Arsenic	139		mg/kg dry	1.99	166	BRL	84	75-125	1	20
Nickel 	156		mg/kg dry	1.32	166	9.94	88	75-125	0.5	20
Lead	149		mg/kg dry	1.99	166	4.19	87	75-125	0.2	20
Zinc	177		mg/kg dry	1.32	166	34.8	86	75-125	3	20
<u>Post Spiks (1424725-P\$1)</u>			Source: SB		Pre	pared: 21-Oct-1		24-Oct-14		
Sodium	908		mg/kg dry	33.3	834	78.4	99	80-120		
Manganese	301		mg/kg dry	1.33	167	159	85	80-120		
Zinc	190		mg/kg dry	1.33	167	34.8	93	80-120		
Nickel	163		mg/kg dry	1.33	167	9.94	92	80-120		
Arsenic	147		mg/kg dry	2.00	167	BRL	88	80-120		
Cadmium	159		mg/kg dry	0.667	167	0.141	95	80-120		
Chromium	165		mg/kg dry	1.33	167	8.40	94	80-120		
A	174		mg/kg dry	1.33	167	9.38	99	80-120		
Copper	1.4		inging dif	.,		0.00				

Total Metals by EPA 6000/7000 Series Methods - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1424725 - SW846 3050B										
Reference (1424725-SRM1)					Prei	pared: 21-Oct-	-14 Analyzed	i: 23-Oct-14		
Sodium	369		mg/kg wet	25.0	380		97	71.71-128.2		
	333		mg/ng wor	20.0	5 55		0.	8		
Manganese	275		mg/kg wet	1.00	286		96	81.34-118.4 7		
Chromium	58.4		mg/kg wet	1.00	59.5		98	79.4-120.51		
Zinc	143		mg/kg wet	1.00	156		92	80.06-120.2 6		
Lead	115		mg/kg wet	1.50	129		89	81.49-118.5		
Nickel	146		mg/kg wet	1.00	160		91	82.22-1 17.7		
								7		
Copper	34.7		mg/kg wet	1.00	34.9		99	80.9-119.24		
Cadmlum	70.4		mg/kg wet	0.500	77.3		91	81.57-117.7 6		
Arsenic	68.7		mg/kg wet	1.50	76.8		89	80.79-119.8		
Reference (1424725-\$RM2)					Pro	pared: 21-Oct-	-14 Anabozec	6 + 23_0~14		
Sodium	369		mg/kg wet	25.0	377	1-14/1.	98	71,71-128,2		
Oddum	303		myny wat	25.0	377		30	8		
Manganese	261		mg/kg wet	1.00	284		92	81.34-118.4 7		
Nickel	140		mg/kg wet	1.00	159		88	82,22-117,7 7		
Copper	32.8		mg/kg wet	1.00	34,6		95	80,9-119,24		
Lead	112		mg/kg wet	1.50	128		87	81.49-118.5		
Zinc	141		mg/kg wet	1.00	154		91	80.06-120.2		
Cadmium	69.0		mg/kg wet	0.500	76.7		90	6 81.57-117.7		
Arsenic	66.5		mg/kg wet	1.50	76.2		87	6 80.79-119.8		
Chromium	56.2		mg/kg wet	1.00	59.1		95	6 79. 4-12 0.51		
atch 1425320 - SW846 3050B										
Blank (1425320-BLK1)					<u>Pre</u>	pared: 21-Oct-	-14 Analyzec	1: 27-Oct-14		
Iron	< 3.84		mg/kg wet	3.84						
Barlum	< 0.959		mg/kg wet	0.959						
<u>Duplicate (1425320-DUP1)</u>			Source: SB	98028-1 <u>6</u>	<u>Pre</u>	pared: 21-Oct-	-14 Analyzec	1: 27-Oct-14		
Iron	8960		mg/kg dry	5.28		9670			8	20
Barium	27.5		mg/kg dry	1.32		32.4			16	20
Matrix Spike (1425320-MS1)			Source: SB	98028-1 <u>6</u>	Pre	pared: 21-Oct-	-14 Analyzed	i: 27-Oct-14		
Iron	9590	QM2	mg/kg dry	5.42	169	9670	-45	75-125		
Barium	211		mg/kg dry	1.36	169	32.4	105	75-125		
Matrix Spike Dup (1425320-MSD1)			Source: SB	98028-16	Pre	pared: 21-Oct-	-14 Analyzeo	1: 27-Oct-14		
Iron	8540	QM2	mg/kg dry	5.30	166	9670	-685	75-125	12	20
Barlum	211		mg/kg dry	1.32	166	32.4	108	75-125	0.2	20
Reference (1425320-SRM1)					Pre	pared: 21-Oct-	-14 Analyzec	: 27-Oct-14		
Iron	6260		mg/kg wet	4.00	6260		100	40.24-160.1 6		
Barium	136		mg/kg wet	1.00	133		102	82,82-117,1 7		
Reference (1425320-SRM2)					Pre	pared: 21-Oct-	-14 Anglyzer			
Iron	6160		mg/kg wet	4.00	6210		99	40.24-160.1		
Barium	132		mg/kg wet	1.00	132		100	6 82.82-117.1		
Danail	132		HIGHNG WOL	1.00	132		100	7		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424283 - General Preparation										
<u>Duplicate (1424283-DUP1)</u>			Source: SE	398028-10	<u>Pre</u>	pared: 15-Oct	-14 Analyzed:	16-Oct-14		
% Solids	64.6		%			63.3			2	5
Duplicate (1424283-DUP2)			Source: SE	398028-16	<u>Pre</u>	pared: 15-Oct	-14 Analyzed:	16-Oct-14		
% Solids	69.2		%			70.3			2	5
Batch 1424886 - General Preparation										
Blank (1424886-BLK1)					Pre	pared & Analy	zed: 21-Oct-14	:		
Total Organic Carbon	< 100		mg/kg	100						
LCS (1424886-BS1)					<u>Pre</u>	pared & Analy	zed: 21-Oct-14	:		
Total Organic Carbon	969		mg/kg	100	1000		97	75-125		
Calibration Blank (1424886-CCB1)					Pre	pared & Analy	zed: 21-Oct-14	:		
Total Organic Carbon	31.5		mg/kg							
Calibration Blank (1424886-CCB2)					Pre	pared & Analy	zed: 21-Oct-14	:		
Total Organic Carbon	18.1		mg/kg							
Calibration Blank (1424886-CCB3)					<u>Pre</u>	pared & Analy	zed: 21-Oct-14	:		
Total Organic Carbon	14.0		mg/kg							
Calibration Check (1424886-CCV1)					<u>Pre</u>	pared & Analy	zed: 21-Oct-14	!		
Total Organic Carbon	1020		mg/kg	100	1000		102	85-115		
Calibration Check (1424886-CCV2)					<u>Pre</u>	pared & Analy	zed: 21-Oct-14	!		
Total Organic Carbon	1130		mg/kg	100	1000		113	85-115		
Calibration Check (1424886-CCV3)					Pre	pared & Analy	zed: 21-Oct-14	:		
Total Organic Carbon	988		mg/kg	100	1000		99	85-115		
<u>Duplicate (1424886-DUP1)</u>			Source: SE	398028-1 6	Pre	pared & Analy	zed: 21-Oct-14	:		
Total Organic Carbon	1110		mg/kg	100		1120			0.4	20
Reference (1424886-SRM1)					<u>Pre</u>	pared & Analy	zed: 21-Oct-14	1		
Total Organic Carbon	3380		mg/kg	100	3470		97	49-151		

Toxicity Characteristics - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424693 - General Preparation										
<u>Duplicate (1424693-DUP1)</u>			Source: SE	98028-25	<u>Pre</u>	pared: 20-Oct-	-14 Analyzed:	21-Oct-14		
Fractional % Sieve #4 (>4750µm)	1.16		% Retained			1.19			2	35
Fractional % Sieve #10 (4750-2000µm)	0.801	QR5	% Retained			1.27			45	35
Fractional % Sieve #20 (2000-850µm)	1.67		% Retained			1.98			17	35
Fractional % Sieve #40 (850-425µm)	20.2		% Retained			20.7			2	35
Fractional % Sieve #80 (425-250µm)	55.5		% Retained			53.8			3	35
Fractional % Sieve #100 (250-150µm)	11.9		% Retained			15.9			28	35
Fractional % Sieve #200 (150-75µm)	8.01	QR5	% Retained			4.59			54	35
Fractional % Sleve #230 (less than 75µm)	0.655		% Retained			0.554			17	35

The following list indicates the date and time low-level VOC soil/sediment samples were placed in the freezer:

SB98028-02	BB-DS-SEDV-01	10/14/2014 5:21 PM
SB98028-05	BB-DS-SEDV-02	10/14/2014 5:21 PM
SB98028-08	BB-DS-SEDV-03	10/14/2014 5:21 PM
SB98028-11	BB-DS-SEDV-04	10/14/2014 5:21 PM
SB98028-14	BB-DS-SEDV-05	10/14/2014 5:21 PM
SB98028-17	BB-DS-SEDV-06	10/14/2014 5:21 PM
SB98028-20	BB-DS-SEDV-07	10/14/2014 5:21 PM
SB98028-23	BB-DS-SEDV-08	10/14/2014 5:21 PM
SB98028-25	DUP-1-Soil	10/14/2014 5:21 PM
SB98028-26	DUP-2-Soil	10/14/2014 5:21 PM

Notes and Definitions

D	Data reported from a dilution
QCR	Sample data reported for QC purposes only.
QM2	The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.
QM7	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
QM8	The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon acceptable PS and /or LCS recovery.
QM9	The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.
QR2	The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
QR5	RPD out of acceptance range.
SOL	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from sb98028-10 were used to calculate the results on a dry weight basis.
SOLa	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from sb98028-13 were used to calculate the results on a dry weight basis.
SOLb	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from sb98028-16 were used to calculate the results on a dry weight basis.
SOLc	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from sb98028-19 were used to calculate the results on a dry weight basis.
SOLd	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from sb98028-22 were used to calculate the results on a dry weight basis.
SOLe	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -01 were used to calculate the results on a dry weight basis.
SOLf	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -04 were used to calculate the results on a dry weight basis.
SOLg	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -07 were used to calculate the results on a dry weight basis.
TOC 1	This sample was analyzed in quadruplicate. The % RSD is 11.48227%.
dry	Sample results reported on a dry weight basis
NR	Not Reported
RPD	Relative Percent Difference
J	Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Nicole Leja

Ch98028	GN.	
3.0	Special	Handling:

	M ANALYTICAL, INC. Featuring AL TECHNOLOGY		СНА		Page	1	of			REC	OF	RD	2			Rush All TA	ard TA TAT - Ts sub 24-hr no	T - 7 Date ject to	7 to 10 business days Needed: Delaboratory approval ation needed for rushes after 60 days unless otherwise instructed.
Report To:	ENVIRON		Invoice T		Er	vici	te						Projec	t No:	08	3-14	218	43	3
	136 Commercial St Suite 402	in the state of th		was and the state of the state	Kris POB	Sal	bing	<u>a</u>					Site N	ame:	En	vir	te		
Telephone #: Project Mgr:	Portland, ME 041 207-517- John P Derek Pe	8225	P.O N	o.:	happ	agu	ar	17 1	0574				Locati Sampl		An	ne D	anie	(State: <u>CT</u>
	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ S0		5=NaOH			i						List Pr	eservat	ive Cod	le belo	w:			QA/QC Reporting Notes:
7-CH3OH 8-Na	aHSO ₄ 9=Deionized Water 10 =H ₃ Po	04	=	12=	-					7,	9 7	-	T			Π			* additional charges may appply
DW=Dinking Wate	er GW=Groundwater SW=Su	ırface Water W	W=Waste War	ter			C	ontain	ers				Ana	alysis					MA DEP MCP CAM Report? Yes No
X1=	X2=		=		-	of VOA Vials	of Amber Glass	ır Glass	tic	0210		VICE BUCO	Fe, Mn,	11, Pb,2n		vain Size	el solids	Check if chlorinated	CT DPH RCP Report?
	G= Grab	C=Comps		Type	Matrix	fV0	f Aml	of Clear (of Plastic	1	3	V.C.		1,000	00	12	ata	eck il	☐ Tier II* ☐ Tier IV* ☐ Other:
Lab ID:	Sample ID:	Date:	940			#	3	#	#		>		-	Z	X	×	1	C	State-specific reporting standards:
1802801	BB-DS-SED-01	10/14/14	940	9	SO	3	3					X	1/	X	^	^	_		
1 02	BB-DS-SEDV-01	1	940	1	50	3		0		- /	-	Ž.	+	-		ļ			
03	BB-DS-SWV-01		-	-	SW	-5	っ				+	X	X	X	X	X	1		,
09	BB-DS- SED-02		955	(00)	4		3				/		-	/\		^	^		
03	66-05- SEDV-02		955	19	50 SW	3				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	>								
06	BB-DS-SWV-02		1015	++	-	3	3				-	X	×	X	X	X	X		
07	BB-DS-SED-03		1015	++	50)			. ,		-	1	1	1	1			· ·
08	BB-DS- SEDV-03		1015	1	SM	3				/	·	,	-	-					
69	BB-DS-SWV-03 BB-DS-SED-04	10/14/19	1135	10	10	2	3					X	X	X	X	X	X		
V (O	equished by:	Receiv				Date:			Time:	n	emp °	Janes L					1.2		
7 /	h lery	My	lety	P	10/1	4/11		1	455	Obs	rved 8	X	EDD :		ac	dani	ele) e	environcorp.com
of the	May	mp	ny		10	4	14	1	721	Corr	0.8		lition uj	oon rece	eipt:	Custoo	ly Seals	S:	☐ Present ☐ Intact ☐ Broken
										IR II	1		Ambien	MI	ced	□ Re	rigerate	ed	☐ DI VOA Frozen ☐ Soil Jar Frozen

Special	Handling:

	MANALYTICAL, INC. Featuring ALTECHNOLOGY ENVIRON 136 Commercial St Swite 402 Portland, ME 041 207-517-822 Devek Pelletie 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SC	01		Fo:	Page Kri O Bo Uapp	nvi s si x s	of bing 91	a ga NY	105				Project Site Na Locatio	on: er(s):	ETh	Rush Min. 2 Sample OB-	TAT - Ts subject the rest of t	Date ject to otific osed and a second and a	rwood
7=CH3OH 8=Na	aHSO ₄ 9=Deionized Water 10=H ₃ PO	O ₄ 11=	electrical description of the second	12=				-		7		JIST F16	servau	ve Coc	le belo	w.	I	-	QA/QC Reporting Notes: * additional charges may appply
DW=Dinking Wate	er GW =Groundwater SW =Su	rface Water W	W=Waste Wat	er			C	ontain	ers	7/	712		Ana	lysis					MA DEP MCP CAM Report? Yes No
O=Oil SO=So X1=		ient Air SG=So X3	oil Gas		-	# of VOA Vials	of Amber Glass	of Clear Glass	stic	8260	876	1	PE MA, MA, N. P.			Insize	J S. 1 62 1		CT DPH RCP Report? Yes No
Lab ID:	Sample ID:	C=Compsi	Time:	Type	Matrix	0A Jo	of Am	ofCle	of Plastic	SQ.	VIDCs	200	2	5	700	Grain	otal	ieck i	☐ Tier II* ☐ Tier IV*
	BB-DS-SEDV-04	10/14/14	1/35	9	SO	3	#	#	#	X		10	87	10	-	9		C	State-specific reporting standards:
0020-11	BB-DS-SWV-04	A	1135	-	5W					-	X							H	
	86-DS-SED-05		1200	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	50		3				1	×	×	X	X	Χ	×		*
	BB-DS-SEDV-05		1200		50	3	2			X		1	/	^		/\	1		
1. 17	BB-DS-SWV-05	(4)	1200	(0)		-					X							H	
1/	66-DS-SED-06	19	1230	19	30		\$6	-			1	X	×	X	X	X	X	F	Q. MC/MCA
(0)	BB-DS-SEDV-06		1230	++	SO	76	-			X		1						1	Run MS/MSD Run MS/MSD
18	BB-D3-SWV-06		1230	++	SW		-				X							1	0 1
19		W	1250	1	30	TU	3		125			X	X	X	X	X	X		
1/20	BB-D3-SEDV-07	10/14/19	1250	G	SO	3	-		line.	X								10	GM 10/1
Relin	equished by:		d by: //			Date:			Time:	Т	emp °C		EDD f	ormat:					
Jahwa.	lengel	Mely	Kulf	7	10/1	4/1	4	14	133	Obser	80	1 20	E-mail	to:	ad	anie	210	CI	nvironcorp.com
1 1/1	fluff	m	any	*	10	4	4	1	721	(ction Factor								8
										IR ID	18	-	tion up	(/	eipt: ced	Custod			☐ Present ☐ Intact ☐ Broken ☐ DI VOA Frozen ☐ Soil Jar Frozen

CHAIN OF CUSTODY RECORD Page 3 of 34

C092,22	D-1
212 10000	Special Handling:
	☐ Standard TAT - 7 to 10 business days
RECORD	☐ Rush TAT - Date Needed:
	All TATs subject to laboratory approval

SPECTRUM ANALYTICAL, INC.	Paga
Featuring	Page
HANIBAL TECHNOLOGY	

ď	All TATs subject to laboratory approval
	Min. 24-hr notification needed for rushes
	Samples disposed after 60 days unless otherwise instructed.

HANIB	Featuring BAL TECHNOLOGY				1	1 450		O1	4	. 1	CONTRACTOR OF THE PARTY OF THE							Sample	es dispo	osed a	after 60 days unless oth	erwise instructed.
Report To:	ENVIRON			Invoice T	`o:	E	NVI	rit	e						Project	No:	08	3-142	2/8	63	Ś	
	136 Commercial	St.			-	Kri Po Bo	r Si	bino	19									virite				
1986	Suite 402	7				20 BC	X 5	91	. 1. 37													-7
	Portland, ME 0 207-517-	4101		11 1		happ	agu	α_{j}	NI	105	14				Locatio			Ann				State: C/
Telephone #: Project Mgr:	Derek Pellefie			P.O N	o.:			Quot	te/RQN:		30				Sample	r(s):					rwood	
	1=Na ₂ S2O ₃ 2 =HCl faHSO ₄ 9=Deionized Water			5=NaOH								2.0		st Pres	ervati	ve Cod	e belo	w:				orting Notes:
						***************************************		0				7,9	2			.00						
DW=Dinking Wat	ter GW=Groundwater	SW=Surf	face Water W	W=Waste Wat	ter			C	ontain	ers					Ana	lysis		<u> </u>			MA DEP MCP CAM R CT DPH RCP Report?	Report? Yes N
O=Oil SO=So		loor/Ambie	ent Air SG=So	il Gas					1			ì	Š	3	0			0	-0	ited	Standard	□ No QC
XI= Trip	s Blank x2	<u></u>	X3=	=		_	ials	Glass	lass			8560	VOCS 8260	As, Ba, Cd, Cr, Cu	Fe, Ma, Na, Ni, Pb			Size	Total Solid	oring	☐ DQA*	☐ ASP B*
	G= Grab		C=Compsit	9		7 ~	A V	ıber (ar G	stic			00	3	Z		0		S	if ch]	NJ Reduced*	NJ Full*
		agrander.		I and the second	Туре	Matrix	# of VOA Vials	# of Amber Glass	of Clear Glass	of Plastic		50	300	30	2	ZN Z	0	Grain	ota	ecki	☐ Tier II*	☐ Tier IV*
Lab ID:	Sample ID:		Date:	Time:	9	-		#	#	#		>	X	Ť	The The	W	-	0	-	C	State-specific rep	orting standards:
	BB-DS-SWV-C		1		101	-)	7	-				^	1.		1/	_	1	V		7 / 1 / 1/	
	BB-DS-SED-0		1	1310	1	SO		3						X	X	X	X	X	X		K	*
	BB-DS-SEDY-			1310		SO	3					X										
24	BB-DS-SWV-	08	198	1310		SW	3						X									
25	Dup-1-Soil		4			30/5/10	23	3				火.	X	X	X	X	X	X	X		Separated	the Soil of
26	DUP-Z-Soil					50/50	X3	3				X	×	X	X	X	X	X	X		the SW sa	
	MS/MSD-1	Constitution of the last of th	V		V	50/5%	6	3	-			X	X	X	X	X	X	X	X		Em noti	
2 27	TB-1 - Soil		10/14/14	800	9	XI	3	2				X	X								10/15	BM 10/1
			V				M	5)														
			10/14/14/19				U	1						4				-				
Reli	nquished by:		Received				Date:			Time:		Tem	p °C		EDD fo	ormat:		-				
Skewledy	wel	7	While	aff		10/	14/14	4	14	155		Observed	8	X	E-mail	to:	ac	dani	e16	2 en	wironcorp.co	om
1 1	Alead		m			10	4	A	1	721		Corecction) Factor				4			3		Observations Annual Servation and Control Servation (Servation Control Servation Con
10	har		1,10	0		1.0	• 1	1				Corrected	2	Condit	ion un	on rece	ipt:	Custod	v Seals		☐ Present ☐ In	tact Broken
						+			-			IR ID#	_			1						
									1			OW	0	A	mbient	M Ic	ed	Ref	rigerate	be	DI VOA Frozen	Soil Jar Froze

Special Handling:	
Standard TAT - 7 to 10 business days	

HANIBAL	NALYTICAL, INC. eaturing TECHNOLOGY		CHAI			4				KE	COR	ייי		\$	All TA	4-hr notifica	Needed: b laboratory approval ation needed for rushes after 60 days unless otherwise instructed.
Telephone #:	Same as Pag	Pe. I	Invoice To		****				age			2	Project No Site Name Location: Sampler(s)	:			ors Page State:
	1=Na ₂ S2O ₃		P.O No. =NaOH 6=	=Ascorl	oic Acid	d	Quote	e/KQN	1			List Pre	servative	Code be	elow:		QA/QC Reporting Notes:
, crisori o mari	504 5 Belomzed Water 1	- 1131 04		- 12	The state of the s						2	1					* additional charges may appply
DW=Dinking Water	GW=Groundwater	SW=Surface Water WW	=Waste Wate	r			C	ontain	iers				Analys	is			MA DEP MCP CAM Report? Yes No
		or/Ambient Air SG=Soil X3= C=Compsite			- 1 ,	# of VOA Vials	of Amber Glass	of Clear Glass	stic		2 8260					Check if chlorinated	CT DPH RCP Report? Yes No Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full*
Lab ID:	Sample ID:	Date:	Time:	Type	Matrix	# of VC	# of An	# of Cle	# of Plastic		Voc					Check	☐ Tier II* ☐ Tier IV* ☐ Other: State-specific reporting standards:
8028-28	DUP-1-SU	0 10/14/14		a	Su	3					V						
1 29	DV p-2-54			C	Su	13					V						× ×
1, 30	TB-1-51		200	G-		- 1					V						
•	3																
15. 清楚 34																	
Relinqu	uished by:	Received	by:			Date:			Time:		Temp °C		EDD form	nat:			8.288838838
		North Scot		(Gri)	lo	1141	114		41	55	Observed O . 8 Corecction Factor		E-mail to:	-			•
Norm	Scott (Gn)	Mary	(B	m)	10	/14	/14	1	7:2	1	0						
		1									IRID#	-	ition upon Ambient	,			□ Present □ Intact □ Broken □ DI VOA Frozen □ Soil Jar Frozen

CHAIN OF CUSTODY RECORD

Special Handling:	
☐ Standard TAT - 7 to 10 business days	
☐ Rush TAT - Date Needed:	

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY					Page ofY										All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.					
Report To:	ENVIRON		Invoice T	o:	Er	wich	te			,	9		Project	No:	08-1421843					
	136 Commercial St Suite 402	*			Kris	Sa	bina	a			-	Site Name:			Envirite					
Manufacture	Portland, ME O41	01	- 14	-	POBOX SAN Chappagua NY 10514							Location:			Thomaston State: CT			State: CT		
Telephone #: Project Mgr:	207-517- John Derek Pe	8225	P.O No		Quote/RQN:							Sampler(s):			Ani	ne D	anie	1		State.
	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SC aHSO ₄ 9=Deionized Water 10=H ₃ PC			6=Ascor		d		-		7,9		st Pres	ervati	ve Coo	le belo	w:	T		QA/QC Report * additional charge	
							C	ontain	0.200	7,1	2		Ana	lysis				1	MA DEP MCP CAM Rep	- Dva Dva
O=Oil SO=So X1=		ient Air SG=So		er	-	Vials	of Amber Glass	of Clear Glass		0978	VOC. 9260	As, Ba, Cd, Cr	Fe Mn	12 g		n Size	(Solids)	Check if chlorinated	CT DPH RCP Report? Standard DQA* ASP A*	No QC ASP B*
	G= Grab	C=Compsit	e	Type	Matrix	of VOA	Ambe	Clear	of Plastic	500	Š	8	17	Na, Ni,	20	Grain	Total	ck if	☐ Tier II*	☐ Tier IV*
Lab ID:	Sample ID:	Date:	Time:	T.	M	Jo#	Jo#	# of	Jo#	3	>	As	3	Z	6	-	-	Che	Other: Tie	ting standards:
1802801	BB-DS-SED-01	10/14/14	940	9	SO		3					X	X	X	X	×	X		RA/RC.	requirenent
1 02	BB-DS-SEDV-01	1	940	1	50	3				X									added per	lient
3	BB-DS-SWV-01		940		SW	-3					X								regues	V .
04			955		50		3					X	X	X	X	X	X			En 10/16
05	BB-DS-SEDV-02	(9)	955	(9)	50	3				X										man l
06	BB-DS-SWV-02		955		SM	3					X									
07	BB-DS-SED-03		1015		SD		3					X	X	X	X	X	X			
80	BB-DS- SEDV-03		1015		50	3				X									先月表計 報	
09	BB-DS-SWV-03	V	1015	V	SW	3					X									
10	BB-DS-SED-04	10/14/14	1135	9	10		3					X	X	X	X	X	X			
Reli	linquished by: Received by:			Date:			Time:	Ten	ıp °C		EDD f	ormat:								
Ablula leryel Miller		lear	1	10/1	4/1	4	1	453	Observed	8	X	E-mail	to:	ac	lani	ele) e	nvironcorp	con	
1/1	May	mp	w.		10	4	14		721	Corrected)	3	NR. 0.08							
· O								IR ID#	8	Condi	tion up	on rece	eipt:	Custod	ly Seals);	Present Inta	ct Broken		
							-			0	2	A	mbien	KI	eed	☐ Ref	rigerate	ed	DI VOA Frozen	Soil Jar Frozen

Spacial	Handling:
Sherm	manuming.

HANIBARE Report To:	WANALYTICAL, INC. Featuring AL TECHNOLOGY ENVIRON		Kris Sibinga										Project	No:	Rush TAT - Date Needed: All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructe 08-14218 G 3 Environce			o laboratory approval ation needed for rushes after 60 days unless otherwise instructed.		
Portland, ME 04101 Chap elephone #: 207-517-8225 oject Mgr: Devek Pelletier P.O.No.:					Quote/RQN: Locatic Sample								n:	Th	omas Anne	tor Da	nie	State: CT		
Field Filtered FCH3OH 8=Na	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO aHSO ₄ 9=Deionized Water 10=H ₃ PO		5=NaOH (6=Ascor		d						Li	st Pres	ervativ	ve Cod	le belo	w:			QA/QC Reporting Notes:
	,							-			7/9	2			50/99/ECT896					* additional charges may appply
W=Dinking Wate	er GW=Groundwater SW=Sur	face Water W	W=Waste Wate	er			C	ontain	ers					Anal	lysis					MA DEP MCP CAM Report? Yes No No Yes No
	il SL=Sludge A=Indoor/Ambie X2= G= Grab	ent Air SG=So X3= C=Compsit		ō	ix.	OA Vials	of Amber Glass	of Clear Glass	of Plastic		Cs 8260	5 8260	A, Da C, C,	FE MAINGIN, PO			Grainsize	Total Solidi	if chlorinated	CT DPH RCP Report? Standard No QC DQA* ASP A* ASP B* NJ Reduced* Tier II* Tier IV*
Lab ID:	Sample ID:	Date:	Type: Type		# of VOA	of A	of Cl	of Pl		VOCs	VOCs	75,6	10	5	100	2	tol	heck	Other:	
028-11	BB-DS-SEDV-04	10/14/14	1135	9	SO	3	#	#	#		X			5.39	,	1		1		State-specific reporting standards:
0-0	BB-DS-SWV-04	1	1135	1	5W	3						X								added on check
	BB-DS-SED-05		1200		50		3						X	X	X	X	X	×		request on
14	BB-DS-SEDV-05		1200		50	3					X							-		10/16
15	BB-DS-SWV-05	(90)	1200	(9)	SW	3				-		X								V E V
16	66-DS-SED-06		1230	11	30		\$6	5					X	X	X	X	X	X		Run MS/MSD
()	BB-DS-SEDV-06		1230		SO	76	9				X									Run MS/MSD
13	BB-D3-SWV-06		1230		SW	\$6				1		X								Run Mr/MSD per
19	BB-DS-SED-07	V	1250	V	30		3						X	X	X	X	X	X		dievrequest.
1/20	BB-D3-SEDV-07	10/14/14	1250	9	SO	3					X									Gm lo/
Relin	equished by:	Receive	d by: //			Date:			Time:		Tem	p °C		EDD fo	rmat:					CFESENT, 2
Ophwa.	lenos	Miles	luli		10/1	4/1	4	14	153		Observed	8	N.	E-mail	to:	ad	anje	10	en	vironcorp.com
1 /	Mall	m	and	× 13	10	14	4	1-	72	1	Corecction	0710242 mm 2010 1011 PM								
									1 6		Corrected O. (3		ion upo	1/		Custod			☐ Present ☐ Intact ☐ Broken ☐ DI VOA Frozen ☐ Soil Jar Frozen

CHAIN OF CUSTODY RECORD

Special Handling:	
Standard TAT - 7 to 10 business days	

	Standard	TAT	- 7	to	10	business	days
Season and	IN COURT COURT OF					CODILLOOD	erecj c

	Rush TAT - Date Needed:	
4	All TATs subject to laboratory approval	7
	Min 24 hr natification needed for maker	

	SPECTRUM ANALYTICAL, INC. Featuring	Page Of Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherw																				
13 6 Correction St. St. Long St. Lon	CNVIRON		Invoice T	0:	F	Nici	rite	2	***************************************	-				Project '	No:	08	-142	1/8	43			\neg
Solid 100 Port 100 Po			Invoice 1	0	Kri	5 51	bing	a														
Period Filtered 1-Na_SSLO_ 2-HGT 3-H_SO_ 4-HINO_ 5-NaOH 6-Ascorbic Acid 12=	Suite 402			P	0 BC	X 5	9/)				.	3	Site Nai	me:	ENV	ITITE	ser				. [
Period Filtered 1-Na_SSLO_ 2-HGT 3-H_SO_ 4-HINO_ 5-NaOH 6-Ascorbic Acid 12=	Portland, ME 04101			_Cl	happ	appagua, NY 10514)	Locatio	n:					·	State: CT	.	
Period Filtered 1-Na_SSLO_ 2-HGT 3-H_SO_ 4-HINO_ 5-NaOH 6-Ascorbic Acid 12=	Telephone #: 207-517-8225		DOM			V								Sample	r(s): .							.
10 10 10 10 10 10 10 10							Quou	e/RQN:								Nether And	IONI	1 0710		1000 G		
Depting Water GW-Groundwater SW-Surface Water WW-Waste Water O-Oil SO-Soil SL-Stidge A-Indoor/Ambient Air SG-Soil Gas X1 =												Li	st Pres	ervativ	ve Cod	e belo	w:					
0-Oil SO-Soil SL-Sludge A=Indoor/Ambient Air SG-Soil Gas XI										7,9	2								* additional charges may appply			
So-Soil So-Soil So-Soil So-Soil Gas Soil Gas Soil Gas Soil Gas Soil Gas Soil Gas G	DW =Dinking Water GW =Groundwater SW =Su	urface Water WV	V=Waste Wat	er			C	ontain	ers					Anal	lysis						A Report? Yes	No
8028-21 68-D5-SWV-07 10 MH 1250 G SW 3 X X X X X X Per died requests 12 68-D5-SED-08 N 1310 N SO 3 X X X X X X X Per died request 1310 N SO 3 X X X X X X X X Per died request 1310 SW 3 X X X X X X X X X X X X X X X X X X	O=Oil SO=Soil SL=Sludge A=Indoor/Amb	ient Air SG=Soi	l Gas								1	0	3	B.			,		pa	mark v		No
8028-21 68-D5-SWV-07 10 MH 1250 61 SW 3 X X X X X X Per vicely requested by 1310 N SO 3 X X X X X X X Per vicely request by 1310 SW 3 X X X X X X X X X Per vicely request by 1310 SW 3 X X X X X X X X X X X X X X X X X X	XI= Trio Blank X2= X3=					S	lass	SS			03 2		3 2				128	-	rinat		A*	
8028-21 68-D5-SWV-07 10 MH 1250 61 SW 3 X X X X X X Per vicely requested by 1310 N SO 3 X X X X X X X Per vicely request by 1310 SW 3 X X X X X X X X X Per vicely request by 1310 SW 3 X X X X X X X X X X X X X X X X X X					7	Via	er G	r Gla	ji,		376		3	N		.)	S	S	chlo		The same of the sa	
8028-21 68-D5-SWV-07 10 MH 1250 67 SW 3 X X X X X X Par click requirements 12 68-D5-SED-08 N 1310 N SO 3 X X X X X X X Par click requirements 13 68-D5-SEDV-08 1310 SW 3 X X X X X X X X X Par click requirements 15 DUP-1-Soil 1310 SW 3 X X X X X X X X X Separated the Soil from 16/16 15 DUP-2-Soil 10/14/14 800 4 X X X X X X X X X X X X X X X X X X	G= Grab	C=Compsite		J	atrix	VOA	Amb	Clea	Plast		1	5	B	Z	_	00	To	ta	ck if		☐ Tier IV*	
Doll	Lab ID: Sample ID:			H	Z		# of	# of	Jo #		3		£	3	M	1-	2	1	Che		reporting standards:	
12 66 - DS - SED - 08	8028-21 BB-DS-SWV-07	10/14/14	1250	9	SW	3						X								QA/QC	requirerent	5
24 66-DS-SWV-08 1310 SW 3 25 DUP-1-Soil 26 DUP-2-Soil 30 & 33 X X X X X X X X X X X X X X X X X	, 22 BB-DS-SED-08	A	1310	1	SO		3						X	X	X	X	X	X		per chie	tregnest	
24 66-DS-SWV-08 1310 SW 3 25 DUP-1-Soil 26 DUP-2-Soil 30 & 33 X X X X X X X X X X X X X X X X X	23 BB-DS-SEDV-08		1310		so	.3					X										en 10/16	
25 DUP-1-Soil 26 DUP-2-Soil 37 Kg3 3 X X X X X X X X X X X X X X X X X X	24 BB-DS-SWV-08	6	1310		sw	3						X						1				
26 DUP 2 - So I		TO TO	3-1-1-1-1		3/2	& 3	3				χ.	X	Х	X	X	X	X	X		Separate	d the Soil	hor
Relinquished by: Received by: Received by: Date: Time: Temp °C Dispersed Dispers					50/50		The second second				X	X	X	X	X	X	X					
Relinquished by: Received by: Received by: Date: Time: Temp °C Description Description De		AT ALL DE STATE OF THE STATE OF	and the same of th	V	50/	6					X	X	Х	X	X	X	X	X				
Relinquished by: Received by: Date: Time: Temp °C EDD format: Corrected E-mail to: Adanje Cenviron corp. com.		10/14/14	800	4	XI	7	2				X	X								10/15		115
Relinquished by: Received by: Date: Time: Temp °C EDD format: Adanje Cenviron corp. com O 4 172 Corrected O Corrected Condition upon receipt: Custody Seals: Present Intact Broken		T.A.				P	5														Don't vis	-0
Relinquished by: Received by: Date: Time: Temp °C Discreted by: Discreted by: Discreted by: Date: Time: Temp °C Discreted by: Discreted by: Discreted by: Discreted by: Dobserved by: Discreted by: Date: Time: Temp °C Discreted by: Discreted		10/14/14/P)				74	1						4				-					
Abblidge 10/4/14 1455 Observed 8 E-mail to: adanje Cenviron corp. com. Corrected Corrected Condition upon receipt: Custody Seals: Present Intact Broken	Relinquiched by:					Date:			Time:	See 1	Tem	n °C		EDD C								
The first of the f							-	11 -	_	Observed		. 1) .	-10)		4	-	
10.14.4 1721 Corrected Condition upon receipt: Custody Seals: Present Intact Broken	Subledent Maring			10/	14/14	1	19	135)	0	8	1	E-maii	10:	adanje l Cenviron corp. com							
Condition upon receipt: Custody Seals: Present Intact Broken				10	1.4.A 1721				Corecction Factor													
										\$25 CO. Mar. 201 (1997) 100 Co. 100 Co			Condition upon receipt: Custody Seals: Present Intact Broken									
Ambient Alced						***************************************				RID# Ambient Iced Refrigerated DI VOA Frozen				n 🔲 Soil Jar Fro	zen							

HANIBAL TECHNOLOGY

Report To:

CHAIN OF CUSTODY RECORD

Page 4 of 4

Invoice To:

19/2	1		A 189, 2
.0	/ S	péci	al Handling:
	☐ Standard TA	T - 7	to 10 business days
	☐ Rush TAT -	Date	Needed:
	Min. 24-hr n	otifica	plaboratory approval ution needed for rushes fter 60 days unless otherwise instructed.
roject No:			
Site Name:	Sow	c	as Page 1
ocation:			State:
Sampler(s):			
ervative Cod	le below:	-	QA/QC Reporting Notes: * additional charges may appply
Analysis			MA DEP MCP CAM Report? Yes No
		Check if chlorinated	CT DPH RCP Report? Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full* Tier II* Other: State-specific reporting standards:
			. 1
		+-	QA/QC requirements

Telephone #: Project Mgr:		P.O No.:				Quote	e/RQN:				Sampler(s):		State:	
F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 1		=NaOH 6=								List Pres	servative Code b	elow:	QA/QC Reporting Notes * additional charges may appp	
			-	Containers					2					
DW=Dinking Water GW=Groundwater SW=Surface Water WW=Waste Water O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas XI= X2= X3= G= Grab C=Compsite					OA Vials	of Amber Glass	of Clear Glass	of Plastic	Cs bibo		Analysis	P. S.	MA DEP MCP CAM Report? Yes CT DPH RCP Report? Yes Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full* Tier II* Tier IV* State-specific reporting standards	□ No
Lab ID: Sample ID:	Date:	Time:	Tyl	Matrix	# of VOA	t of A	# of C	# of P	700				Other: State-specific reporting standards	·
98028-28 DUP-1-SV	0 10/14/14	-	a	SW		75	74-		1				- State Optimite Laborating Statistical	. 1
	0 10/14/14		C	SW					V				pa Chellag	nes
1 30 TB-1-51	N 10/14/14	800	6-		- 1				V				7	
													9n 10/1	6
														-
														,
					-									
				-										
ye and the second														
Relinquished by:	Received	by:			Date:			Time:	Temp °	C \square	EDD format:			
	North Scot			10/	141	114	1	4:55	Observed O 8 Corecction Fac)	E-mail to:			
Norm Scott (Gn)	Mary	(6	7)	10	1141	114	1	121	0					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			5 6					Corrected O		,		☐ Present ☐ Intact ☐ Bre	
	11 Almgran Dri								02		/	Refrigerated	DI VOA Frozen Soil Jan	Frozen

Report Date: 28-Oct-14 17:29

☑ Final Report☐ Re-Issued Report☐ Revised Report

Featuring HANIBAL TECHNOLOGY

Laboratory Report

ENVIRON International Corporation 136 W Commercial St, Suite 402

Portland, ME 04101 Attn: Derek Pelletier Project: Envirite - Thomaston, CT

Project #: 08-14218G3

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB98147-01	NR-DS-SED-01	Soil	14-Oct-14 15:40	15-Oct-14 18:20
SB98147-02	NR-DS-SEDV-01	Soil	14-Oct-14 15:40	15-Oct-14 18:20
SB98147-03	NR-DS-SWV-01	Surface Water	14-Oct-14 15:40	15-Oct-14 18:20
SB98147-04	NR-DS-SED-02	Soil	14-Oct-14 16:00	15-Oct-14 18:20
SB98147-05	NR-DS-SEDV-02	Soil	14-Oct-14 16:00	15-Oct-14 18:20
SB98147-06	NR-DS-SWV-02	Surface Water	14-Oct-14 16:00	15-Oct-14 18:20
SB98147-07	NR-DS-SED-03	Soil	14-Oct-14 16:15	15-Oct-14 18:20
SB98147-08	NR-DS-SEDV-03	Soil	14-Oct-14 16:15	15-Oct-14 18:20
SB98147-09	NR-DS-SWV-03	Surface Water	14-Oct-14 16:15	15-Oct-14 18:20
SB98147-10	NR-DS-SED-04	Soil	14-Oct-14 16:35	15-Oct-14 18:20
SB98147-11	NR-DS-SEDV-04	Soil	14-Oct-14 16:35	15-Oct-14 18:20
SB98147-12	NR-DS-SWV-04	Surface Water	14-Oct-14 16:35	15-Oct-14 18:20
SB98147-13	NR-DS-SED-05	Soil	14-Oct-14 17:00	15-Oct-14 18:20
SB98147-14	NR-DS-SEDV-05	Soil	14-Oct-14 17:00	15-Oct-14 18:20
SB98147-15	NR-DS-SWV-05	Surface Water	14-Oct-14 17:00	15-Oct-14 18:20
SB98147-16	DUP-4-Soil	Soil	14-Oct-14 00:00	15-Oct-14 18:20
SB98147-17	DUP-5-Soil	Soil	14-Oct-14 00:00	15-Oct-14 18:20
SB98147-18	DUP-4-Water	Surface Water	14-Oct-14 00:00	15-Oct-14 18:20
SB98147-19	DUP-5-Water	Surface Water	14-Oct-14 00:00	15-Oct-14 18:20
SB98147-20	TB-2-Water	Trip Blank	15-Oct-14 07:00	15-Oct-14 18:20
SB98147-21	TB-3-Water	Trip Blank	15-Oct-14 07:00	15-Oct-14 18:20
SB98147-22	BB-US-SED-01	Soil	15-Oct-14 08:00	15-Oct-14 18:20
SB98147-23	BB-US-SEDV-01	Soil	15-Oct-14 08:00	15-Oct-14 18:20
SB98147-24	BB-US-SWV-01	Surface Water	15-Oct-14 08:00	15-Oct-14 18:20
SB98147-25	BB-US-SED-02	Soil	15-Oct-14 08:10	15-Oct-14 18:20
SB98147-26	BB-US-SEDV-02	Soil	15-Oct-14 08:10	15-Oct-14 18:20
SB98147-27	BB-US-SWV-02	Surface Water	15-Oct-14 08:10	15-Oct-14 18:20
SB98147-28	BB-US-SED-03	Soil	15-Oct-14 08:25	15-Oct-14 18:20
SB98147-29	BB-US-SEDV-03	Soil	15-Oct-14 08:25	15-Oct-14 18:20
SB98147-30	BB-US-SWV-03	Surface Water	15-Oct-14 08:25	15-Oct-14 18:20
SB98147-31	BB-US-SED-04	Soil	15-Oct-14 08:40	15-Oct-14 18:20
SB98147-32	BB-US-SEDV-04	Soil	15-Oct-14 08:40	15-Oct-14 18:20
SB98147-33	BB-US-SWV-04	Surface Water	15-Oct-14 08:40	15-Oct-14 18:20
SB98147-34	BB-US-SED-05	Soil	15-Oct-14 08:50	15-Oct-14 18:20
SB98147-35	BB-US-SEDV-05	Soil	15-Oct-14 08:50	15-Oct-14 18:20
SB98147-36	BB-US-SWV-05	Surface Water	15-Oct-14 08:50	15-Oct-14 18:20
SB98147-37	BB-US-SED-06	Soil	15-Oct-14 09:05	15-Oct-14 18:20

SB98147-38	BB-US-SEDV-06	Soil	15-Oct-14 09:05	15-Oct-14 18:20
SB98147-39	BB-US-SWV-06	Surface Water	15-Oct-14 09:05	15-Oct-14 18:20
SB98147-40	BB-US-SED-07	Soil	15-Oct-14 09:20	15-Oct-14 18:20
SB98147-41	BB-US-SEDV-07	Soil	15-Oct-14 09:20	15-Oct-14 18:20
SB98147-42	BB-US-SWV-07	Surface Water	15-Oct-14 09:20	15-Oct-14 18:20
SB98147-43	BB-US-SED-08	Soil	15-Oct-14 09:30	15-Oct-14 18:20
SB98147-44	BB-US-SEDV-08	Soil	15-Oct-14 09:30	15-Oct-14 18:20
SB98147-45	BB-US-SWV-08	Surface Water	15-Oct-14 09:30	15-Oct-14 18:20
SB98147-46	NR-DS-SED-06	Soil	15-Oct-14 10:25	15-Oct-14 18:20
SB98147-47	NR-DS-SEDV-06	Soil	15-Oct-14 10:25	15-Oct-14 18:20
SB98147-48	NR-DS-SWV-06	Surface Water	15-Oct-14 10:25	15-Oct-14 18:20
SB98147-49	NR-DS-SED-07	Soil	15-Oct-14 10:35	15-Oct-14 18:20
SB98147-50	NR-DS-SEDV-07	Soil	15-Oct-14 10:35	15-Oct-14 18:20
SB98147-51	NR-DS-SWV-07	Surface Water	15-Oct-14 10:35	15-Oct-14 18:20
SB98147-52	NR-DS-SED-08	Soil	15-Oct-14 10:45	15-Oct-14 18:20
SB98147-53	NR-DS-SEDV-08	Soil	15-Oct-14 10:45	15-Oct-14 18:20
SB98147-54	NR-DS-SWV-08	Surface Water	15-Oct-14 10:45	15-Oct-14 18:20
SB98147-55	NR-US-SED-01	Soil	15-Oct-14 11:25	15-Oct-14 18:20
SB98147-56	NR-US-SEDV-01	Soil	15-Oct-14 11:25	15-Oct-14 18:20
SB98147-57	NR-US-SWV-01	Surface Water	15-Oct-14 11:25	15-Oct-14 18:20
SB98147-58	NR-US-SED-02	Soil	15-Oct-14 11:35	15-Oct-14 18:20
SB98147-59	NR-US-SEDV-02	Soil	15-Oct-14 11:35	15-Oct-14 18:20
SB98147-60	NR-US-SWV-02	Surface Water	15-Oct-14 11:35	15-Oct-14 18:20
SB98147-61	NR-US-SED-03	Soil	15-Oct-14 11:50	15-Oct-14 18:20
SB98147-62	NR-US-SEDV-03	Soil	15-Oct-14 11:50	15-Oct-14 18:20
SB98147-63	NR-US-SWV-03	Surface Water	15-Oct-14 11:50	15-Oct-14 18:20
SB98147-64	NR-US-SED-04	Soil	15-Oct-14 12:50	15-Oct-14 18:20
SB98147-65	NR-US-SEDV-04	Soil	15-Oct-14 12:50	15-Oct-14 18:20
SB98147-66	NR-US-SWV-04	Surface Water	15-Oct-14 12:50	15-Oct-14 18:20
SB98147-67	NR-US-SED-05	Soil	15-Oct-14 13:05	15-Oct-14 18:20
SB98147-68	NR-US-SEDV-05	Soil	15-Oct-14 13:05	15-Oct-14 18:20
SB98147-69	NR-US-SWV-05	Surface Water	15-Oct-14 13:05	15-Oct-14 18:20
SB98147-70	NR-US-SED-06	Soil	15-Oct-14 13:15	15-Oct-14 18:20
SB98147-71	NR-US-SEDV-06	Soil	15-Oct-14 13:15	15-Oct-14 18:20
SB98147-72	NR-US-SWV-06	Surface Water	15-Oct-14 13:15	15-Oct-14 18:20
SB98147-73	NR-US-SED-07	Soil	15-Oct-14 13:30	15-Oct-14 18:20
SB98147-74	NR-US-SEDV-07	Soil	15-Oct-14 13:30	15-Oct-14 18:20
SB98147-75	NR-US-SWV-07	Surface Water	15-Oct-14 13:30	15-Oct-14 18:20
SB98147-76	NR-US-SED-08	Soil	15-Oct-14 13:40	15-Oct-14 18:20
SB98147-77	NR-US-SEDV-08	Soil	15-Oct-14 13:40	15-Oct-14 18:20
SB98147-78	NR-US-SWV-08	Surface Water	14-Oct-14 13:40	15-Oct-14 18:20
SB98147-79	TB-2-Soil	Trip Blank	15-Oct-14 07:00	15-Oct-14 18:20
SB98147-80	TB-3-Soil	Trip Blank	15-Oct-14 07:00	15-Oct-14 18:20

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Nicole Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 266 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Reasonable Confidence Protocols Laboratory Analysis QA/QC Certification Form

Laboratory Name: Spectrum Analytical, Inc.

Client: ENVIRON International Corporation - Portland, ME

Project Location: Envirite - Thomaston, CT Project Number: 08-14218G3

 Sampling Date(s):
 Laboratory Sample ID(s):

 10/14/2014 through 10/15/2014
 SB98147-01 through SB98147-80

RCP Methods Used:

SW846 6010C SW846 8260C

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	√	Yes	No
1A	Were the method specified preservation and holding time requirements met?	✓	Yes	No
1B	<u>VPH and EPH methods only</u> : Was the VPH or EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?		Yes	No
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	✓	Yes	No
3	Were samples received at an appropriate temperature?	✓	Yes	No
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved?		Yes	✓ No
5	a) Were reporting limits specified or referenced on the chain-of-custody? b) Were these reporting limits met?		Yes Yes	✓ No No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?		Yes	✓ No
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	✓	Yes	No

Note: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence."

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for obtaining the information contained in this analytical report, such information is accurate and complete.

Nicole Leja Laboratory Director Date: 11/18/2014

Micole Leja

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

The samples were received 1.2 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 1.0 degrees Celsius was used immediately upon receipt of the samples.

Low level VOC soil samples submitted in DI water or in an encore sampler were frozen on 10/15/2014 at 18:20.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

Required site-specific Matrix Spike/Matrix Spike Duplicate (MS/MSD) must be requested by the client and sufficient sample must be submitted for the additional analyses. Samples submitted with insufficient volume/weight will not be analyzed for site specific MS/MSD, however a batch MS/MSD may be analyzed from a non-site specific sample.

CTDEP has published a list of analytical methods which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of decisions being made utilizing the Reasonable Confidence Protocol (RCP). "Reasonable Confidence" can be established only for those methods published by the CTDEP in the RCP guidelines. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

The CTDEP RCP requests that "all non-detects and all results below the reporting limit are reported as ND (Not Detected at the Specified Reporting Limit)". All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

If no reporting limits were specified or referenced on the chain-of-custody the laboratory's practical quantitation limits were applied.

According to CTDEP RCP Quality Assurance and Quality Control Requirements for VOCs by method 8260, SW-846 version 1, 7/28/05 Table 1A, recovery for some VOC analytes have been deemed potentially difficult.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

Method SW846 5035A is designed to use on samples containing low levels of VOCs, ranging from 0.5 to 200 ug/Kg. Target analytes that are less responsive to purge and trap may be present at concentrations over 200ug/Kg but may not be reportable in the methanol preserved vial (SW846 5030). This is the result of the inherent dilution factor required for the methanol preservation.

For this work order, the reporting limits have not been referenced or specified.

TOC Estimate Qualifier Clarification Case Narrative:

Please note, specific TOC values within this work order are flagged as estimated. The TOC value is initially measured in ug (microgram) of carbon but converts to ppm in the instrument software program. The initial ug of carbon reading fell within the midrange of the calibration curve of the instrumentation; however, the limited sample weight used elevated the ppm value above the maximum value listed in Element. As a result, the sample value is not over the calibration range of the instrument and was not reanalyzed.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

ASTM D422

Duplicates:

1424931-DUP1 Source: SB98147-22

ASTM D422

Duplicates:

1424931-DUP1 Source: SB98147-22

RPD out of acceptance range.

Fractional % Sieve #100 (250-150μm) Fractional % Sieve #200 (150-75μm)

1425083-DUP1 Source: SB98147-46

RPD out of acceptance range.

Fractional % Sieve #100 (250-150μm) Fractional % Sieve #230 (less than 75μm)

1425210-DUP1 Source: SB98147-67

RPD out of acceptance range.

Fractional % Sieve #100 (250-150μm) Fractional % Sieve #20 (2000-850μm)

Lloyd Kahn

Samples:

SB98147-13 *NR-DS-SED-05*

This sample was analyzed in quadruplicate. The % RSD is 5.71563%.

Total Organic Carbon

SB98147-46 *NR-DS-SED-06*

This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.

Total Organic Carbon

SB98147-55 *NR-US-SED-01*

This sample was analyzed in quadruplicate. The % RSD is 22.61677%.

Total Organic Carbon

SM2540 G Mod.

Samples:

SB98147-02 *NR-DS-SEDV-01*

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -01 were used to calculate the results on a dry weight basis.

% Solids

SB98147-05 NR-DS-SEDV-02

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -04 were used to calculate the results on a dry weight basis.

% Solids

SB98147-08 NR-DS-SEDV-03

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -07 were used to calculate the results on a dry weight basis.

% Solids

SM2540 G Mod.

Samples:

SB98147-11 *NR-DS-SEDV-04*

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -10 were used to calculate the results on a dry weight basis.

% Solids

SB98147-14 NR-DS-SEDV-05

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -13 were used to calculate the results on a dry weight basis.

% Solids

SB98147-23 BB-US-SEDV-01

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -22 were used to calculate the results on a dry weight basis.

% Solids

SB98147-26 BB-US-SEDV-02

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -25 were used to calculate the results on a dry weight basis.

% Solids

SB98147-29 BB-US-SEDV-03

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -28 were used to calculate the results on a dry weight basis.

% Solids

SB98147-32 *BB-US-SEDV-04*

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -31 were used to calculate the results on a dry weight basis.

% Solids

SB98147-35 *BB-US-SEDV-05*

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -34 were used to calculate the results on a dry weight basis.

% Solids

SB98147-38 BB-US-SEDV-06

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -37 were used to calculate the results on a dry weight basis.

% Solids

SB98147-41 *BB-US-SEDV-07*

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -40 were used to calculate the results on a dry weight basis.

% Solids

SB98147-44 *BB-US-SEDV-08*

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -43 were used to calculate the results on a dry weight basis.

% Solids

SM2540 G Mod.

Samples:

SB98147-47

NR-DS-SEDV-06

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -46 were used to calculate the results on a dry weight basis.

% Solids

SB98147-50

NR-DS-SEDV-07

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -49 were used to calculate the results on a dry weight basis.

% Solids

SB98147-53

NR-DS-SEDV-08

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -52 were used to calculate the results on a dry weight basis.

% Solids

SB98147-56

NR-US-SEDV-01

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -55 were used to calculate the results on a dry weight basis.

% Solids

SB98147-59

NR-US-SEDV-02

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -58 were used to calculate the results on a dry weight basis.

% Solids

SB98147-62

NR-US-SEDV-03

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -61 were used to calculate the results on a dry weight basis.

% Solids

SB98147-65

NR-US-SEDV-04

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -64 were used to calculate the results on a dry weight basis.

% Solids

SB98147-68

NR-US-SEDV-05

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -67 were used to calculate the results on a dry weight basis.

% Solids

SB98147-71

NR-US-SEDV-06

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -70 were used to calculate the results on a dry weight basis.

% Solids

SB98147-74

NR-US-SEDV-07

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -73 were used to calculate the results on a dry weight basis.

% Solids

SM2540 G Mod.

Samples:

SB98147-77

NR-US-SEDV-08

This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -76 were used to calculate the results on a dry weight basis.

% Solids

SW846 6010C

Spikes:

1424869-MS1

Source: SB98147-13

Due to noted non-homogeneity of the QC sample matrix, the MS/MSD did not provide reliable results for accuracy and precision. Sample results for the QC batch were accepted based on LCS/LCSD percent recoveries and RPD values.

Manganese

1424869-MSD1

Source: SB98147-13

Due to noted non-homogeneity of the QC sample matrix, the MS/MSD did not provide reliable results for accuracy and precision. Sample results for the QC batch were accepted based on LCS/LCSD percent recoveries and RPD values.

Arsenic

Cadmium

Chromium

Copper

Lead

Manganese

Nickel

Zinc

1424871-MS1

Source: SB98147-52

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron

The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon acceptable PS and /or LCS recovery.

Sodium

1424871-MSD1

Source: SB98147-52

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron

The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon acceptable PS and /or LCS recovery.

Sodium

1424871-PS1

Source: SB98147-52

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron

1425332-MS1

Source: SB98147-13

SW846 6010C

Spikes:

1425332-MS1 Source: SB98147-13

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron

1425332-MSD1 Source: SB98147-13

Due to noted non-homogeneity of the QC sample matrix, the MS/MSD did not provide reliable results for accuracy and precision. Sample results for the QC batch were accepted based on LCS/LCSD percent recoveries and RPD values.

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron

Visual evaluation of the sample indicates the RPD is above the control limit due to a non-homogeneous sample matrix.

Sodium

Source: SB98147-13 1425332-PS1

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron

Duplicates:

1424869-DUP1 Source: SB98147-13

Visual evaluation of the sample indicates the RPD is above the control limit due to a non-homogeneous sample matrix.

Cadmium

Chromium

Copper

Lead

Nickel

Zinc

1425332-DUP1 Source: SB98147-13

Visual evaluation of the sample indicates the RPD is above the control limit due to a non-homogeneous sample matrix.

Iron

Sodium

S412316-SRD1 Source: BB-US-SED-07

The dilution analysis is not within a control limit of 10%, therefore a chemical or physical interference effect must be suspected.

Manganese (11%)

Nickel (12%)

Zinc (13%)

S412328-SRD1 Source: NR-DS-SED-01

The dilution analysis is not within a control limit of 10%, therefore a chemical or physical interference effect must be suspected.

Iron (11%)

SW846 8260C

Calibration:

Calibration:

1409053

Analyte quantified by quadratic equation type calibration.

1,1,2-Trichlorotrifluoroethane (Freon 113)

Bromoform

Dibromochloromethane

Naphthalene

trans-1,3-Dichloropropene

This affected the following samples:

1424514-BLK1

1424514-BS1

1424514-BSD1

1424514-MS1

1424514-MSD1

NR-DS-SEDV-05

S410392-ICV1

S411843-CCV1

1409096

Analyte quantified by quadratic equation type calibration.

1,2,4-Trichlorobenzene

1,2-Dibromo-3-chloropropane

4-Methyl-2-pentanone (MIBK)

Bromoform

Dibromochloromethane

Naphthalene

trans-1,3-Dichloropropene

trans-1,4-Dichloro-2-butene

This affected the following samples:

1424519-BLK1

1424519-BS1

1424519-BSD1

1424519-MS1

1424519-MSD1

NR-DS-SWV-01

NR-DS-SWV-02

NR-DS-SWV-03

NR-DS-SWV-04

NR-DS-SWV-05

S410947-ICV1

S411822-CCV1

1410015

Analyte quantified by quadratic equation type calibration.

Bromoform

trans-1,4-Dichloro-2-butene

Calibration:

1410015

This affected the following samples:

1424541-BLK1

1424541-BS1

1424541-BSD1

1424541-MS1

1424541-MSD1

BB-US-SWV-01

BB-US-SWV-02

BB 05 5 11 1 02

BB-US-SWV-03

BB-US-SWV-04

BB-US-SWV-05

BB-US-SWV-06

BB-US-SWV-07

BB-US-SWV-08

DUP-4-Water

DUP-5-Water

NR-DS-SWV-06

NR-DS-SWV-07

NR-DS-SWV-08

NR-US-SWV-01

NR-US-SWV-02

S411308-ICV1

S411845-CCV1

TB-2-Water

TB-3-Water

1410024

Analyte quantified by quadratic equation type calibration.

1,2-Dibromo-3-chloropropane

2,2-Dichloropropane

Bromochloromethane

Bromodichloromethane

Bromoform

cis-1,3-Dichloropropene

Dibromochloromethane

Ethanol

Naphthalene

Tetrahydrofuran

trans-1,3-Dichloropropene

trans-1,4-Dichloro-2-butene

Vinyl chloride

This affected the following samples:

1424525-BLK1

1424525-BS1

1424525-BSD1

NR-US-SWV-03

NR-US-SWV-04 NR-US-SWV-05

NR-US-SWV-06

NR-US-SWV-07

NR-US-SWV-08

S411447-ICV1

S411836-CCV1

Calibration:

1410045

Analyte quantified by quadratic equation type calibration.

- 1,2,3-Trichlorobenzene
- 1,2,4-Trichlorobenzene
- 1,4-Dioxane
- 2-Butanone (MEK)
- 2-Hexanone (MBK)
- 4-Methyl-2-pentanone (MIBK)

Naphthalene

trans-1,3-Dichloropropene

trans-1,4-Dichloro-2-butene

Calibration:

1410045

This affected the following samples:

1424512-BLK1

1424512-BS1

1424512-BSD1

1424671-BLK1

1424671-BS1

1424671-BSD1

1424671-MS1

1424671-MSD1

1424672-BLK1

1424672-BS1

1424672-BSD1

1424777-BLK1

1424777-BER

1424777-BSD1

BB-US-SEDV-01

BB-US-SEDV-02

BB-US-SEDV-03

BB-US-SEDV-04

BB-US-SEDV-05

BB-US-SEDV-06

BB-US-SEDV-07

BB-US-SEDV-08

DUP-4-Soil

DUP-5-Soil

NR-DS-SEDV-01

NR-DS-SEDV-02

NR-DS-SEDV-03

NR-DS-SEDV-04

NR-DS-SEDV-05

NR-DS-SEDV-06 NR-DS-SEDV-07

NR-DS-SEDV-08

NR-US-SEDV-01

NR-US-SEDV-02

NR-US-SEDV-03

NR-US-SEDV-04

NR-US-SEDV-05

NR-US-SEDV-06

NR-US-SEDV-07

NR-US-SEDV-08

S411778-ICV1 S411832-CCV1

S411887-CCV1

S411888-CCV1

S411939-CCV1

TB-2-Soil

TB-3-Soil

1410058

Analyte quantified by quadratic equation type calibration.

Naphthalene

This affected the following samples:

S412009-ICV1

Calibration:

S410392-ICV1

Analyte percent recovery is outside individual acceptance criteria (80-120).

```
1,2,3-Trichloropropane (121%)
Isopropylbenzene (125%)
trans-1,4-Dichloro-2-butene (123%)
```

This affected the following samples:

```
1424514-BLK1
1424514-BS1
1424514-BSD1
1424514-MS1
1424514-MSD1
NR-DS-SEDV-05
```

S411843-CCV1

S410947-ICV1

Analyte percent recovery is outside individual acceptance criteria (80-120).

Isopropylbenzene (126%)

This affected the following samples:

```
1424519-BLK1
1424519-BS1
1424519-BSD1
1424519-MS1
1424519-MSD1
NR-DS-SWV-01
NR-DS-SWV-02
NR-DS-SWV-03
NR-DS-SWV-04
NR-DS-SWV-05
S411822-CCV1
```

S411308-ICV1

Analyte percent recovery is outside individual acceptance criteria (80-120).

Dibromochloromethane (123%) Isopropylbenzene (124%)

Calibration:

S411308-ICV1

```
This affected the following samples:
```

1424541-BLK1

1424541-BS1

1424541-BSD1

1424541-MS1

1424541-MSD1

BB-US-SWV-01

BB-US-SWV-02

BB-US-SWV-03

BB-US-SWV-04

BB-US-SWV-05

BB-US-SWV-06

BB-US-SWV-07

BB-US-SWV-08

DUP-4-Water

DUP-5-Water

NR-DS-SWV-06

NR-DS-SWV-07

NR-DS-SWV-08

NR-US-SWV-01

NR-US-SWV-02

S411845-CCV1

TB-2-Water

TB-3-Water

S411447-ICV1

Analyte percent recovery is outside individual acceptance criteria (80-120).

Dichlorodifluoromethane (Freon12) (77%)

Ethyl tert-butyl ether (78%)

This affected the following samples:

1424525-BLK1

1424525-BS1

1424525-BSD1

NR-US-SWV-03

NR-US-SWV-04

NR-US-SWV-05

NR-US-SWV-06

NR-US-SWV-07

NR-US-SWV-08 S411836-CCV1

S411778-ICV1

Analyte percent recovery is outside individual acceptance criteria (80-120).

1,2,3-Trichloropropane (122%)

Dichlorodifluoromethane (Freon12) (69%)

Isopropylbenzene (126%)

Calibration:

S411778-ICV1

This affected the following samples: 1424512-BLK1 1424512-BS1 1424512-BSD1 1424671-BLK1 1424671-BS1 1424671-BSD1 1424671-MS1 1424671-MSD1 1424672-BLK1 1424672-BS1 1424672-BSD1 1424777-BLK1 1424777-BS1 1424777-BSD1 BB-US-SEDV-01 BB-US-SEDV-02 BB-US-SEDV-03 BB-US-SEDV-04 BB-US-SEDV-05 BB-US-SEDV-06 BB-US-SEDV-07 BB-US-SEDV-08 DUP-4-Soil DUP-5-Soil NR-DS-SEDV-01 NR-DS-SEDV-02 NR-DS-SEDV-03 NR-DS-SEDV-04 NR-DS-SEDV-05 NR-DS-SEDV-06 NR-DS-SEDV-07 NR-DS-SEDV-08 NR-US-SEDV-01 NR-US-SEDV-02 NR-US-SEDV-03

S411832-CCV1 S411888-CCV1

NR-US-SEDV-04 NR-US-SEDV-05 NR-US-SEDV-06 NR-US-SEDV-07 NR-US-SEDV-08

S411888-CCV1

S411939-CCV1

TB-2-Soil

TB-3-Soil

S412009-ICV1

Analyte percent recovery is outside individual acceptance criteria (80-120).

1,1,2-Trichlorotrifluoroethane (Freon 113) (79%)

Calibration:

S412009-ICV1

This affected the following samples:

1424921-BLK1

1424921-BS1

1424921-BSD1

1425049-BLK1

1425049-BS1

1425049-BSD1

S412020-CCV1

S412088-CCV1

TB-2-Soil

TB-3-Soil

Laboratory Control Samples:

1424512 BSD

2-Butanone (MEK) RPD 32% (30%) is outside individual acceptance criteria.

1424514 BS/BSD

Hexachlorobutadiene percent recoveries (141/97) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

NR-DS-SEDV-05

1424514 BSD

1,2,3-Trichlorobenzene RPD 42% (30%) is outside individual acceptance criteria.

1,2,4-Trichlorobenzene RPD 44% (30%) is outside individual acceptance criteria.

Hexachlorobutadiene RPD 37% (30%) is outside individual acceptance criteria.

Naphthalene RPD 43% (30%) is outside individual acceptance criteria.

1424519 BS/BSD

2,2-Dichloropropane percent recoveries (64/62) are outside individual acceptance criteria, but within overall method allowances.

All reported results of the following samples are considered to have a potentially low bias:

NR-DS-SWV-01

NR-DS-SWV-02

NR-DS-SWV-03

NR-DS-SWV-04

NR-DS-SWV-05

Ethanol percent recoveries (138/144) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

NR-DS-SWV-01

NR-DS-SWV-02

NR-DS-SWV-03

NR-DS-SWV-04

NR-DS-SWV-05

1424525 BS/BSD

Laboratory Control Samples:

1424525 BS/BSD

Ethanol percent recoveries (111/131) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

NR-US-SWV-03

NR-US-SWV-04

NR-US-SWV-05

NR-US-SWV-06

NR-US-SWV-07

NR-US-SWV-08

1424525 BSD

1,4-Dioxane RPD 27% (20%) is outside individual acceptance criteria.

2-Butanone (MEK) RPD 24% (20%) is outside individual acceptance criteria.

Ethyl tert-butyl ether RPD 30% (20%) is outside individual acceptance criteria.

1424541 BS/BSD

2,2-Dichloropropane percent recoveries (136/134) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

BB-US-SWV-01

BB-US-SWV-02

BB-US-SWV-03

BB-US-SWV-04

BB-US-SWV-05

BB-US-SWV-06

BB-US-SWV-07

BB-US-SWV-08

DUP-4-Water

DUP-5-Water

NR-DS-SWV-06

NR-DS-SWV-07

NR-DS-SWV-08

NR-US-SWV-01

NR-US-SWV-02

TB-2-Water TB-3-Water

Laboratory Control Samples:

1424541 BS/BSD

trans-1,3-Dichloropropene percent recoveries (129/132) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

BB-US-SWV-01

BB-US-SWV-02

BB-US-SWV-03

BB-US-SWV-04

BB-US-SWV-05

BB-US-SWV-06 BB-US-SWV-07

BB-US-SWV-08

DUP-4-Water

DUP-5-Water

NR-DS-SWV-06

NR-DS-SWV-07

NR-DS-SWV-08

NR-US-SWV-01

NR-US-SWV-02

TB-2-Water

TB-3-Water

1424777 BS/BSD

2-Butanone (MEK) percent recoveries (137/103) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

NR-DS-SEDV-01

NR-US-SEDV-01

NR-US-SEDV-03

NR-US-SEDV-08

4-Methyl-2-pentanone (MIBK) percent recoveries (116/132) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

NR-DS-SEDV-01

NR-US-SEDV-01

NR-US-SEDV-03

NR-US-SEDV-08

Acetone percent recoveries (181/157) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

NR-DS-SEDV-01

NR-US-SEDV-01

NR-US-SEDV-03

NR-US-SEDV-08

Ethanol percent recoveries (126/135) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

NR-DS-SEDV-01

NR-US-SEDV-01

NR-US-SEDV-03

NR-US-SEDV-08

Laboratory Control Samples:

1424777 BS/BSD

Tert-Butanol / butyl alcohol percent recoveries (132/129) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

NR-DS-SEDV-01

NR-US-SEDV-01

NR-US-SEDV-03

NR-US-SEDV-08

1425049 BS/BSD

trans-1,4-Dichloro-2-butene percent recoveries (60/60) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

TB-3-Soil

Spikes:

1424514-MS1 Source: SB98147-14

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,1,2-Trichlorotrifluoroethane (Freon 113)

- 1,1-Dichloroethene
- 1,2,4-Trimethylbenzene
- 1,3,5-Trichlorobenzene
- 1,3,5-Trimethylbenzene
- 1,3-Dichlorobenzene
- 2-Chlorotoluene
- 4-Chlorotoluene
- 4-Isopropyltoluene

Bromobenzene

Hexachlorobutadiene

Isopropylbenzene

n-Butylbenzene

n-Propylbenzene

sec-Butylbenzene

tert-Butylbenzene

trans-1,2-Dichloroethene

Trichlorofluoromethane (Freon 11)

1424514-MSD1 Source: SB98147-14

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

4-Chlorotoluene

Hexachlorobutadiene

n-Propylbenzene

sec-Butylbenzene

1424519-MS1 Source: SB98147-15

Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

2,2-Dichloropropane

Ethanol

1424519-MSD1 Source: SB98147-15

Spikes:

1424519-MSD1 Source: SB98147-15

Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

2,2-Dichloropropane

Ethanol

1424671-MS1 Source: SB98147-14RE1

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,4-Dioxane

2-Butanone (MEK)

2-Hexanone (MBK)

4-Methyl-2-pentanone (MIBK)

Acetone

Acrylonitrile

Tert-Butanol / butyl alcohol

1424671-MSD1 Source: SB98147-14RE1

RPD out of acceptance range.

Acetone

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,4-Dioxane

2-Butanone (MEK)

2-Hexanone (MBK)

4-Methyl-2-pentanone (MIBK)

Acetone

Acrylonitrile

Ethanol

Tert-Butanol / butyl alcohol

Tetrahydrofuran

Samples:

S411822-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

2,2-Dichloropropane (-36.3%)

Ethanol (27.4%)

Ethyl tert-butyl ether (-31.0%)

Hexachlorobutadiene (23.1%)

Methyl tert-butyl ether (-20.6%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

4-Methyl-2-pentanone (MIBK) (-20.8%)

Naphthalene (-27.1%)

trans-1,3-Dichloropropene (-26.0%)

This laboratory report is not valid without an authorized signature on the cover page.

Samples:

S411822-CCV1

This affected the following samples:

1424519-BLK1

1424519-BS1

1424519-BSD1

1424519-MS1

1424519-MSD1

1424317 WISD

NR-DS-SWV-01

NR-DS-SWV-02

NR-DS-SWV-03

NR-DS-SWV-04

NR-DS-SWV-05

S411836-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Ethyl tert-butyl ether (-25.6%)

This affected the following samples:

1424525-BLK1

1424525-BS1

1424525-BSD1

NR-US-SWV-03

NR-US-SWV-04

NR-US-SWV-05

NR-US-SWV-06

NR-US-SWV-07

NR-US-SWV-08

S411845-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

2,2-Dichloropropane (30.3%)

cis-1,3-Dichloropropene (24.9%)

Dibromochloromethane (23.9%)

trans-1,3-Dichloropropene (26.4%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Chloromethane (-21.2%)

Samples:

S411845-CCV1

This affected the following samples:

1424541-BLK1

1424541-BS1

1424541-BSD1

1424541-MS1

1424541-MSD1

BB-US-SWV-01

BB-US-SWV-02

BB-US-SWV-03

BB-US-SWV-04

DD-03-3 W V-04

BB-US-SWV-05

BB-US-SWV-06

BB-US-SWV-07

BB-US-SWV-08

DUP-4-Water

DUP-5-Water

NR-DS-SWV-06

NR-DS-SWV-07

NR-DS-SWV-08

NR-US-SWV-01

NR-US-SWV-02

TB-2-Water

TB-3-Water

S411888-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,3,5-Trichlorobenzene (29.1%) n-Butylbenzene (28.2%)

This affected the following samples:

1424672-BLK1

1424672-BS1

1424672-BSD1

BB-US-SEDV-06

BB-US-SEDV-07

BB-US-SEDV-08

NR-DS-SEDV-06 NR-DS-SEDV-07

NR-DS-SEDV-08

NR-US-SEDV-02

NR-US-SEDV-04

NR-US-SEDV-05

NR-US-SEDV-06

NR-US-SEDV-07

TB-2-Soil

TB-3-Soil

S411939-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Dibromochloromethane (23.8%)

Samples:

S411939-CCV1

This affected the following samples:

1424777-BLK1

1424777-BS1

1424777-BSD1

NR-DS-SEDV-01

NR-US-SEDV-01

NR-US-SEDV-03

NR-US-SEDV-08

S412088-CCV1

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

trans-1,4-Dichloro-2-butene (-39.8%)

This affected the following samples:

1425049-BLK1

1425049-BS1

1425049-BSD1

TB-3-Soil

SB98147-14

NR-DS-SEDV-05

Sample data reported for QC purposes only.

Sample Acceptance Check Form

Client:		ENVIRON International Corporation - Portland, ME			
Project:		Envirite - Thomaston, CT / 08-14218G3			
Work O	order:	SB98147			
Sample	(s) received on:	10/15/2014			
The foli	lowing outlines the	e condition of samples for the attached Chain of Custody upon receipt.			
1	Were custody seal	is present?	Yes	<u>No</u> ✓	<u>N/A</u>
	Were custody seal				
3.	Were samples rec	eived at a temperature of \leq 6°C?	\checkmark		
4.	Were samples coo	eled on ice upon transfer to laboratory representative?	\checkmark		
5.	Were samples refi	rigerated upon transfer to laboratory representative?		\checkmark	
6.	Were sample cont	ainers received intact?	\checkmark		
7.		perly labeled (labels affixed to sample containers and include sample ID, site roject number and the collection date)?	\checkmark		
8.	Were samples acc	ompanied by a Chain of Custody document?	\checkmark		
9.	include sample ID	stody document include proper, full, and complete documentation, which shall b, site location, and/or project number, date and time of collection, collector's name, sample matrix and any special remarks concerning the sample?			
10.	Did sample conta	iner labels agree with Chain of Custody document?		\checkmark	
11.	Were samples rec	eived within method-specific holding times?	\checkmark		

NR-DS-S SB98147				<u>Client Pr</u> 08-142			<u>Matrix</u> Soil		-Oct-14 15			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Meta	als by EPA 6000/7000 Series	s Methods											
7440-38-2	Arsenic	< 1.72		mg/kg dry	1.72	0.608	1	SW846 6010C	22-Oct-14	25-Oct-14	edt	1424869	Х
7440-39-3	Barium	16.4		mg/kg dry	1.14	0.208	1	"	"	27-Oct-14	"	1425332	X
7440-43-9	Cadmium	< 0.572		mg/kg dry	0.572	0.0767	1		"	25-Oct-14	"	1424869	Х
7440-47-3	Chromium	8.46		mg/kg dry	1.14	0.207	1		"	"	"	"	Х
7440-50-8	Copper	13.9		mg/kg dry	1.14	0.157	1		"	"	"	"	Х
7439-89-6	Iron	5,030		mg/kg dry	4.58	2.07	1	"	"	27-Oct-14	"	1425332	X
7439-96-5	Manganese	97.3		mg/kg dry	1.14	0.173	1	"	"	25-Oct-14	"	1424869	Х
7440-23-5	Sodium	68.5		mg/kg dry	28.6	6.42	1	"	"	27-Oct-14	"	1425332	X
7440-02-0	Nickel	5.97		mg/kg dry	1.14	0.159	1	"	"	25-Oct-14	"	1424869	Х
7439-92-1	Lead	5.68		mg/kg dry	1.72	0.797	1	"	"	"	"	"	Х
7440-66-6	Zinc	47.1		mg/kg dry	1.14	0.286	1	"	"	"	"		Х
General C	hemistry Parameters												
	% Solids	77.4		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424438	
	Total Organic Carbon	1,120		mg/kg	100	44.9	1	Lloyd Kahn	23-Oct-14	23-Oct-14	DJB	1425146	X
Toxicity C	haracteristics												
	e - Reported as % retaine by method General Prepa												
	Fractional % Sieve #4 (>4750µm)	14.2		% Retained			1	ASTM D422	21-Oct-14	22-Oct-14	EEM	1424931	
	Fractional % Sieve #10 (4750-2000µm)	9.60		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	23.1		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	27.9		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	17.3		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	0.400		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	7.20		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #230 (less than 75µm)	0.300		% Retained			1	"	"	"	"	"	

NR-DS-S SB98147-				Client P: 08-142	•		<u>Matrix</u> Soil		ection Date l-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile Or	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	i
Re-analys	sis of Volatile Organic Com	pounds											
by SW846		Cail (lavy laval)				الما	بالمطاعة المناسلة	10.40 ~					
<u>Prepared</u> 76-13-1	by method SW846 5035A 1,1,2-Trichlorotrifluoroetha	< 3.9		ua/ka day	3.9	3.2	ial weight:	13.19 g SW846 8260C	21 Oct 14	21-Oct-14	JEG	1424777	· v
70-13-1	ne (Freon 113)	\ 3.9		μg/kg dry	3.9	3.2	'	30040 62000	21-001-14	21-001-14	JEG	1424777	^
67-64-1	Acetone	< 39.1		μg/kg dry	39.1	20.6	1	II	"	II	"	"	Χ
107-13-1	Acrylonitrile	< 3.9		μg/kg dry	3.9	2.6	1	"	"	"	"	"	Χ
71-43-2	Benzene	< 3.9		μg/kg dry	3.9	1.4	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 3.9		μg/kg dry	3.9	2.6	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 3.9		μg/kg dry	3.9	3.9	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 3.9		μg/kg dry	3.9	3.1	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 3.9		μg/kg dry	3.9	3.7	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 7.8		μg/kg dry	7.8	7.7	1	"	"	"	"		Χ
78-93-3	2-Butanone (MEK)	< 39.1		μg/kg dry	39.1	13.2	1	н	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 3.9		μg/kg dry	3.9	3.2	1	"	"	n n	"	"	Χ
135-98-8	sec-Butylbenzene	< 3.9		μg/kg dry	3.9	2.5	1	II .	"	n n	"	"	Χ
98-06-6	tert-Butylbenzene	< 3.9		μg/kg dry	3.9	2.8	1	"	"	"	"	"	Χ
75-15-0	Carbon disulfide	< 7.8		μg/kg dry	7.8	2.0	1	"	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	< 3.9		μg/kg dry	3.9	1.9	1	"	"	"	"	"	Χ
108-90-7	Chlorobenzene	< 3.9		μg/kg dry	3.9	1.4	1	"	"	"	"	"	Χ
75-00-3	Chloroethane	< 7.8		μg/kg dry	7.8	3.4	1	"	"	"	"	"	Χ
67-66-3	Chloroform	< 3.9		μg/kg dry	3.9	2.0	1	"	"	"	"	"	Χ
74-87-3	Chloromethane	< 7.8		μg/kg dry	7.8	7.7	1	"	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	< 3.9		μg/kg dry	3.9	1.7	1	"	"	"	"	"	Χ
106-43-4	4-Chlorotoluene	< 3.9		μg/kg dry	3.9	2.1	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 7.8		μg/kg dry	7.8	5.1	1	u	"	n .	"	"	Х
124-48-1	Dibromochloromethane	< 3.9		μg/kg dry	3.9	1.4	1	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 3.9		μg/kg dry	3.9	0.9	1		"	n n	"	"	Х
74-95-3	Dibromomethane	< 3.9		μg/kg dry	3.9	2.2	1		"	n n	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 3.9		μg/kg dry	3.9	1.8	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 3.9		μg/kg dry	3.9	2.8	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 3.9		μg/kg dry	3.9	2.2	1		"	n n	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 7.8		μg/kg dry	7.8	2.8	1	u	"	n .	"	"	Х
75-34-3	1,1-Dichloroethane	< 3.9		μg/kg dry	3.9	1.5	1	н	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 3.9		μg/kg dry	3.9	2.0	1	п	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 3.9		μg/kg dry	3.9	2.6	1	п	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 3.9		μg/kg dry	3.9	1.3	1		"	n n	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 3.9		μg/kg dry	3.9	2.7	1	п	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 3.9		μg/kg dry	3.9	1.8	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 3.9		μg/kg dry	3.9	1.4	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 3.9		μg/kg dry	3.9	2.5	1	w w	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 3.9		μg/kg dry	3.9	2.4	1	w w	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 3.9		μg/kg dry	3.9	1.0	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 3.9		μg/kg dry	3.9	2.0	1	"			,,		Х

NR-DS-SEDV-01 SB98147-02				<u>Project #</u> 218G3		<u>Matrix</u> Soil		ection Date -Oct-14 15			eceived -Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters												
% Solids	77.4	SOL	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424438	

NR-DS-S SB98147-				Client P 08-142			Matrix Surface Wa	· · · · · · · · · · · · · · · · · · ·	ection Date I-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds									-	-		
Volatile O	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	18-Oct-14	GMA	1424519	Х
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1		"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"		"		Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"		"		Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"		"		Χ
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	"		"		Χ
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1		"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1		"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"		"		Χ
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"		"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	u u	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	u u	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1		"	"		"	Х

NR-DS-S	lentification WV-01				Project #		Matrix		ection Date			<u>ceived</u>	
SB98147-				08-142	218G3		Surface Wa	ater 14	l-Oct-14 15	:40	15-	Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	rganic Compounds by SW												
Prepared	by method SW846 5030 V	Vater MS											
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	17-Oct-14	18-Oct-14	GMA	1424519) X
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.5	1	"	"	"	"	"	Х
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	X
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1	"	"	"	•	"	Х
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	8.0	1	"	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	"	"	"	"	"	Х
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.8	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1	"	"	"	"	"	Х
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1	II .	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	"	"	п	"	"	X
64-17-5	Ethanol	< 400		μg/l	400	80.8	1	"	"	"	"	"	Х
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	88			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	99			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	105			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	110			70-13	0 %		"	"	"	"	"	

NR-DS-S SB98147				Client P: 08-142			<u>Matrix</u> Soil		ection Date -Oct-14 16			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 1.88		mg/kg dry	1.88	0.664	1	SW846 6010C	22-Oct-14	25-Oct-14	edt	1424869	X
7440-39-3	Barium	23.0		mg/kg dry	1.25	0.228	1	"	"	27-Oct-14	"	1425332	. X
7440-43-9	Cadmium	< 0.626		mg/kg dry	0.626	0.0838	1	"	"	25-Oct-14	"	1424869	Х
7440-47-3	Chromium	68.6		mg/kg dry	1.25	0.226	1		"	"	"	"	Х
7440-50-8	Copper	18.3		mg/kg dry	1.25	0.171	1		"	"	"	"	Х
7439-89-6	Iron	14,500		mg/kg dry	5.00	2.27	1	"	"	27-Oct-14	"	1425332	. X
7439-96-5	Manganese	465		mg/kg dry	1.25	0.189	1	"	"	25-Oct-14	"	1424869	X
7440-23-5	Sodium	56.5		mg/kg dry	31.3	7.02	1	"	"	27-Oct-14	"	1425332	×
7440-02-0	Nickel	11.5		mg/kg dry	1.25	0.174	1	"	"	25-Oct-14	"	1424869	X
7439-92-1	Lead	6.14		mg/kg dry	1.88	0.871	1	"	"	"	"		Х
7440-66-6	Zinc	54.0		mg/kg dry	1.25	0.313	1	"	"	"	"	"	Х
General C	Chemistry Parameters												
	% Solids	71.0		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424438	;
	Total Organic Carbon	550		mg/kg	100	44.9	1	Lloyd Kahn	23-Oct-14	23-Oct-14	DJB	1425146	х
Toxicity C	Characteristics												
	e - Reported as % retaine by method General Prep												
	Fractional % Sieve #4 (>4750µm)	27.1		% Retained			1	ASTM D422	21-Oct-14	22-Oct-14	EEM	1424931	
	Fractional % Sieve #10 (4750-2000µm)	22.2		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	27.6		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	17.2		% Retained			1	n	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	4.30		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	0.300		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	1.10		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #230 (less than 75µm)	0.200		% Retained			1	"	"	"	"	"	

				Client Po 08-142			<u>Matrix</u> Soil		ection Date -Oct-14 16			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	
by SW846	sis of Volatile Organic Com 6 8260 by method SW846 5035A					Init	ial weight:	11 35 a					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.1		μg/kg dry	5.1	4.2	1	SW846 8260C	20-Oct-14	20-Oct-14	JEG	1424671	Х
67-64-1	Acetone	< 51.5		μg/kg dry	51.5	27.1	1	m .	"	"	"	"	Х
107-13-1	Acrylonitrile	< 5.1		μg/kg dry	5.1	3.4	1	"	"	"	"	"	Х
71-43-2	Benzene	< 5.1		μg/kg dry	5.1	1.9	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 5.1		μg/kg dry	5.1	3.5	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 5.1		μg/kg dry	5.1	5.1	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 5.1		μg/kg dry	5.1	4.0	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 5.1		μg/kg dry	5.1	4.9	1	"	"	n n	"	"	Х
74-83-9	Bromomethane	< 10.3		μg/kg dry	10.3	10.2	1	"	"	n n	"	"	Х
78-93-3	2-Butanone (MEK)	< 51.5		μg/kg dry	51.5	17.4	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 5.1		μg/kg dry	5.1	4.2	1	"	"	n n	"	"	Х
135-98-8	sec-Butylbenzene	< 5.1		μg/kg dry	5.1	3.3	1	"	"	n n	"	"	Х
98-06-6	tert-Butylbenzene	< 5.1		μg/kg dry	5.1	3.7	1	"	"	n n	"	"	Х
75-15-0	Carbon disulfide	< 10.3		μg/kg dry	10.3	2.6	1	"	"	n n	"	"	Х
56-23-5	Carbon tetrachloride	< 5.1		μg/kg dry	5.1	2.5	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 5.1		μg/kg dry	5.1	1.8	1	"	"	"	"	"	Χ
75-00-3	Chloroethane	< 10.3		μg/kg dry	10.3	4.4	1	"	"	"	"	"	Χ
67-66-3	Chloroform	< 5.1		μg/kg dry	5.1	2.7	1	"	"	"	"	"	Χ
74-87-3	Chloromethane	< 10.3		μg/kg dry	10.3	10.1	1	"	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	< 5.1		μg/kg dry	5.1	2.3	1	"	"	"	"	"	Χ
106-43-4	4-Chlorotoluene	< 5.1		μg/kg dry	5.1	2.7	1	"	"	"	"	"	Χ
96-12-8	1,2-Dibromo-3-chloroprop ane	< 10.3		μg/kg dry	10.3	6.7	1	n	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 5.1		μg/kg dry	5.1	1.9	1	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 5.1		μg/kg dry	5.1	1.2	1	"	"	"	"	"	Χ
74-95-3	Dibromomethane	< 5.1		μg/kg dry	5.1	2.9	1	"	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 5.1		μg/kg dry	5.1	2.4	1	"	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 5.1		μg/kg dry	5.1	3.7	1	"	"	"	"	"	Х
106-46-7 75-71-8	1,4-Dichlorobenzene Dichlorodifluoromethane	< 5.1 < 10.3		μg/kg dry μg/kg dry	5.1 10.3	2.8 3.7	1 1	"	"	"	"	"	X X
75-34-3	(Freon12) 1,1-Dichloroethane	< 5.1		ua/ka day	5.1	2.0	1	н	"	"			Х
107-06-2	1,1-Dichloroethane	< 5.1		µg/kg dry	5.1	2.6	1	п	"	"	,		X
75-35-4	1,2-Dichloroethane	< 5.1 < 5.1		μg/kg dry μg/kg dry	5.1	3.4	1	"	"	"	"	"	X
156-59-2	cis-1,2-Dichloroethene	< 5.1		μg/kg dry μg/kg dry	5.1	1.7	1		"	"	"		X
156-60-5	trans-1,2-Dichloroethene	< 5.1		μg/kg dry	5.1	3.5	1	"	"		"	"	X
78-87-5	1,2-Dichloropropane	< 5.1		μg/kg dry μg/kg dry	5.1	2.3	1	"	"		"	"	X
142-28-9	1,3-Dichloropropane	< 5.1		μg/kg dry μg/kg dry	5.1	1.8	1	"	"		"	"	X
594-20-7	2,2-Dichloropropane	< 5.1		μg/kg dry μg/kg dry	5.1	3.2	1	"	"		"	"	X
563-58-6	1,1-Dichloropropene	< 5.1		μg/kg dry	5.1	3.1	1	п	"				X
								"	"		"	"	X
									"	"	"	"	X
10061-01-5	cis-1,3-Dichloropropene trans-1,3-Dichloropropene	< 5.1 < 5.1		µg/kg dry µg/kg dry	5.1 5.1	1.4 2.6	1	"	"	"	"		"

NR-DS-SEDV-02 SB98147-05				<u>Project #</u> 218G3		<u>Matrix</u> Soil		-Oct-14 16			Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters												
% Solids	71.0	SOLa	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424438	

NR-DS-S SB98147-				Client P 08-142			Matrix Surface Wa	· · · · · · · · · · · · · · · · · · ·	ection Date I-Oct-14 16			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds									-	-		
Volatile O	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	18-Oct-14	GMA	1424519	Х
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"		"		Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	"		"		Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	u	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Χ
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	"		"		Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	u	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	X
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"		"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	X
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"		"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	11	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"		"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"				Х

NR-DS-S				Client F 08-142	<u>Project #</u> 218G3		Matrix Surface Wa		ection Date I-Oct-14 16			ceived Oct-14	
SB98147-	-06			001									
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
	rganic Compounds by SW												
98-82-8	by method SW846 5030 W Isopropylbenzene	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	17-Oct-14	18-Oct-14	GMA	1424519) X
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.5	1	"	"	"	UIVIA "	"	, , X
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1				"	"	X
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.5	1	п	"	"	"	"	X
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Χ
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
08-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
7-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	Х
20-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
08-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	"	n n	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	X
9-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	X
5-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X
08-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
5-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	"	"	"	"	"	Х
79601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
5-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
09-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.8	1	"	"	"	"	"	
0-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
94-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
37-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
08-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
5-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1	"	"	"	"	"	Х
23-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1	"	"	"	"	"	Х
10-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	"	"	"	"	"	Х
64-17-5	Ethanol	< 400		μg/l	400	80.8	1	"	"	"	"	"	Х
Surrogate i	recoveries:												
160-00-4	4-Bromofluorobenzene	90			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	98			70-13	0 %		"	"	"	"	"	
7060-07-0	1,2-Dichloroethane-d4	105			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	109			70-13	0 %		"	"	"	"	"	

Sample Id NR-DS-S SB98147				Client P	-		<u>Matrix</u> Soil		ection Date l-Oct-14 16			oceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Series	s Methods											
7440-38-2	Arsenic	< 1.61		mg/kg dry	1.61	0.570	1	SW846 6010C	22-Oct-14	25-Oct-14	edt	1424869	Х
7440-39-3	Barium	17.0		mg/kg dry	1.07	0.195	1	n	"	27-Oct-14	"	1425332	. X
7440-43-9	Cadmium	< 0.536		mg/kg dry	0.536	0.0719	1	n	"	25-Oct-14	"	1424869	Х
7440-47-3	Chromium	9.30		mg/kg dry	1.07	0.194	1	"	"	"	"		Х
7440-50-8	Copper	17.3		mg/kg dry	1.07	0.147	1	n	"	"	"		Х
7439-89-6	Iron	7,920		mg/kg dry	4.29	1.95	1	"	"	27-Oct-14	"	1425332	. X
7439-96-5	Manganese	250		mg/kg dry	1.07	0.162	1	"	"	25-Oct-14	"	1424869	Х
7440-23-5	Sodium	47.0		mg/kg dry	26.8	6.02	1	"	"	27-Oct-14	"	1425332	. X
7440-02-0	Nickel	8.72		mg/kg dry	1.07	0.149	1	"	"	25-Oct-14	"	1424869	Х
7439-92-1	Lead	6.61		mg/kg dry	1.61	0.747	1	"		"	"		Х
7440-66-6	Zinc	50.9		mg/kg dry	1.07	0.268	1	"		"	"		Х
General C	Chemistry Parameters												
	% Solids	82.1		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424438	į
	Total Organic Carbon	488		mg/kg	100	44.9	1	Lloyd Kahn	23-Oct-14	23-Oct-14	DJB	1425146	X
Toxicity C	Characteristics							,					
•	e - Reported as % retaine	<u>d.</u>											
Prepared	by method General Prepa	aration .											
	Fractional % Sieve #4 (>4750µm)	14.3		% Retained			1	ASTM D422	21-Oct-14	22-Oct-14	EEM	1424931	
	Fractional % Sieve #10 (4750-2000µm)	17.0		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	35.1		% Retained			1	"	n n	"	"	"	
	Fractional % Sieve #40 (850-425µm)	22.9		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	7.80		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	0.100		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	2.60		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #230	0.300		% Petained			1	"	н	"	"	"	

Retained

NR-DS-S SB98147-				Client Pr 08-142			<u>Matrix</u> Soil	·	ection Date I-Oct-14 16			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	i
by SW846	sis of Volatile Organic Com 5 8260 by method SW846 5035A					Init	ial weight:	11 95 a					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 3.6		μg/kg dry	3.6	2.9	1	SW846 8260C	20-Oct-14	20-Oct-14	JEG	1424671	X
67-64-1	Acetone	< 36.4		μg/kg dry	36.4	19.2	1	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 3.6		μg/kg dry	3.6	2.4	1	"	"	"	"	"	Χ
71-43-2	Benzene	< 3.6		μg/kg dry	3.6	1.3	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 3.6		μg/kg dry	3.6	2.5	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 3.6		μg/kg dry	3.6	3.6	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 3.6		μg/kg dry	3.6	2.8	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 3.6		μg/kg dry	3.6	3.5	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 7.3		μg/kg dry	7.3	7.2	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 36.4		μg/kg dry	36.4	12.3	1	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 3.6		μg/kg dry	3.6	3.0	1	"	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	< 3.6		μg/kg dry	3.6	2.4	1	"	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 3.6		μg/kg dry	3.6	2.6	1	"	"	"	"	"	Χ
75-15-0	Carbon disulfide	< 7.3		μg/kg dry	7.3	1.8	1	"	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	< 3.6		μg/kg dry	3.6	1.8	1	"	"	"	"	"	Χ
108-90-7	Chlorobenzene	< 3.6		μg/kg dry	3.6	1.3	1	"	"	"	"	"	Χ
75-00-3	Chloroethane	< 7.3		μg/kg dry	7.3	3.1	1	"	"		"	"	Χ
67-66-3	Chloroform	< 3.6		μg/kg dry	3.6	1.9	1	"	"	"	"	"	Χ
74-87-3	Chloromethane	< 7.3		μg/kg dry	7.3	7.1	1	"	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	< 3.6		μg/kg dry	3.6	1.6	1	"	"	"	"	"	Χ
106-43-4	4-Chlorotoluene	< 3.6		μg/kg dry	3.6	1.9	1	"	"		"	"	Χ
96-12-8	1,2-Dibromo-3-chloroprop ane	< 7.3		μg/kg dry	7.3	4.7	1	n .	"	"	"	"	Χ
124-48-1	Dibromochloromethane	< 3.6		μg/kg dry	3.6	1.3	1	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 3.6		μg/kg dry	3.6	8.0	1	"	"		"	"	Χ
74-95-3	Dibromomethane	< 3.6		μg/kg dry	3.6	2.0	1	"	"		"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 3.6		μg/kg dry	3.6	1.7	1	"	"	"	"	"	X
541-73-1	1,3-Dichlorobenzene	< 3.6		μg/kg dry	3.6	2.6	1	"	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 3.6		μg/kg dry	3.6	2.0	1	"	"	"	"	"	X
75-71-8	Dichlorodifluoromethane (Freon12)	< 7.3		μg/kg dry	7.3	2.6	1	н	"	"	"	"	X
75-34-3	1,1-Dichloroethane	< 3.6		μg/kg dry	3.6	1.4	1	II .	"	"	"	"	X
107-06-2	1,2-Dichloroethane	< 3.6		μg/kg dry	3.6	1.9	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 3.6		μg/kg dry	3.6	2.4	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 3.6		μg/kg dry	3.6	1.2	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 3.6		μg/kg dry	3.6	2.5	1	"	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 3.6		μg/kg dry	3.6	1.6	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 3.6		μg/kg dry	3.6	1.3	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 3.6		μg/kg dry	3.6	2.3	1	w w	"		"	"	X
563-58-6	1,1-Dichloropropene	< 3.6		μg/kg dry	3.6	2.2	1	w w	"		"	"	X
10061-01-5	cis-1,3-Dichloropropene	< 3.6		μg/kg dry	3.6	1.0	1	II .	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 3.6		μg/kg dry	3.6	1.8	1	n n	"	"	"		Х

NR-DS-SEDV-03 SB98147-08				<u>Project #</u> 218G3		<u>Matrix</u> Soil		ection Date -Oct-14 16			occived Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters												
% Solids	82.1	SOLb	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424438	

NR-DS-S	dentification WV-03				Project #		Matrix	· · · · · · · · · · · · · · · · · · ·	ection Date			ceived	
SB98147-	-09			08-142	218G3		Surface Wa	ater 14	l-Oct-14 16	:15	15-	Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	18-Oct-14	GMA	1424519	Х
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1		"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	u u	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	u u	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"		Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"		Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	"	"	"		Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"		"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1		u u	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	H .	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	u u	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	u u	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"	"			Х

Sample Id NR-DS-S SB98147-				Client F 08-142	<u>Project #</u> 218G3		<u>Matrix</u> Surface Wa		ection Date I-Oct-14 16			ceived Oct-14	
CAS No.	Analyte(s)	Result F	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW												
	by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	17-Oct-14	18-Oct-14	GMA	1424519	
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.5	1	•	"	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"		"	"		X
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.5	1		"	"	"	"	Х
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	"		"	"	"	Х
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Х
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Х
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	X
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	X
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1		"	u	"	"	X
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	•	"	"	"	"	X
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	X
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	u	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	X
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	X
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	"	u u	"	"	"	X
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	u	"	"	Χ
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	"	·	"	"	X
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.8	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	X
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1	"	"	"	"	"	Χ
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1		"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	"	"	"	"	"	Х
64-17-5	Ethanol	< 400		μg/l	400	80.8	1	"	"	"	"	"	X
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	89			70-13	0 %		II .	n	"	"	"	
2037-26-5	Toluene-d8	101			70-13	0 %		II .	n	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	104			70-13	0 %		II .	n	"	"	"	
1868-53-7	Dibromofluoromethane	107			70-13	0 %		"	"	"	"	"	

NR-DS-S SB98147				Client Pr 08-142			<u>Matrix</u> Soil		ection Date -Oct-14 16			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 1.81		mg/kg dry	1.81	0.642	1	SW846 6010C	22-Oct-14	25-Oct-14	edt	1424869	Х
7440-39-3	Barium	13.3		mg/kg dry	1.21	0.220	1	"	"	27-Oct-14	"	1425332	. X
7440-43-9	Cadmium	< 0.604		mg/kg dry	0.604	0.0810	1		"	25-Oct-14	"	1424869	X
7440-47-3	Chromium	6.04		mg/kg dry	1.21	0.219	1		"	"	"	"	Х
7440-50-8	Copper	11.5		mg/kg dry	1.21	0.166	1		"	"	"	"	Х
7439-89-6	Iron	5,120		mg/kg dry	4.84	2.19	1	"	"	27-Oct-14	"	1425332	. X
7439-96-5	Manganese	171		mg/kg dry	1.21	0.183	1	"	"	25-Oct-14	"	1424869	X
7440-23-5	Sodium	55.4		mg/kg dry	30.2	6.79	1	"	"	27-Oct-14	"	1425332	. x
7440-02-0	Nickel	5.69		mg/kg dry	1.21	0.168	1	"	"	25-Oct-14	"	1424869	X
7439-92-1	Lead	5.16		mg/kg dry	1.81	0.841	1	"	"	"	"		Х
7440-66-6	Zinc	34.8		mg/kg dry	1.21	0.302	1	"	"	"	"		X
General C	Chemistry Parameters												
	% Solids	71.8		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424438	;
	Total Organic Carbon	1,030		mg/kg	100	44.9	1	Lloyd Kahn	23-Oct-14	23-Oct-14	DJB	1425146	х
Toxicity C	Characteristics												
	e - Reported as % retaine by method General Prep												
	Fractional % Sieve #4 (>4750µm)	5.20		% Retained			1	ASTM D422	21-Oct-14	22-Oct-14	EEM	1424931	
	Fractional % Sieve #10 (4750-2000µm)	2.10		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	31.2		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	46.1		% Retained			1	n	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	12.3		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	2.40		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	0.500		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #230 (less than 75µm)	0.200		% Retained			1	"	"	"	"	"	

NR-DS-S SB98147-				Client Pr 08-142			<u>Matrix</u> Soil	-	ection Date I-Oct-14 16			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile Oi	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	i
by SW846													
•	by method SW846 5035A	•					ial weight:						
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 4.8		μg/kg dry	4.8	3.9	1	SW846 8260C	20-Oct-14	20-Oct-14	JEG	1424671	X
67-64-1	Acetone	< 48.1		μg/kg dry	48.1	25.4	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 4.8		μg/kg dry	4.8	3.2	1	"	"	"	"	"	Х
71-43-2	Benzene	< 4.8		μg/kg dry	4.8	1.7	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 4.8		μg/kg dry	4.8	3.2	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 4.8		μg/kg dry	4.8	4.8	1	"	II .	"	"	"	X
75-27-4	Bromodichloromethane	< 4.8		μg/kg dry	4.8	3.8	1	"	II .	"	"	"	X
75-25-2	Bromoform	< 4.8		μg/kg dry	4.8	4.6	1	"	II .	"	"	"	X
74-83-9	Bromomethane	< 9.6		μg/kg dry	9.6	9.5	1	"	II .	"	"	"	X
78-93-3	2-Butanone (MEK)	< 48.1		μg/kg dry	48.1	16.2	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 4.8		μg/kg dry	4.8	4.0	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 4.8		μg/kg dry	4.8	3.1	1	"	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 4.8		μg/kg dry	4.8	3.4	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 9.6		μg/kg dry	9.6	2.4	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 4.8		μg/kg dry	4.8	2.3	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 4.8		μg/kg dry	4.8	1.7	1	"	n n	"	•	"	Х
75-00-3	Chloroethane	< 9.6		μg/kg dry	9.6	4.2	1	"	u u	"	"	"	Х
67-66-3	Chloroform	< 4.8		μg/kg dry	4.8	2.5	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 9.6		μg/kg dry	9.6	9.4	1	"	u u	"	"	"	Х
95-49-8	2-Chlorotoluene	< 4.8		μg/kg dry	4.8	2.2	1	"	u u	"	"	"	Х
106-43-4	4-Chlorotoluene	< 4.8		μg/kg dry	4.8	2.5	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 9.6		μg/kg dry	9.6	6.3	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 4.8		μg/kg dry	4.8	1.7	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 4.8		μg/kg dry	4.8	1.1	1	"	n n	"	"	"	Х
74-95-3	Dibromomethane	< 4.8		μg/kg dry	4.8	2.7	1	"	n n	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 4.8		μg/kg dry	4.8	2.3	1	"	n n	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 4.8		μg/kg dry	4.8	3.4	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 4.8		μg/kg dry	4.8	2.7	1	"	n n	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 9.6		μg/kg dry	9.6	3.5	1	n	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 4.8		μg/kg dry	4.8	1.9	1	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 4.8		μg/kg dry	4.8	2.4	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 4.8		μg/kg dry	4.8	3.2	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 4.8		μg/kg dry	4.8	1.6	1	"	"	"	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	< 4.8		μg/kg dry	4.8	3.3	1	"	"	"	"	"	Χ
78-87-5	1,2-Dichloropropane	< 4.8		μg/kg dry	4.8	2.2	1	"	"	"	"	"	Χ
142-28-9	1,3-Dichloropropane	< 4.8		μg/kg dry	4.8	1.7	1	11	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 4.8		μg/kg dry	4.8	3.0	1	"	"	"	"	"	Χ
563-58-6	1,1-Dichloropropene	< 4.8		μg/kg dry	4.8	2.9	1	"	"		"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 4.8		μg/kg dry	4.8	1.3	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 4.8		μg/kg dry	4.8	2.4	1	,					Х

NR-DS-SEDV-04 SB98147-11				<u>Project #</u> 218G3		<u>Matrix</u> Soil		ection Date -Oct-14 16			Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters % Solids	71.8	SOLc	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424438	

NR-DS-S	dentification WV-04				Project #		Matrix	· · · · · · · · · · · · · · · · · · ·	ection Date			ceived	
SB98147-	-12			08-142	218G3		Surface Wa	ater 14	l-Oct-14 16	:35	15-	Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		µg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	18-Oct-14	GMA	1424519	Х
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	u u	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Χ
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"		Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1		"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		n n	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1		u u	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	u u	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	n .	u	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"		"	X
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1		u u	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	H .	"	"	u	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Χ
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1		u u	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	u u	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1		"	"	"	"	Х

NR-DS-S	lentification WV-04				Project #		Matrix	<u>Coll</u>	ection Date	/Time		<u>ceived</u>	
SB98147-				08-14	218G3		Surface Wa	ater 14	4-Oct-14 16	:35	15-0	Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
	rganic Compounds by SW	<u>846 8260</u>											
Prepared	by method SW846 5030 V	Vater MS											
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	17-Oct-14	18-Oct-14	GMA	1424519) X
9-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	X
634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
08-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0	2.5	1	"	"	"	"	"	Х
5-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	X
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
30-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
9-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
27-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
08-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X
7-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	X
20-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
08-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X
9-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
5-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	8.0	1	"	"	"	"	"	X
06-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
5-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
08-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
5-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	"	"	"	"	"	Х
79601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
5-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
09-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.8	1	"	"	"	"	"	
0-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
94-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	m .	"	"	"	"	Х
37-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
08-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
5-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1	"	"	"	"	"	Х
23-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1	"	"	"	"	"	Х
10-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	"	"	"	"	"	Х
4-17-5	Ethanol	< 400		μg/l	400	80.8	1	m .	"	"	"	"	Х
Surrogate i	recoveries:												
160-00-4	4-Bromofluorobenzene	87			70-13	0 %		II .	п	"	"	"	
2037-26-5	Toluene-d8	98			70-13	0 %		II .	п	"	"	"	
7060-07-0	1,2-Dichloroethane-d4	102			70-13	0 %		u u	"	"	"	"	
868-53-7	Dibromofluoromethane	107			70-13	0%		"	"	"	"	"	

NR-DS-S SB98147				Client P: 08-142	_		<u>Matrix</u> Soil		ection Date -Oct-14 17			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 1.59		mg/kg dry	1.59	0.564	1	SW846 6010C	22-Oct-14	25-Oct-14	edt	1424869	X
7440-39-3	Barium	24.7		mg/kg dry	1.06	0.193	1	"	"	27-Oct-14	"	1425332	X
7440-43-9	Cadmium	< 0.531		mg/kg dry	0.531	0.0712	1	"	"	25-Oct-14	"	1424869	Х
7440-47-3	Chromium	7.59		mg/kg dry	1.06	0.192	1	"	"	"		"	Х
7440-50-8	Copper	24.7		mg/kg dry	1.06	0.146	1	"	"	"	"		Х
7439-89-6	Iron	9,070		mg/kg dry	4.25	1.93	1	"	"	27-Oct-14	"	1425332	. x
7439-96-5	Manganese	201		mg/kg dry	1.06	0.160	1		"	25-Oct-14	"	1424869	X
7440-23-5	Sodium	74.9		mg/kg dry	26.6	5.96	1	"	"	27-Oct-14	"	1425332	. X
7440-02-0	Nickel	9.42		mg/kg dry	1.06	0.148	1		"	25-Oct-14	"	1424869	X
7439-92-1	Lead	8.50		mg/kg dry	1.59	0.739	1		"	"	"		Х
7440-66-6	Zinc	54.8		mg/kg dry	1.06	0.266	1		"	"	"	"	Х
General C	Chemistry Parameters			0 0 ,									
	% Solids	82.4		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424438	i
	Total Organic Carbon	410	TOC 1a	mg/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	Х
Toxicity C	Characteristics							-					
	e - Reported as % retaine by method General Prep												
	Fractional % Sieve #4 (>4750µm)	17.2		% Retained			1	ASTM D422	21-Oct-14	22-Oct-14	EEM	1424931	
	Fractional % Sieve #10 (4750-2000µm)	43.0		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	29.9		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	8.10		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	1.40		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	0.300		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	0.100		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #230 (less than 75µm)	0.00		% Retained			1	"	"		"	"	

NR-DS-S SB98147-				Client Pr 08-142			<u>Matrix</u> Soil	<u></u>	ection Date I-Oct-14 17			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Oı	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	
	rganic Compounds by SW		QCR										
	by method SW846 5035A				40.4		ial weight: 2		47.0-1.44	47.0-1.44	0.10	4404544	V
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 48.1	D	μg/kg dry	48.1	39.0	50	SW846 8260C	17-Oct-14	17-Oct-14	SJB	1424514	Х
67-64-1	Acetone	< 481	D	μg/kg dry	481	254	50	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 48.1	D	μg/kg dry	48.1	32.2	50	"	"	"	"	"	Χ
71-43-2	Benzene	< 48.1	D	μg/kg dry	48.1	17.3	50	II .	"	"	"	"	Χ
108-86-1	Bromobenzene	< 48.1	D	μg/kg dry	48.1	32.4	50	II .	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 48.1	D	μg/kg dry	48.1	47.8	50	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 48.1	D	μg/kg dry	48.1	37.6	50	II .	"	"	"	"	Χ
75-25-2	Bromoform	< 48.1	D	μg/kg dry	48.1	46.1	50	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 96.2	D	μg/kg dry	96.2	94.9	50	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 481	D	μg/kg dry	481	162	50	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 48.1	D	μg/kg dry	48.1	39.7	50	"	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	< 48.1	D	μg/kg dry	48.1	31.2	50	"	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 48.1	D	μg/kg dry	48.1	34.3	50	"	"	"	"	"	Χ
75-15-0	Carbon disulfide	< 96.2	D	μg/kg dry	96.2	24.1	50	"	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	< 48.1	D	μg/kg dry	48.1	23.4	50	"	"	"	"	"	Χ
108-90-7	Chlorobenzene	< 48.1	D	μg/kg dry	48.1	16.8	50	"	"	"	"	"	Χ
75-00-3	Chloroethane	< 96.2	D	μg/kg dry	96.2	41.5	50	"	"	"	"	"	Χ
67-66-3	Chloroform	< 48.1	D	μg/kg dry	48.1	25.0	50	"	"	"	"	"	Χ
74-87-3	Chloromethane	< 96.2	D	μg/kg dry	96.2	94.3	50	"	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	< 48.1	D	μg/kg dry	48.1	21.6	50	"	"	"	"	"	Χ
106-43-4	4-Chlorotoluene	< 48.1	D	μg/kg dry	48.1	25.4	50	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 96.2	D	μg/kg dry	96.2	62.6	50	"	"	"	"	"	Χ
124-48-1	Dibromochloromethane	< 48.1	D	μg/kg dry	48.1	17.3	50	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 48.1	D	μg/kg dry	48.1	10.9	50	"	"	"	"	"	Χ
74-95-3	Dibromomethane	< 48.1	D	μg/kg dry	48.1	26.8	50	II .	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 48.1	D	μg/kg dry	48.1	22.5	50	II .	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 48.1	D	μg/kg dry	48.1	34.2	50	"	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 48.1	D	μg/kg dry	48.1	26.6	50	"	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 96.2	D	μg/kg dry	96.2	35.0	50	"	"	"	"	"	Χ
75-34-3	1,1-Dichloroethane	< 48.1	D	μg/kg dry	48.1	18.8	50	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 48.1	D	μg/kg dry	48.1	24.5	50	"	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	< 48.1	D	μg/kg dry	48.1	32.1	50	"	"	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	< 48.1	D	μg/kg dry	48.1	16.3	50	"	"	"	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	< 48.1	D	μg/kg dry	48.1	33.1	50	"	"	"	"	"	Χ
78-87-5	1,2-Dichloropropane	< 48.1	D	μg/kg dry	48.1	21.8	50	"	"	"	"	"	Χ
142-28-9	1,3-Dichloropropane	< 48.1	D	μg/kg dry	48.1	16.8	50	"	"	"	"	"	Χ
594-20-7	2,2-Dichloropropane	< 48.1	D	μg/kg dry	48.1	30.3	50	"	"	"	"	"	Χ
563-58-6	1,1-Dichloropropene	< 48.1	D	μg/kg dry	48.1	29.1	50	"	"	"	"	"	Χ
10061-01-5	cis-1,3-Dichloropropene	< 48.1	D	μg/kg dry	48.1	12.7	50	"	"	"	"	"	Χ
10061-02-6	trans-1,3-Dichloropropene	< 48.1	D	μg/kg dry	48.1	24.4	50	"	"	"	"	"	Χ
100-41-4	Ethylbenzene	< 48.1	D	μg/kg dry	48.1	16.1	50	"	"	"	"	"	Х

by SW846 8260

NR-DS-S SB98147-				Client P 08-142			Matrix Surface Wa	· · · · · · · · · · · · · · · · · · ·	ection Date I-Oct-14 17			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds									<u> </u>			
Volatile O	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	18-Oct-14	GMA	1424519	Х
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"		Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	"	"	"		Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	n .	u	u	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Χ
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"		Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"		Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	n n	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	u u	u u	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	u u	u u	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	II .	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	II .	u u	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	II .	u u	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	II .	u u	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"	"	"	"	Х

NR-DS-S	lentification WV-05				Project #		Matrix		ection Date			ceived	
SB98147-	-15			08-142	218G3		Surface Wa	ater 12	I-Oct-14 17	:00	15-	Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	rganic Compounds by SW by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	17-Oct-14	18-Oct-14	GMA	1424519	X
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	X
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.5	1	"	n .	"	"	"	X
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Х
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Χ
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1		"	"	"	"	Х
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	u u	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1		"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	u u	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	"	u u	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	8.0	1	"	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	n n	"	"	"	Χ
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	"	n n	"	"	"	Χ
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	n n	"	"	"	Χ
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	n n	"	"	"	Χ
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.8	1	"	n n	"	"	"	
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	"	n n	"	"	"	Χ
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	n n	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	II .	"	"	"	Χ
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1	"	n n	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1	"	n n	"	"	"	Χ
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1	"	II .	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	"	"	"	"	"	Х
64-17-5	Ethanol	< 400		μg/l	400	80.8	1	"	"	"	"	"	Х
Surrogate i	recoveries:					_					_	_	
460-00-4	4-Bromofluorobenzene	89			70-13	0 %		"	u	"	"	"	
2037-26-5	Toluene-d8	98			70-13	0 %		"	u	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	104			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	112			70-13	0 %			II .	"	"		

DUP-4-S SB98147				Client P: 08-142			<u>Matrix</u> Soil		-Oct-14 00			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	tals by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 1.72		mg/kg dry	1.72	0.609	1	SW846 6010C	22-Oct-14	25-Oct-14	edt	1424869	X
7440-39-3	Barium	18.0		mg/kg dry	1.15	0.209	1	"	"	27-Oct-14	"	1425332	×
7440-43-9	Cadmium	< 0.573		mg/kg dry	0.573	0.0768	1	"	"	25-Oct-14	"	1424869	X
7440-47-3	Chromium	9.34		mg/kg dry	1.15	0.208	1	"	"	"	"		Х
7440-50-8	Copper	15.8		mg/kg dry	1.15	0.157	1	"	"	"	"		Х
7439-89-6	Iron	4,880		mg/kg dry	4.59	2.08	1	"	"	27-Oct-14	"	1425332	. X
7439-96-5	Manganese	100		mg/kg dry	1.15	0.173	1	"	"	25-Oct-14	"	1424869	X
7440-23-5	Sodium	54.3		mg/kg dry	28.7	6.44	1	"	"	27-Oct-14	"	1425332	. x
7440-02-0	Nickel	7.13		mg/kg dry	1.15	0.159	1	"	"	25-Oct-14	"	1424869	X
7439-92-1	Lead	10.8		mg/kg dry	1.72	0.798	1	"	"	"	"	"	Х
7440-66-6	Zinc	46.3		mg/kg dry	1.15	0.287	1	"	"	"	"	"	Х
General C	Chemistry Parameters												
	% Solids	78.2		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424438	j
	Total Organic Carbon	597		mg/kg	100	44.9	1	Lloyd Kahn	23-Oct-14	23-Oct-14	DJB	1425146	Х
Toxicity C	Characteristics												
	re - Reported as % retaine I by method General Prep												
	Fractional % Sieve #4 (>4750µm)	23.8		% Retained			1	ASTM D422	21-Oct-14	22-Oct-14	EEM	1424931	
	Fractional % Sieve #10 (4750-2000µm)	7.80		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	17.6		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	26.5		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	16.9		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	1.70		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	5.50		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #230 (less than 75µm)	0.200		% Retained			1	"	"	"	"	"	

DUP-5-S SB98147				Client P: 08-142			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date -Oct-14 00			oceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Total Met	als by EPA 6000/7000 Series	s Methods											
7440-38-2	Arsenic	< 1.57		mg/kg dry	1.57	0.557	1	SW846 6010C	22-Oct-14	25-Oct-14	edt	1424869	Х
7440-39-3	Barium	20.7		mg/kg dry	1.05	0.191	1	"	"	27-Oct-14	"	1425332	X
7440-43-9	Cadmium	0.706		mg/kg dry	0.525	0.0703	1	"	"	25-Oct-14	"	1424869	Χ
7440-47-3	Chromium	8.27		mg/kg dry	1.05	0.190	1	"	"	"	"	"	Χ
7440-50-8	Copper	17.5		mg/kg dry	1.05	0.144	1	"	"	"	"	"	Χ
7439-89-6	Iron	7,700		mg/kg dry	4.20	1.90	1	"	"	27-Oct-14	"	1425332	X
7439-96-5	Manganese	280		mg/kg dry	1.05	0.158	1	"	"	25-Oct-14	"	1424869	Х
7440-23-5	Sodium	62.9		mg/kg dry	26.2	5.89	1	"	"	27-Oct-14	"	1425332	X
7440-02-0	Nickel	7.77		mg/kg dry	1.05	0.146	1	"	"	25-Oct-14	"	1424869	Х
7439-92-1	Lead	6.42		mg/kg dry	1.57	0.730	1	"	"	"	"	"	Χ
7440-66-6	Zinc	71.7		mg/kg dry	1.05	0.262	1	"	"	"	"	"	Х
General C	Chemistry Parameters												
	% Solids	82.8		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	
	Total Organic Carbon	334		mg/kg	100	44.9	1	Lloyd Kahn	23-Oct-14	23-Oct-14	DJB	1425146	Х
Toxicity C	Characteristics												
	e - Reported as % retaine by method General Prepa												
	Fractional % Sieve #4 (>4750µm)	14.5		% Retained			1	ASTM D422	21-Oct-14	22-Oct-14	EEM	1424931	
	Fractional % Sieve #10 (4750-2000µm)	14.4		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	31.5		% Retained			1	"	"		"	"	
	Fractional % Sieve #40 (850-425µm)	24.6		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	10.6		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	0.900		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	3.30		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #230 (less than 75µm)	0.200		% Retained			1	"	"	"	"	"	

Sample Id	<u>dentification</u> Vater				Project #		Matrix	· · · · · · · · · · · · · · · · · · ·	ection Date			ceived	
SB98147-	-18			08-142	218G3		Surface Wa	ater 14	l-Oct-14 00	:00	15-	Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	organic Compounds by SW												
76-13-1	by method SW846 5030 V 1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	Х
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1		n n	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1		n n	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1		"	"	"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	u u	"	"	"	Χ
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1		u u	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1		u u	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1		n n	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	H .	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	u u	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	u u	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	u u	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1		"	"	"		Х

Sample Id DUP-5-W	<u>dentification</u> Vater				Project # 218G3		Matrix Surface Wa	· · · · · · · · · · · · · · · · · · ·	ection Date			ceived Oct-14	
SB98147-	-19			00 1 1.	21003		Surface W		0011100	.00	13	00111	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds Organic Compounds by SW Dy method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	X
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1		"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	u u	"	"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	u u	"	"	"	Χ
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"		"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1		u u	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	H .	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	u u	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	u u	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	u u	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"		"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"	"			Х

TB-2-Wa					<u>Project #</u> 218G3		<u>Matrix</u> Trip Blar	·	ection Date 5-Oct-14 07			oceived Oct-14	
SB98147- CAS No.	-20 ————————————————————————————————————	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Dvanavad	Analyzed	Analyst	Ratch	Cart
CAS NO.	Analyte(s)	Kesuii	riag	Units	KDL	MDL	Ditution	Meinou Kej.	Frepureu	Anutyzeu	Anuiysi	Duich	Ceri.
Volatile O	rganic Compounds rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	ı x
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1		"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	II .	"	"	"	Χ
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	II .	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	II .	"	"	"	Χ
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	II .	"	"	"	Χ
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	X
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	W	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	W	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	u u	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	u u	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	u u	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"	"		"	Х

CAS No.				08-142	218G3		Trip Blan	ık 15	5-Oct-14 07	:00	15-	Oct-14	
	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile Or	ganic Compounds												
	ganic Compounds by SW												
<u> </u>	by method SW846 5030 V Isopropylbenzene	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	X
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	X
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.5	1	u	"	"	"	"	х
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	u u	"	"	"	"	Х
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Χ
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Χ
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	u u	"	"	"	"	Χ
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	H	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	"	"	"	"	"	Χ
	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Χ
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.8	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1			"	"	"	X
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1				"	"	X
123-91-1	1,4-Dioxane	< 20.0		μg/l "	20.0	14.6	1	"			"	"	X
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1						Х
64-17-5	Ethanol	< 400		μg/l	400	80.8	1	"	"	"	"	"	Х
Surrogate re	ecoveries:												
460-00-4	4-Bromofluorobenzene	97			70-13	0 %		II .	"	"	"	"	
2037-26-5	Toluene-d8	102			70-13			"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4 Dibromofluoromethane	109			70-13	0 %		"	"	"	"	"	

TB-3-Wa SB98147-					<u>Project #</u> 218G3		<u>Matrix</u> Trip Blan		ection Date 5-Oct-14 07			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW												
76-13-1	by method SW846 5030 V 1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	Х
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"			"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1		n n	n	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	11	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1		u u	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1		n n	n	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1		n n	n	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1		u u	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1		u u	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	u	n .	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Χ
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	u u	n n	"	"	Χ
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	u u	n n	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	п	"	n n	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	11	"	n	"	"	X
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	11	"	n	"	"	X
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	11	"	n	"	"	X
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	11	"	n	"	"	X
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	п	"	n n	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	п	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"	"	"	"	Х

ΓB-3-Wat				08-142	<u>Project #</u> 218G3		<u>Matrix</u> Trip Blan	· · · · · · · · · · · · · · · · · · ·	ection Date 5-Oct-14 07			ceived Oct-14	
SB98147-2	21						r						
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Ce
Volatile Or	ganic Compounds												
	ganic Compounds by SWa by method SW846 5030 W												
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	1 >
9-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	>
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	")
08-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.5	1	u	"	W.	"	")
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	")
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	>
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	>
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	>
30-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	>
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	")
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	2
08-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	,
7-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	,
20-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	u u	"	"	
08-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	
9-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	n n	"	"	
9-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	n n	"	"	
5-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	8.0	1	u u	"	n	"	"	
06-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	n n	"	"	
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	n n	"	"	
08-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	"	"	"	"	"	2
79601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	n n	"	"	
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	"	n n	"	"	2
09-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	8.0	1	"	"	n n	"	"	
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	2
94-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	2
37-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	2
08-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"		"	2
5-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1	"	"	"	"	"	
23-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1	"	"	"	"	"	
10-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	n	"	"	"	"	
64-17-5	Ethanol	< 400		μg/l	400	80.8	1	"	"	"	"	"	
Surrogate re													
60-00-4	4-Bromofluorobenzene	97			70-13			"	"	"	"	"	
2037-26-5	Toluene-d8	101			70-13			"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	109			70-13	0 %		"	"	"	"		

BB-US-S SB98147				Client P: 08-142	_		<u>Matrix</u> Soil		ection Date 5-Oct-14 08			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 2.08		mg/kg dry	2.08	0.735	1	SW846 6010C	22-Oct-14	25-Oct-14	edt	1424869	X
7440-39-3	Barium	35.0		mg/kg dry	1.38	0.252	1	"	"	27-Oct-14	"	1425332	. X
7440-43-9	Cadmium	< 0.692		mg/kg dry	0.692	0.0928	1	"	"	25-Oct-14	"	1424869	X
7440-47-3	Chromium	11.7		mg/kg dry	1.38	0.251	1	"	"	·	"	"	Х
7440-50-8	Copper	11.2		mg/kg dry	1.38	0.190	1	"	"	·	"	"	Х
7439-89-6	Iron	10,500		mg/kg dry	5.54	2.51	1	"	"	27-Oct-14	"	1425332	. X
7439-96-5	Manganese	130		mg/kg dry	1.38	0.209	1	"	"	25-Oct-14	"	1424869	X
7440-23-5	Sodium	80.3		mg/kg dry	34.6	7.77	1	"	"	27-Oct-14	"	1425332	×
7440-02-0	Nickel	11.6		mg/kg dry	1.38	0.192	1	"	"	25-Oct-14	"	1424869	X
7439-92-1	Lead	8.56		mg/kg dry	2.08	0.964	1	n	"	"	"		Х
7440-66-6	Zinc	45.1		mg/kg dry	1.38	0.346	1	"	"	"	"		Х
General C	Chemistry Parameters												
	% Solids	62.8		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	
	Total Organic Carbon	1,700		mg/kg	100	44.9	1	Lloyd Kahn	23-Oct-14	23-Oct-14	DJB	1425146	Х
Toxicity C	Characteristics												
	e - Reported as % retaine by method General Prep												
	Fractional % Sieve #4 (>4750µm)	0.200		% Retained			1	ASTM D422	21-Oct-14	22-Oct-14	EEM	1424931	
	Fractional % Sieve #10 (4750-2000µm)	0.700		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	6.00		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	30.9		% Retained			1	"	II	"	"	"	
	Fractional % Sieve #60 (425-250µm)	45.6		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	0.400		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	15.5		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #230 (less than 75µm)	0.600		% Retained			1	"	"	"	"	"	

<u>Sample 10</u> BB-US-Sl SB98147-				Client Pr 08-142			<u>Matrix</u> Soil	·	ection Date 5-Oct-14 08			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	i
by SW846	sis of Volatile Organic Com 3 8260 by method SW846 5035A	·				Init	ial weight:	14 27 a					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.8		μg/kg dry	5.8	4.7	1	SW846 8260C	20-Oct-14	20-Oct-14	JEG	1424671	Х
67-64-1	Acetone	< 57.6		μg/kg dry	57.6	30.4	1	"	"	"	"	"	X
107-13-1	Acrylonitrile	< 5.8		μg/kg dry	5.8	3.9	1	"	"	"	"	"	Χ
71-43-2	Benzene	< 5.8		μg/kg dry	5.8	2.1	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 5.8		μg/kg dry	5.8	3.9	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 5.8		μg/kg dry	5.8	5.7	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 5.8		μg/kg dry	5.8	4.5	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 5.8		μg/kg dry	5.8	5.5	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 11.5		μg/kg dry	11.5	11.4	1	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 57.6		μg/kg dry	57.6	19.4	1	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 5.8		μg/kg dry	5.8	4.7	1	"	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	< 5.8		μg/kg dry	5.8	3.7	1	"	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 5.8		μg/kg dry	5.8	4.1	1	"	"	"	"	"	Χ
75-15-0	Carbon disulfide	< 11.5		μg/kg dry	11.5	2.9	1	"	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	< 5.8		μg/kg dry	5.8	2.8	1	"	"	"	"	"	Χ
108-90-7	Chlorobenzene	< 5.8		μg/kg dry	5.8	2.0	1	"	"	"	"	"	Χ
75-00-3	Chloroethane	< 11.5		μg/kg dry	11.5	5.0	1	"	"	"	"	"	Χ
67-66-3	Chloroform	< 5.8		μg/kg dry	5.8	3.0	1	"	"	"	"	"	Χ
74-87-3	Chloromethane	< 11.5		μg/kg dry	11.5	11.3	1	"	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	< 5.8		μg/kg dry	5.8	2.6	1	"	"	"	"	"	Χ
106-43-4	4-Chlorotoluene	< 5.8		μg/kg dry	5.8	3.0	1	"	"	"	"	"	Χ
96-12-8	1,2-Dibromo-3-chloroprop ane	< 11.5		μg/kg dry	11.5	7.5	1	u u	"	W	"	"	Х
124-48-1	Dibromochloromethane	< 5.8		μg/kg dry	5.8	2.1	1	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 5.8		μg/kg dry	5.8	1.3	1	"	"	"	"	"	Χ
74-95-3	Dibromomethane	< 5.8		μg/kg dry	5.8	3.2	1	"	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 5.8		μg/kg dry	5.8	2.7	1	"	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 5.8		μg/kg dry	5.8	4.1	1	"	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 5.8		μg/kg dry	5.8	3.2	1	"	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 11.5		μg/kg dry	11.5	4.2	1	н	"	"	"	"	Χ
75-34-3	1,1-Dichloroethane	< 5.8		μg/kg dry	5.8	2.2	1	II .	"	n n	"	"	Х
107-06-2	1,2-Dichloroethane	< 5.8		μg/kg dry	5.8	2.9	1	II .	"	n n	"	"	Х
75-35-4	1,1-Dichloroethene	< 5.8		μg/kg dry	5.8	3.8	1	"	II .	n n	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	< 5.8		μg/kg dry	5.8	2.0	1	"	II .	n n	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	< 5.8		μg/kg dry	5.8	4.0	1	II .	"	n n	"	"	Х
78-87-5	1,2-Dichloropropane	< 5.8		μg/kg dry	5.8	2.6	1	II .	"	n n	"	"	Х
142-28-9	1,3-Dichloropropane	< 5.8		μg/kg dry	5.8	2.0	1	u u	"	"	"	"	X
594-20-7	2,2-Dichloropropane	< 5.8		μg/kg dry	5.8	3.6	1	"	"	"	"	"	X
563-58-6	1,1-Dichloropropene	< 5.8		μg/kg dry	5.8	3.5	1	"	"	"	"	"	X
10061-01-5	cis-1,3-Dichloropropene	< 5.8		μg/kg dry	5.8	1.5	1	"	"	"	"	"	X
10061-02-6	trans-1,3-Dichloropropene	< 5.8		μg/kg dry	5.8	2.9	1	"	"	"	"	"	Х

70-130 %

1868-53-7

Dibromofluoromethane

104

Sample Identification BB-US-SEDV-01 SB98147-23				<u>Project #</u> 218G3		<u>Matrix</u> Soil		-Oct-14 08			Oct-14	
CAS No. Analyte(s)		Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters												
% Solids	62.8	SOLe	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	!

BB-US-S' SB98147-					<u>Project #</u> 218G3		<u>Matrix</u> Surface Wa	·	ection Date 5-Oct-14 08			ceived Oct-14	
CAS No.		Result	Elaa	Unite	*RDL	MDL	Dilution	Method Ref.	Duananad	Analogad	Analust	Patak	Cont
CAS NO.	Analyte(s)	Kesuii	Flag	Units	KDL	MDL	Ditution	Meinou Kej.	Freparea	Analyzed	Anaiysi	Байсп	Ceri.
Volatile O	rganic Compounds rganic Compounds by SW by mothod SW846 5030 W												
76-13-1	by method SW846 5030 V 1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	ı x
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	X
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	n n	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		u u	"	"	"	Χ
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		n n	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	n n	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1		u u	"	"	"	Χ
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1		u u	"	"	"	Χ
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1		u u	"	"	"	Χ
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1		u u	"	"	"	Χ
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	u	n .	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	n n	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1		u u	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1		u u	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1		u u	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	u	H .	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	n n	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	п	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	n n	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	n n	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	11	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	п	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	п	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	п	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"	"	•		Х

Sample Id BB-US-S SB98147				<u>Client Program 08-142</u>			<u>Matrix</u> Soil		ection Date -Oct-14 08			oceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Meta	als by EPA 6000/7000 Serie	es Methods											
7440-38-2	Arsenic	< 1.91		mg/kg dry	1.91	0.676	1	SW846 6010C	22-Oct-14	25-Oct-14	edt	1424869	Х
7440-39-3	Barium	17.7		mg/kg dry	1.27	0.232	1	"	"	27-Oct-14	"	1425332	Х
7440-43-9	Cadmium	< 0.637		mg/kg dry	0.637	0.0853	1	"	"	25-Oct-14	"	1424869	Х
7440-47-3	Chromium	8.94		mg/kg dry	1.27	0.230	1	"	"	"	"	"	Х
7440-50-8	Copper	7.15		mg/kg dry	1.27	0.174	1	"	"	"	"	"	Х
7439-89-6	Iron	7,150		mg/kg dry	5.09	2.31	1	"	"	27-Oct-14	"	1425332	Х
7439-96-5	Manganese	217		mg/kg dry	1.27	0.192	1	"	"	25-Oct-14	"	1424869	Х
7440-23-5	Sodium	47.4		mg/kg dry	31.8	7.15	1	"	"	27-Oct-14	"	1425332	Х
7440-02-0	Nickel	8.10		mg/kg dry	1.27	0.177	1	"	"	25-Oct-14	"	1424869	Х
7439-92-1	Lead	3.99		mg/kg dry	1.91	0.886	1	"	"	"	"	"	Х
7440-66-6	Zinc	23.6		mg/kg dry	1.27	0.318	1	"	"	"	"	"	Х
General C	hemistry Parameters												
	% Solids	68.9		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	
	Total Organic Carbon	1,910		mg/kg	100	44.9	1	Lloyd Kahn	23-Oct-14	23-Oct-14	DJB	1425146	Χ
Toxicity C	haracteristics												
	e - Reported as % retaine by method General Prep												
	Fractional % Sieve #4 (>4750µm)	32.2		% Retained			1	ASTM D422	21-Oct-14	22-Oct-14	EEM	1424931	
	Fractional % Sieve #10 (4750-2000µm)	11.2		% Retained			1	"	W	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	14.8		% Retained			1	"	II	"	"	"	
	Fractional % Sieve #40 (850-425µm)	23.9		% Retained			1	"	"	"	"	"	

1

1

Fractional % Sieve #60

Fractional % Sieve #100

Fractional % Sieve #200

Fractional % Sieve #230

(425-250µm)

(250-150µm)

(150-75µm)

(less than 75µm)

13.8

1.90

2.00

0.100

%

Retained

%

Retained

Retained

%

Retained

BB-US-SI SB98147-				Client Po 08-142	-		<u>Matrix</u> Soil		ection Date 5-Oct-14 08			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Oi	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453)
Re-analys	sis of Volatile Organic Com	pounds											
by SW846		Cail (lave lavel)				الما	بالمطاعة المناسلة	10 11 ~					
<u> 76-13-1</u>	by method SW846 5035A 1,1,2-Trichlorotrifluoroetha	< 5.0		μg/kg dry	5.0	4.0	ial weight:	SW846 8260C	20 Oct 14	20-Oct-14	JEG	1424671	Х
70-10-1	ne (Freon 113)	\ 5.0		μg/kg diy	5.0	4.0	'	377040 02000	20-001-14	20-001-14	JLG	1424071	^
67-64-1	Acetone	< 49.5		μg/kg dry	49.5	26.1	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 5.0		μg/kg dry	5.0	3.3	1	"	"	"	"	"	X
71-43-2	Benzene	< 5.0		μg/kg dry	5.0	1.8	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 5.0		μg/kg dry	5.0	3.3	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 5.0		μg/kg dry	5.0	4.9	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 5.0		μg/kg dry	5.0	3.9	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 5.0		μg/kg dry	5.0	4.7	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 9.9		μg/kg dry	9.9	9.8	1	"	"	"	•		Χ
78-93-3	2-Butanone (MEK)	< 49.5		μg/kg dry	49.5	16.7	1	н	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 5.0		μg/kg dry	5.0	4.1	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 5.0		μg/kg dry	5.0	3.2	1	II .	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 5.0		μg/kg dry	5.0	3.5	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 9.9		μg/kg dry	9.9	2.5	1	"	"	"	"	"	X
56-23-5	Carbon tetrachloride	< 5.0		μg/kg dry	5.0	2.4	1	"	"	"	"	"	X
108-90-7	Chlorobenzene	< 5.0		μg/kg dry	5.0	1.7	1	"	"	"	"	"	X
75-00-3	Chloroethane	< 9.9		μg/kg dry	9.9	4.3	1	"	"	"	"	"	X
67-66-3	Chloroform	< 5.0		μg/kg dry	5.0	2.6	1	"	"	"	"	"	X
74-87-3	Chloromethane	< 9.9		μg/kg dry	9.9	9.7	1	"	"	"	"	"	X
95-49-8	2-Chlorotoluene	< 5.0		μg/kg dry	5.0	2.2	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 5.0		μg/kg dry	5.0	2.6	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 9.9		μg/kg dry	9.9	6.4	1	u	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 5.0		μg/kg dry	5.0	1.8	1	"	"	"	"	"	X
106-93-4	1,2-Dibromoethane (EDB)	< 5.0		μg/kg dry	5.0	1.1	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 5.0		μg/kg dry	5.0	2.8	1	"	"	"	"	"	X
95-50-1	1,2-Dichlorobenzene	< 5.0		μg/kg dry	5.0	2.3	1	"	"	"	"	"	X
541-73-1	1,3-Dichlorobenzene	< 5.0		μg/kg dry	5.0	3.5	1	"	"	"	"	"	X
106-46-7	1,4-Dichlorobenzene	< 5.0		μg/kg dry	5.0	2.7	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 9.9		μg/kg dry	9.9	3.6	1	u	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 5.0		μg/kg dry	5.0	1.9	1	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 5.0		μg/kg dry	5.0	2.5	1	п	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 5.0		μg/kg dry	5.0	3.3	1	п	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 5.0		μg/kg dry	5.0	1.7	1	п	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 5.0		μg/kg dry	5.0	3.4	1	п	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 5.0		μg/kg dry	5.0	2.2	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 5.0		μg/kg dry	5.0	1.7	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 5.0		μg/kg dry	5.0	3.1	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 5.0		μg/kg dry	5.0	3.0	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 5.0		μg/kg dry	5.0	1.3	1	н	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 5.0		μg/kg dry	5.0	2.5	1	"	"				Х

Sample Identification BB-US-SEDV-02 SB98147-26				<u>Project #</u> 218G3		<u>Matrix</u> Soil		ection Date -Oct-14 08			oceived Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters % Solids	68.9	SOLf	%			1	SM2540 G Mod.	16 Oct 14	16-Oct-14	DT	1424442	

BB-US-S' SB98147-					Project # 218G3		Matrix Surface Wa	· · · · · · · · · · · · · · · · · · ·	ection Date 5-Oct-14 08			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	ı x
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1		"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		n n	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		n n	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1		n n	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	u u	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	n n	u	•	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1		n n	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Χ
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	u u	"	u	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	u u	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	u	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	u	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	u u	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"	"	•		Х

1868-53-7

Dibromofluoromethane

BB-US-SE SB98147-				Client Pr 08-142			<u>Matrix</u> Soil	•	ection Date -Oct-14 08			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Meta	als by EPA 6000/7000 Series	s Methods											
7440-38-2	Arsenic	< 2.18		mg/kg dry	2.18	0.771	1	SW846 6010C	22-Oct-14	25-Oct-14	edt	1424869	Χ
7440-39-3	Barium	21.4		mg/kg dry	1.45	0.264	1	"	"	27-Oct-14	"	1425332	Χ
7440-43-9	Cadmium	< 0.726		mg/kg dry	0.726	0.0973	1	"	"	25-Oct-14	"	1424869	Χ
7440-47-3	Chromium	8.17		mg/kg dry	1.45	0.263	1		"	u u	"	"	Χ
7440-50-8	Copper	8.77		mg/kg dry	1.45	0.199	1		"	u u	"	"	Χ
7439-89-6	Iron	8,200		mg/kg dry	5.81	2.63	1	"	"	27-Oct-14	"	1425332	Х
7439-96-5	Manganese	178		mg/kg dry	1.45	0.219	1	"	"	25-Oct-14	"	1424869	Χ
7440-23-5	Sodium	88.1		mg/kg dry	36.3	8.15	1	"	"	27-Oct-14	"	1425332	Х
7440-02-0	Nickel	9.08		mg/kg dry	1.45	0.202	1	"	"	25-Oct-14	"	1424869	Χ
7439-92-1	Lead	4.90		mg/kg dry	2.18	1.01	1	"	"	"	"	"	Х
7440-66-6	Zinc	25.2		mg/kg dry	1.45	0.363	1	"	"	"	"	"	Х
General C	hemistry Parameters												
	% Solids	67.8		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	
	Total Organic Carbon	473		mg/kg	100	44.9	1	Lloyd Kahn	23-Oct-14	23-Oct-14	DJB	1425146	Х
Toxicity C	haracteristics												
	e - Reported as % retaine by method General Prepa												
	Fractional % Sieve #4 (>4750µm)	24.0		% Retained			1	ASTM D422	22-Oct-14	23-Oct-14	EEM	1425083	
	Fractional % Sieve #10 (4750-2000µm)	14.8		% Retained			1	"	W	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	16.2		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	24.5		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	15.2		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	4.21		% Retained			1	"	"	"	u	u	
	Fractional % Sieve #200 (150-75µm)	1.03		% Retained			1	"	"	"	u	"	

Fractional % Sieve #230 (less than 75µm)

0.0383

Retained

BB-US-SI SB98147-				Client Po 08-142	-		<u>Matrix</u> Soil		ection Date 5-Oct-14 08			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile Oi	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	í
Re-analys	sis of Volatile Organic Com	pounds_											
by SW846		0-11 (111)				1	: - 1 : - : - : - t	0.77 -					
	by method SW846 5035A				0.4		ial weight:	_	20 0-4 44	20 0-1 11	IFO	4404074	
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 6.1		μg/kg dry	6.1	5.0	1	SW846 8260C	20-Oct-14	20-Oct-14	JEG	1424671	I X
67-64-1	Acetone	< 61.4		μg/kg dry	61.4	32.4	1	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 6.1		μg/kg dry	6.1	4.1	1	"	"	"	"	"	Х
71-43-2	Benzene	< 6.1		μg/kg dry	6.1	2.2	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 6.1		μg/kg dry	6.1	4.1	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 6.1		μg/kg dry	6.1	6.1	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 6.1		μg/kg dry	6.1	4.8	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 6.1		μg/kg dry	6.1	5.9	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 12.3		μg/kg dry	12.3	12.1	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 61.4		μg/kg dry	61.4	20.7	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 6.1		μg/kg dry	6.1	5.1	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 6.1		μg/kg dry	6.1	4.0	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 6.1		μg/kg dry	6.1	4.4	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 12.3		μg/kg dry	12.3	3.1	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 6.1		μg/kg dry	6.1	3.0	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 6.1		μg/kg dry	6.1	2.1	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 12.3		μg/kg dry	12.3	5.3	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 6.1		μg/kg dry	6.1	3.2	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 12.3		μg/kg dry	12.3	12.0	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 6.1		μg/kg dry	6.1	2.8	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 6.1		μg/kg dry	6.1	3.2	1	II	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 12.3		μg/kg dry	12.3	8.0	1	u	"	"	"	"	X
124-48-1	Dibromochloromethane	< 6.1		μg/kg dry	6.1	2.2	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 6.1		μg/kg dry	6.1	1.4	1		"	"	"	"	Х
74-95-3	Dibromomethane	< 6.1		μg/kg dry	6.1	3.4	1		"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 6.1		μg/kg dry	6.1	2.9	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 6.1		μg/kg dry	6.1	4.4	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 6.1		μg/kg dry	6.1	3.4	1		"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 12.3		μg/kg dry	12.3	4.5	1	u	"	"	"	"	X
75-34-3	1,1-Dichloroethane	< 6.1		μg/kg dry	6.1	2.4	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 6.1		μg/kg dry	6.1	3.1	1	п	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 6.1		μg/kg dry	6.1	4.1	1	u u	"	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	< 6.1		μg/kg dry	6.1	2.1	1	п	"	"	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	< 6.1		μg/kg dry	6.1	4.2	1	п	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 6.1		μg/kg dry	6.1	2.8	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 6.1		μg/kg dry	6.1	2.1	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 6.1		μg/kg dry	6.1	3.9	1	w w	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 6.1		μg/kg dry	6.1	3.7	1	w w	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 6.1		μg/kg dry	6.1	1.6	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 6.1		μg/kg dry	6.1	3.1	1	"	"				Х

Sample Identification BB-US-SEDV-03 SB98147-29				<u>Project #</u> 218G3		<u>Matrix</u> Soil		ection Date -Oct-14 08			ceived Oct-14	
CAS No. Analyte(s)		Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters % Solids	67.8	SOLg	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	<u>!</u>

BB-US-S' SB98147-					Project # 218G3		Matrix Surface Wa	· · · · · · · · · · · · · · · · · · ·	ection Date 5-Oct-14 08			ceived Oct-14	
CAS No.	-30 ————————————————————————————————————	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Duanavad	Analyzed	Analyst	Patak	Cout
	• ','	Kesuti	rug	Units	KDL	MDL	Ditution	Meinou Kej.	Frepureu	Anutyzeu	Anutyst	Duicn	Ceri.
Volatile O	rganic Compounds rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	ı X
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	u u	"	u	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	n n	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	n n	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Χ
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	II	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Χ
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	u	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	II	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	u u	"	u	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	u u	n	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	n	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	n	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"	"	"	"	Х

1868-53-7

Dibromofluoromethane

Sample Id	dentification ED-04			Client P			<u>Matrix</u>	•	ection Date			ceived	
SB98147	-31			08-142	218G3		Soil	15	-Oct-14 08	3:40	15-	Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 1.94		mg/kg dry	1.94	0.686	1	SW846 6010C	22-Oct-14	25-Oct-14	edt	1424869	Χ
7440-39-3	Barium	25.7		mg/kg dry	1.29	0.235	1		"	27-Oct-14	"	1425332	Χ
7440-43-9	Cadmium	< 0.646		mg/kg dry	0.646	0.0866	1		"	25-Oct-14	"	1424869	Χ
7440-47-3	Chromium	7.25		mg/kg dry	1.29	0.234	1		"	"	"		Χ
7440-50-8	Copper	10.5		mg/kg dry	1.29	0.177	1		"	"	"	"	Х
7439-89-6	Iron	10,500		mg/kg dry	5.17	2.34	1	"	"	27-Oct-14	"	1425332	Х
7439-96-5	Manganese	330		mg/kg dry	1.29	0.195	1	"	"	25-Oct-14	"	1424869	Х
7440-23-5	Sodium	81.6		mg/kg dry	32.3	7.26	1	"	"	27-Oct-14	"	1425332	Х
7440-02-0	Nickel	8.26		mg/kg dry	1.29	0.180	1	"	"	25-Oct-14	"	1424869	Х
7439-92-1	Lead	5.55		mg/kg dry	1.94	0.900	1	"	"	"	"	"	Х
7440-66-6	Zinc	29.9		mg/kg dry	1.29	0.323	1	"	"	"	"	"	Х
General C	Chemistry Parameters												
	% Solids	70.1		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	
	Total Organic Carbon	929		mg/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	Х
Toxicity C	haracteristics												
	e - Reported as % retaine by method General Prepa												
	Fractional % Sieve #4 (>4750µm)	32.0		% Retained			1	ASTM D422	22-Oct-14	23-Oct-14	EEM	1425083	
	Fractional % Sieve #10 (4750-2000µm)	6.16		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	7.05		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	28.8		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	19.9		% Retained			1	"	u u	"	"	"	
	Fractional % Sieve #100 (250-150µm)	4.41		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	1.60		% Retained			1	"	"	"	"	"	

1

Fractional % Sieve #230

(less than 75µm)

0.178

Retained

BB-US-SI SB98147-				Client Po 08-142	-		<u>Matrix</u> Soil		ection Date 5-Oct-14 08			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	j
Re-analys	sis of Volatile Organic Com	pounds_											
by SW846		0-31 (111)				1	: - 1 : - : - : - t	40.40 =					
<u>Prepared</u> 76-13-1	by method SW846 5035A			ualka dar	<i>- -</i>		ial weight:		20 Oct 14	20 Oct 14	IFC	1404671	Х
	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.5		μg/kg dry	5.5	4.5	ı	SW846 8260C	20-OCI-14	20-Oct-14	JEG	1424671	^
67-64-1	Acetone	< 55.4		μg/kg dry	55.4	29.2	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 5.5		μg/kg dry	5.5	3.7	1	H .	"	"	"	"	Х
71-43-2	Benzene	< 5.5		μg/kg dry	5.5	2.0	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 5.5		μg/kg dry	5.5	3.7	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 5.5		μg/kg dry	5.5	5.5	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 5.5		μg/kg dry	5.5	4.3	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 5.5		μg/kg dry	5.5	5.3	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 11.1		μg/kg dry	11.1	10.9	1	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 55.4		μg/kg dry	55.4	18.7	1	"	"	"	"	"	X
104-51-8	n-Butylbenzene	< 5.5		μg/kg dry	5.5	4.6	1	"	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	< 5.5		μg/kg dry	5.5	3.6	1	"	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 5.5		μg/kg dry	5.5	3.9	1	н	"	"	"	"	Χ
75-15-0	Carbon disulfide	< 11.1		μg/kg dry	11.1	2.8	1	"	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	< 5.5		μg/kg dry	5.5	2.7	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 5.5		μg/kg dry	5.5	1.9	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 11.1		μg/kg dry	11.1	4.8	1	"	"	"	"	"	Χ
67-66-3	Chloroform	< 5.5		μg/kg dry	5.5	2.9	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 11.1		μg/kg dry	11.1	10.8	1	"	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	< 5.5		μg/kg dry	5.5	2.5	1	"	"	"	"	"	Χ
106-43-4	4-Chlorotoluene	< 5.5		μg/kg dry	5.5	2.9	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 11.1		μg/kg dry	11.1	7.2	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 5.5		μg/kg dry	5.5	2.0	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 5.5		μg/kg dry	5.5	1.3	1		"	"	"	"	Х
74-95-3	Dibromomethane	< 5.5		μg/kg dry	5.5	3.1	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 5.5		μg/kg dry	5.5	2.6	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 5.5		μg/kg dry	5.5	3.9	1	н	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 5.5		μg/kg dry	5.5	3.1	1	II	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 11.1		μg/kg dry	11.1	4.0	1	п	"	п	"	"	X
75-34-3	1,1-Dichloroethane	< 5.5		μg/kg dry	5.5	2.2	1	п	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 5.5		μg/kg dry	5.5	2.8	1	п	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 5.5		μg/kg dry	5.5	3.7	1	п	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 5.5		μg/kg dry	5.5	1.9	1	п	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 5.5		μg/kg dry	5.5	3.8	1	п	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 5.5		μg/kg dry	5.5	2.5	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 5.5		μg/kg dry	5.5	1.9	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 5.5		μg/kg dry	5.5	3.5	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 5.5		μg/kg dry	5.5	3.3	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 5.5		μg/kg dry	5.5	1.5	1	н	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 5.5		μg/kg dry	5.5	2.8	1	"	"				Х

BB-US-SEDV-04 SB98147-32				<u>Project #</u> 218G3		<u>Matrix</u> Soil		-Oct-14 08			eceived -Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters												
% Solids	70.1	SOLh	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	!

BB-US-S' SB98147-					Project # 218G3		<u>Matrix</u> Surface Wa	·	ection Date -Oct-14 08			ceived Oct-14	
CAS No.	-55 Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	ı x
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Χ
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"		"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	11	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1		"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Χ
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Χ
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1		"	"	"	"	Χ
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Χ
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1		"	"	"	"	Χ
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Χ
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Χ
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	u	"	"	"	"	X
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"		"	"	Χ
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	u	"	"	"	"	X
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"		"	"	Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"		"	"	X
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	11	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	n n	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	n n	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	n n	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	п	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	п	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	п	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	п	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	X
37-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"		"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"		"		Х

BB-US-S SB98147				ient Project 8-14218G3		Matrix Surface W		ection Date 5-Oct-14 08			ceived Oct-14	
CAS No.	Analyte(s)	Result Fi	lag Un	nits *RL	OL MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatila ()	rganic Compounds											
	organic Compounds by SW	846 8260										
	by method SW846 5030 V											
98-82-8	Isopropylbenzene	< 1.0	μ	g/l 1.0	0.5	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	ı x
99-87-6	4-Isopropyltoluene	< 1.0	μ	g/l 1.0	0.5	1	"	"	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	< 1.0	μ	g/l 1.0	0.4	1	"	"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0	μί	g/l 10.	0 2.5	1	"	"	"	"	"	Х
75-09-2	Methylene chloride	< 2.0	μ	g/l 2.0	0.5	1	"	"	"	"	"	Х
91-20-3	Naphthalene	< 1.0	μ	g/l 1.0	0.5	1	"	"	"	"	"	Х
103-65-1	n-Propylbenzene	< 1.0	μ	g/l 1.0	0.4	1	"	"	"	"	"	Х
100-42-5	Styrene	< 1.0	μ	g/l 1.0	0.4	1	"	"	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0	μ	g/l 1.0	0.4	1	"	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5	μ	g/l 0.5	0.5	1	"	"	"	"	"	Х
127-18-4	Tetrachloroethene	< 1.0	μ	g/l 1.0	0.6	1	"	"	"	"	"	Х
108-88-3	Toluene	< 1.0	μ	g/l 1.0	0.3	1	"	"	"	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	< 1.0	μ	g/l 1.0	0.8	1	"	"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0	μ	g/l 1.0	0.4	1	"	"	"	"	"	Х
108-70-3	1,3,5-Trichlorobenzene	< 1.0	μ	g/l 1.0	0.6	1	"	"	u	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.0	μ	g/l 1.0	0.4	1	"	"	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 1.0	μ	g/l 1.0	0.3	1	"	"	"	"	"	Х
79-01-6	Trichloroethene	< 1.0	μ	g/l 1.0	0.4	1	"	"	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0	μί	g/l 1.0	0.8	1	"	u	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.0	μί	g/l 1.0	0.3	1	"	"	"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	< 1.0	μ	g/l 1.0	0.3	1	"	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	< 1.0	μί	g/l 1.0	0.4	1	"	"	"	"	"	Х
75-01-4	Vinyl chloride	< 1.0	μί	g/l 1.0	1.0	1	"	"	"	"	"	Х
179601-23-1	1 m,p-Xylene	< 2.0	μί	g/l 2.0	0.4	1	"	"	"	"	"	Х
95-47-6	o-Xylene	< 1.0	μί		0.4	1	"	"	"	"	"	Х
109-99-9	Tetrahydrofuran	< 2.0	μί	g/l 2.0	0.8	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 1.0	μ	g/l 1.0	0.5	1	"	"	"	"	"	Х
994-05-8	Tert-amyl methyl ether	< 1.0	μ	g/l 1.0	0.3	1	"	"	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	< 1.0	μ	g/l 1.0	0.4	1	"	"	"	"	"	Х
108-20-3	Di-isopropyl ether	< 1.0	μ	g/l 1.0	0.3	1	"	"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0	μ	g/l 10.	0 8.9	1	"	"	"	"	"	Х
123-91-1	1,4-Dioxane	< 20.0	μ	g/l 20.	0 14.6	1	"	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0	μί	g/l 5.0	1.0	1	n	"	"	"	"	Х
64-17-5	Ethanol	< 400	μ	g/l 40	80.8	1	"	u	"	"	"	Χ
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	99		7	0-130 %		"	"	"	"	"	
2037-26-5	Toluene-d8	103		7	0-130 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	110		7	0-130 %		"	"	•	"	"	
1868-53-7	Dibromofluoromethane	115		7	0-130 %		"	"	"			

Sample Id BB-US-S SB98147				Client Pr 08-142			<u>Matrix</u> Soil		ection Date i-Oct-14 08			oceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Series	s Methods											
7440-38-2	Arsenic	< 1.91		mg/kg dry	1.91	0.676	1	SW846 6010C	22-Oct-14	25-Oct-14	edt	1424869	Х
7440-39-3	Barium	30.1		mg/kg dry	1.27	0.232	1	"	"	27-Oct-14	"	1425332	Х
7440-43-9	Cadmium	< 0.636		mg/kg dry	0.636	0.0852	1	"	"	25-Oct-14	"	1424869	Χ
7440-47-3	Chromium	10.4		mg/kg dry	1.27	0.230	1	"	"		"	"	Χ
7440-50-8	Copper	19.8		mg/kg dry	1.27	0.174	1	"	"	"	"	"	Χ
7439-89-6	Iron	14,500		mg/kg dry	5.09	2.31	1	"	"	27-Oct-14	"	1425332	Χ
7439-96-5	Manganese	211		mg/kg dry	1.27	0.192	1	"	"	25-Oct-14	"	1424869	Χ
7440-23-5	Sodium	150		mg/kg dry	31.8	7.14	1	"	"	27-Oct-14	"	1425332	Χ
7440-02-0	Nickel	7.70		mg/kg dry	1.27	0.177	1	"	"	25-Oct-14	"	1424869	Χ
7439-92-1	Lead	8.64		mg/kg dry	1.91	0.885	1	"	"	u	"	"	Х
7440-66-6	Zinc	54.9		mg/kg dry	1.27	0.318	1	"	n	ıı.	"	"	Х
General C	Chemistry Parameters												
	% Solids	71.3		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	
	Total Organic Carbon	3,370		mg/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	Χ
Toxicity C	haracteristics												
	e - Reported as % retaine by method General Prepa												
<u>г терагец</u>	Fractional % Sieve #4 (>4750µm)	11.5		% Retained			1	ASTM D422	22-Oct-14	23-Oct-14	EEM	1425083	
	Fractional % Sieve #10 (4750-2000µm)	6.98		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	11.7		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	27.1		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	25.8		% Retained			1	"	II	"	"	"	
	Fractional % Sieve #100	3.91		% Detained			1	II .	n n	"	"	"	

Retained

Retained

%

Retained

(250-150µm)

(150-75µm)

(less than 75µm)

Fractional % Sieve #200

Fractional % Sieve #230

11.8

1.37

<u>Sample 10</u> BB-US-Sl SB98147-				Client Pr 08-142			<u>Matrix</u> Soil	·	ection Date 5-Oct-14 08			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	
by SW846	sis of Volatile Organic Com 3 8260 by method SW846 5035A	·				Init	ial weight:	10.77 a					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.3		μg/kg dry	5.3	4.3	1	SW846 8260C	20-Oct-14	20-Oct-14	JEG	1424671	Х
67-64-1	Acetone	< 52.7		μg/kg dry	52.7	27.8	1	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 5.3		μg/kg dry	5.3	3.5	1	n	"	"	"	"	Х
71-43-2	Benzene	< 5.3		μg/kg dry	5.3	1.9	1	n	"	"	"	"	Х
108-86-1	Bromobenzene	< 5.3		μg/kg dry	5.3	3.6	1	n .	"	"	"	"	Х
74-97-5	Bromochloromethane	< 5.3		μg/kg dry	5.3	5.2	1	n .	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 5.3		μg/kg dry	5.3	4.1	1	n	"	"	"	"	Х
75-25-2	Bromoform	< 5.3		μg/kg dry	5.3	5.1	1	n	"	"	"	"	Х
74-83-9	Bromomethane	< 10.5		μg/kg dry	10.5	10.4	1	n .	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 52.7		μg/kg dry	52.7	17.8	1	n	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 5.3		μg/kg dry	5.3	4.3	1	n	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 5.3		μg/kg dry	5.3	3.4	1	n	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 5.3		μg/kg dry	5.3	3.8	1	n	"	"	"	"	Х
75-15-0	Carbon disulfide	< 10.5		μg/kg dry	10.5	2.6	1	n	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 5.3		μg/kg dry	5.3	2.6	1	n .	"	"	"	"	Х
108-90-7	Chlorobenzene	< 5.3		μg/kg dry	5.3	1.8	1	n	"	"	"	"	Х
75-00-3	Chloroethane	< 10.5		μg/kg dry	10.5	4.6	1		"	"	"	"	Х
67-66-3	Chloroform	< 5.3		μg/kg dry	5.3	2.7	1	n	"	"	"	"	Х
74-87-3	Chloromethane	< 10.5		μg/kg dry	10.5	10.3	1	n	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 5.3		μg/kg dry	5.3	2.4	1	"	"		"	"	Х
106-43-4	4-Chlorotoluene	< 5.3		μg/kg dry	5.3	2.8	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 10.5		μg/kg dry	10.5	6.9	1	u u	"	"	"	"	Χ
124-48-1	Dibromochloromethane	< 5.3		μg/kg dry	5.3	1.9	1	"	"		"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 5.3		μg/kg dry	5.3	1.2	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 5.3		μg/kg dry	5.3	2.9	1		"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 5.3		μg/kg dry	5.3	2.5	1	n	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 5.3		μg/kg dry	5.3	3.7	1	"	"		"	"	Х
106-46-7	1,4-Dichlorobenzene	< 5.3		μg/kg dry	5.3	2.9	1	n .	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.5		μg/kg dry	10.5	3.8	1	u u	"	"	"	"	Χ
75-34-3	1,1-Dichloroethane	< 5.3		μg/kg dry	5.3	2.1	1	"	"	"	"	"	X
107-06-2	1,2-Dichloroethane	< 5.3		μg/kg dry	5.3	2.7	1	w w	"		"	"	X
75-35-4	1,1-Dichloroethene	< 5.3		μg/kg dry	5.3	3.5	1	n .	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 5.3		μg/kg dry	5.3	1.8	1	II .	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 5.3		μg/kg dry	5.3	3.6	1	w w	"		"	"	X
78-87-5	1,2-Dichloropropane	< 5.3		μg/kg dry	5.3	2.4	1	II .	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 5.3		μg/kg dry	5.3	1.8	1	II .	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 5.3		μg/kg dry	5.3	3.3	1	II .	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 5.3		μg/kg dry	5.3	3.2	1	w w	"		"	"	X
10061-01-5	cis-1,3-Dichloropropene	< 5.3		μg/kg dry	5.3	1.4	1	II .	"	"	"	"	X
10061-02-6	trans-1,3-Dichloropropene	< 5.3		μg/kg dry	5.3	2.7	1	n	"	"	"	"	Х

Sample Identification BB-US-SEDV-05 SB98147-35				<u>Project #</u> 218G3		<u>Matrix</u> Soil		ection Date -Oct-14 08			ceived Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters												
% Solids	71.3	SOLi	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	

BB-US-S					<u>Project #</u> 218G3		Matrix Surface Wa	· · · · · · · · · · · · · · · · · · ·	ection Date 5-Oct-14 08			ceived Oct-14	
SB98147-	-36												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	rganic Compounds rganic Compounds by SW	846 8260											
	by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	I X
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1		"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	X
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	II .	"	"	"	Χ
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	II .	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	II .	"	"	"	Χ
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	II .	"	"	"	Χ
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Χ
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	"	u	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1		n n	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		µg/l	2.0	0.6	1	n .	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1		n n	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	•	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	•	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	u u	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"		"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1		"	"			X

1868-53-7

Dibromofluoromethane

Sample Id BB-US-S	dentification ED-06			Client P	-		Matrix		ection Date			ceived	
SB98147	-37			08-142	18G3		Soil	15	5-Oct-14 09	0:05	15-	Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Meta	als by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 1.97		mg/kg dry	1.97	0.697	1	SW846 6010C	22-Oct-14	25-Oct-14	edt	1424869	X
7440-39-3	Barium	24.2		mg/kg dry	1.31	0.239	1		"	27-Oct-14	"	1425332	Х
7440-43-9	Cadmium	< 0.656		mg/kg dry	0.656	0.0879	1		"	25-Oct-14	"	1424869	Χ
7440-47-3	Chromium	5.03		mg/kg dry	1.31	0.238	1		"	"	"	"	Х
7440-50-8	Copper	6.82		mg/kg dry	1.31	0.180	1		"	"	"	"	Х
7439-89-6	Iron	6,820		mg/kg dry	5.25	2.38	1	"	"	27-Oct-14	"	1425332	Х
7439-96-5	Manganese	419		mg/kg dry	1.31	0.198	1	"	"	25-Oct-14	"	1424869	Х
7440-23-5	Sodium	66.1		mg/kg dry	32.8	7.37	1	"	"	27-Oct-14	"	1425332	Х
7440-02-0	Nickel	7.65		mg/kg dry	1.31	0.182	1	"	"	25-Oct-14	"	1424869	Х
7439-92-1	Lead	4.11		mg/kg dry	1.97	0.913	1	"	"	"	"	"	Х
7440-66-6	Zinc	27.6		mg/kg dry	1.31	0.328	1	"	"	"	"	"	Х
General C	Chemistry Parameters												
	% Solids	74.4		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	
	Total Organic Carbon	614		mg/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	Х
Toxicity C	haracteristics												
	e - Reported as % retaine by method General Prep												
riepaieu	Fractional % Sieve #4 (>4750µm)	1.90		% Retained			1	ASTM D422	22-Oct-14	23-Oct-14	EEM	1425083	
	Fractional % Sieve #10 (4750-2000µm)	3.23		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	27.2		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	48.8		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	15.7		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	2.39		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	0.840		% Retained			1	"	"	"	"	"	

1

Fractional % Sieve #230 (less than 75µm)

-0.0884

Retained

BB-US-SI SB98147-				<u>Client Pr</u> 08-142			<u>Matrix</u> Soil		ection Date 5-Oct-14 09			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	
	rganic Compounds by SW by method SW846 5035A					<u>Init</u>	ial weight: 9	9.52 g					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.2		μg/kg dry	5.2	4.3	1	SW846 8260C	20-Oct-14	20-Oct-14	JEG	1424672	X
67-64-1	Acetone	< 52.5		μg/kg dry	52.5	27.7	1	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 5.2		μg/kg dry	5.2	3.5	1	"	"	"	"	"	X
71-43-2	Benzene	< 5.2		μg/kg dry	5.2	1.9	1	"	"	"	"	"	X
108-86-1	Bromobenzene	< 5.2		μg/kg dry	5.2	3.5	1	"	"	"	"	"	X
74-97-5	Bromochloromethane	< 5.2		μg/kg dry	5.2	5.2	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 5.2		μg/kg dry	5.2	4.1	1	"	"	"	"	"	X
75-25-2	Bromoform	< 5.2		μg/kg dry	5.2	5.0	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 10.5		μg/kg dry	10.5	10.3	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 52.5		μg/kg dry	52.5	17.7	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 5.2		μg/kg dry	5.2	4.3	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 5.2		μg/kg dry	5.2	3.4	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 5.2		μg/kg dry	5.2	3.7	1	II .	u u	"	"	"	Х
75-15-0	Carbon disulfide	< 10.5		μg/kg dry	10.5	2.6	1	II .	u u	"	"	"	Х
56-23-5	Carbon tetrachloride	< 5.2		μg/kg dry	5.2	2.6	1	II .	u u	"	"	"	Х
108-90-7	Chlorobenzene	< 5.2		μg/kg dry	5.2	1.8	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 10.5		μg/kg dry	10.5	4.5	1	II .	u u	"	"	"	Х
67-66-3	Chloroform	< 5.2		μg/kg dry	5.2	2.7	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 10.5		μg/kg dry	10.5	10.3	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 5.2		μg/kg dry	5.2	2.4	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 5.2		μg/kg dry	5.2	2.8	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 10.5		μg/kg dry	10.5	6.8	1	u	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 5.2		μg/kg dry	5.2	1.9	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 5.2		μg/kg dry	5.2	1.2	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 5.2		μg/kg dry	5.2	2.9	1	n .	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 5.2		μg/kg dry	5.2	2.5	1	n .	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 5.2		μg/kg dry	5.2	3.7	1	n .	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 5.2		μg/kg dry	5.2	2.9	1	n .	u u	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.5		μg/kg dry	10.5	3.8	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 5.2		μg/kg dry	5.2	2.0	1	n .	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 5.2		μg/kg dry	5.2	2.7	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 5.2		μg/kg dry	5.2	3.5	1	"	"		"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 5.2		μg/kg dry	5.2	1.8	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 5.2		μg/kg dry	5.2	3.6	1	"	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 5.2		μg/kg dry	5.2	2.4	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 5.2		μg/kg dry	5.2	1.8	1		"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 5.2		μg/kg dry	5.2	3.3	1				"	"	Х
563-58-6	1,1-Dichloropropene	< 5.2		μg/kg dry	5.2	3.2	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 5.2		μg/kg dry	5.2	1.4	1	"	"		"	"	X
10061-02-6	trans-1,3-Dichloropropene	< 5.2		μg/kg dry μg/kg dry	5.2	2.7	1	"	"		"	"	X
100-41-4	Ethylbenzene	< 5.2		μg/kg dry μg/kg dry	5.2	1.8	1		_		_	_	X

Sample Identification BB-US-SEDV-06 SB98147-38				<u>Project #</u> 218G3		<u>Matrix</u> Soil	<u> </u>	ection Date 5-Oct-14 09		-	ceived Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters % Solids	74.4	SOLj	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	2

BB-US-S					<u>Project #</u> 218G3		Matrix Surface Wa	· · · · · · · · · · · · · · · · · · ·	ection Date 5-Oct-14 09			oceived Oct-14	
SB98147-	-39												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	ı X
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Χ
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1		"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	u u	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	n .	u	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	X
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1		"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1		u u	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1		n n	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"		"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	u u	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	u u	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	u u	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"	"			Х

BB-US-S SB98147				14218G3		Matrix Surface Wa		ection Date 5-Oct-14 09			ceived Oct-14	
CAS No.	Analyte(s)	Result Fi	ag Unit	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	erganic Compounds											
	Organic Compounds by SW	846 8260										
	by method SW846 5030 V											
98-82-8	Isopropylbenzene	< 1.0	μg/l	1.0	0.5	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	ı x
99-87-6	4-Isopropyltoluene	< 1.0	μg/l	1.0	0.5	1	"	"	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	< 1.0	μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0	μg/l	10.0	2.5	1	"	"	"	u	"	Х
75-09-2	Methylene chloride	< 2.0	μg/l	2.0	0.5	1	"	"	"	"	"	Х
91-20-3	Naphthalene	< 1.0	μg/l	1.0	0.5	1	"	u u	"	"	"	Х
103-65-1	n-Propylbenzene	< 1.0	μg/l	1.0	0.4	1	"	"	u u	"	"	Х
100-42-5	Styrene	< 1.0	μg/l	1.0	0.4	1	"	"	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0	μg/l	1.0	0.4	1	"	u u	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5	μg/l	0.5	0.5	1	"	"	u u	"	"	Х
127-18-4	Tetrachloroethene	< 1.0	μg/l	1.0	0.6	1	"	u u	"	"	"	Х
108-88-3	Toluene	< 1.0	μg/l	1.0	0.3	1	"	u u	"	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	< 1.0	μg/l	1.0	8.0	1	"	u u	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0	μg/l	1.0	0.4	1	"	"	u u	"	"	Х
108-70-3	1,3,5-Trichlorobenzene	< 1.0	μg/l	1.0	0.6	1	"	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.0	μg/l	1.0	0.4	1	"	u u	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 1.0	μg/l	1.0	0.3	1	"	"	"	"	"	Х
79-01-6	Trichloroethene	< 1.0	μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0	μg/l	1.0	8.0	1	"	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.0	μg/l	1.0	0.3	1	"	"	"	•	"	Х
95-63-6	1,2,4-Trimethylbenzene	< 1.0	μg/l	1.0	0.3	1		"	"	"	"	X
108-67-8	1,3,5-Trimethylbenzene	< 1.0	μg/l	1.0	0.4	1	"	"	"	•	"	Х
75-01-4	Vinyl chloride	< 1.0	μg/l	1.0	1.0	1	"	"	"	•	"	Х
179601-23-1	1 m,p-Xylene	< 2.0	μg/l	2.0	0.4	1	"	"	"	•	"	Х
95-47-6	o-Xylene	< 1.0	μg/l	1.0	0.4	1	"	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	< 2.0	μg/l	2.0	8.0	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 1.0	μg/l	1.0	0.5	1	"	"	"	"	"	Х
994-05-8	Tert-amyl methyl ether	< 1.0	μg/l	1.0	0.3	1	"	"	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	< 1.0	μg/l	1.0	0.4	1	"	u u	"	"	"	Х
108-20-3	Di-isopropyl ether	< 1.0	μg/l	1.0	0.3	1	"	u u	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0	μg/l	10.0	8.9	1	"	u u	"	"	"	Х
123-91-1	1,4-Dioxane	< 20.0	μg/l	20.0	14.6	1	"	II .	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0	μg/l	5.0	1.0	1	"	"	"	"	"	Х
64-17-5	Ethanol	< 400	μg/l	400	80.8	1	II .	n	"	"	"	Χ
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	98		70-13	30 %		"	"	"	"	"	
2037-26-5	Toluene-d8	102		70-13	30 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	109		70-13	30 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	113		70-13	30 %		"	"	"	"	"	

Sample Identification BB-US-SED-07				<u>Client Project #</u> 08-14218G3			<u>Matrix</u> Soil		ection Date G-Oct-14 09	Received 15-Oct-14			
SB98147 <i>CAS No.</i>	-40 Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Mat	als by EPA 6000/7000 Serie	a Mathada											
7440-38-2	Arsenic	< 1.68		mg/kg dry	1.68	0.593	1	SW846 6010C	22-Oct-14	27-Oct-14	TBC	1424871	1 X
7440-39-3	Barium	23.5		mg/kg dry	1.12	0.203	1	"	"	"	"	"	X
7440-43-9	Cadmium	< 0.559		mg/kg dry	0.559	0.0749	1					"	X
7440-47-3	Chromium	7.54		mg/kg dry	1.12	0.202	1			"	"	"	X
7440-50-8	Copper	9.94		mg/kg dry	1.12	0.153	1					"	X
7439-89-6	Iron	8,530		mg/kg dry	4.47	2.03	1	"	"			,,	X
7439-96-5	Manganese	270			1.12	0.169	1	"	"			,,	X
7440-23-5	Sodium	43.5		mg/kg dry mg/kg dry	27.9	6.27	1	,,					X
7440-02-0	Nickel					0.155	1	"					
7439-92-1		10.7		mg/kg dry	1.12				,		,,	"	X
7440-66-6	Lead	4.06		mg/kg dry	1.68	0.778	1						X
	Zinc	22.5		mg/kg dry	1.12	0.279	1					"	Х
General C	Chemistry Parameters			•									
	% Solids	75.9		%			1	SM2540 G Mod.		16-Oct-14	DT	1424442	
	Total Organic Carbon	1,520		mg/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	X
Grain Siz	Characteristics e - Reported as % retained by method General Prep												
	Fractional % Sieve #4 (>4750µm)	35.7		% Retained			1	ASTM D422	22-Oct-14	23-Oct-14	EEM	1425083	;
	Fractional % Sieve #10 (4750-2000µm)	22.0		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	19.5		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	12.8		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	6.52		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	1.39		% Retained			1	"	n	"	"	"	
	Fractional % Sieve #200 (150-75µm)	2.03		% Retained			1	"	n	"	"	"	
	Fractional % Sieve #230 (less than 75µm)	0.107		% Retained			1	"	"	"	"	"	

1.2

1

Χ

3.7

μg/kg dry

100-41-4

Ethylbenzene

< 3.7

70-130 %

70-130 %

2037-26-5

17060-07-0

1868-53-7

Toluene-d8

General Chemistry Parameters

1,2-Dichloroethane-d4

Dibromofluoromethane

102

112

BB-US-SEDV-07 SB98147-41				<u>Project #</u> 218G3		<u>Matrix</u> Soil		-Oct-14 09			eceived -Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters												
% Solids	75.9	SOLk	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	!

BB-US-S					Project # 218G3		Matrix Surface Wa	· · · · · · · · · · · · · · · · · · ·	ection Date 5-Oct-14 09			oceived Oct-14	
SB98147-	-42												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	Χ
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	u u	"	"	"	Χ
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Χ
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		n n	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Χ
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1		"	"	"	"	Χ
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	u u	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	n .	u	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1		"	"	"	"	Χ
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1		n n	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	n .	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	u u	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	u u	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1		"	"	"		Х

70-130 %

1868-53-7

Dibromofluoromethane

112

Sample Id BB-US-S SB98147				Client Pr 08-142			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date -Oct-14 09			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Series	s Methods											
7440-38-2	Arsenic	< 1.69		mg/kg dry	1.69	0.599	1	SW846 6010C	22-Oct-14	27-Oct-14	TBC	1424871	Х
7440-39-3	Barium	26.1		mg/kg dry	1.13	0.205	1		"	"	"	"	Х
7440-43-9	Cadmium	< 0.564		mg/kg dry	0.564	0.0756	1	"	"	"			Χ
7440-47-3	Chromium	9.22		mg/kg dry	1.13	0.204	1	"	"	"			Χ
7440-50-8	Copper	6.99		mg/kg dry	1.13	0.155	1	"	"	"			Χ
7439-89-6	Iron	9,460		mg/kg dry	4.51	2.05	1		"	"		"	Х
7439-96-5	Manganese	290		mg/kg dry	1.13	0.170	1		"	"		"	Х
7440-23-5	Sodium	94.6		mg/kg dry	28.2	6.33	1		"	"		"	Χ
7440-02-0	Nickel	10.3		mg/kg dry	1.13	0.157	1		"	"		"	Χ
7439-92-1	Lead	4.63		mg/kg dry	1.69	0.785	1	"	"	"	"	"	Х
7440-66-6	Zinc	44.0		mg/kg dry	1.13	0.282	1	"	"	"	"	"	Х
General C	Chemistry Parameters												
	% Solids	80.9		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	:
	Total Organic Carbon	1,020		mg/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	Х
Toxicity C	Characteristics												
	e - Reported as % retaine by method General Prepa												
	Fractional % Sieve #4 (>4750µm)	17.2		% Retained			1	ASTM D422	22-Oct-14	23-Oct-14	EEM	1425083	i
	Fractional % Sieve #10 (4750-2000µm)	38.1		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	36.0		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	8.14		% Retained			1	n	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	0.361		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	0.0984		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	0.230		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #230 (less than 75µm)	-0.164		% Retained			1	"	"	"	"	"	

Sample Id BB-US-SI SB98147-				Client P: 08-142			<u>Matrix</u> Soil	-	ection Date 5-Oct-14 09			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	
	rganic Compounds by SW by method SW846 5035A					Init	ial waight:	10.22 a					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 4.2		μg/kg dry	4.2	3.4	ial weight:	SW846 8260C	20-Oct-14	21-Oct-14	JEG	1424672	Х
67-64-1	Acetone	< 42.0		μg/kg dry	42.0	22.1	1	"		"	"	"	Х
107-13-1	Acrylonitrile	< 4.2		μg/kg dry	4.2	2.8	1	II .	"		"	"	Х
71-43-2	Benzene	< 4.2		μg/kg dry	4.2	1.5	1	II .	"	"	"	"	Х
108-86-1	Bromobenzene	< 4.2		μg/kg dry	4.2	2.8	1	"	"	"	"		Х
74-97-5	Bromochloromethane	< 4.2		μg/kg dry	4.2	4.2	1	"	"	"	"		Х
75-27-4	Bromodichloromethane	< 4.2		μg/kg dry	4.2	3.3	1	m m	"	"	"	"	Х
75-25-2	Bromoform	< 4.2		μg/kg dry	4.2	4.0	1	m m	"	"	"	"	Х
74-83-9	Bromomethane	< 8.4		μg/kg dry	8.4	8.3	1	m m	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 42.0		μg/kg dry	42.0	14.2	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 4.2		μg/kg dry	4.2	3.5	1	n	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 4.2		μg/kg dry	4.2	2.7	1	m m	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 4.2		μg/kg dry	4.2	3.0	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 8.4		μg/kg dry	8.4	2.1	1	n	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 4.2		μg/kg dry	4.2	2.0	1	n	"	"	"	"	Х
108-90-7	Chlorobenzene	< 4.2		μg/kg dry	4.2	1.5	1		"	"	"	"	Х
75-00-3	Chloroethane	< 8.4		μg/kg dry	8.4	3.6	1		"	"	"	"	Х
67-66-3	Chloroform	< 4.2		μg/kg dry	4.2	2.2	1		"	"	"	"	Х
74-87-3	Chloromethane	< 8.4		μg/kg dry	8.4	8.2	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 4.2		μg/kg dry	4.2	1.9	1	n	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 4.2		μg/kg dry	4.2	2.2	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 8.4		μg/kg dry	8.4	5.5	1	н	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 4.2		μg/kg dry	4.2	1.5	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 4.2		μg/kg dry	4.2	1.0	1	u u	"	"	"	"	Х
74-95-3	Dibromomethane	< 4.2		μg/kg dry	4.2	2.3	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 4.2		μg/kg dry	4.2	2.0	1	u u	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 4.2		μg/kg dry	4.2	3.0	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 4.2		μg/kg dry	4.2	2.3	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 8.4		μg/kg dry	8.4	3.1	1	н	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 4.2		μg/kg dry	4.2	1.6	1	n	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 4.2		μg/kg dry	4.2	2.1	1	"	"	"	"		Х
75-35-4	1,1-Dichloroethene	< 4.2		μg/kg dry	4.2	2.8	1	"	"	n	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 4.2		μg/kg dry	4.2	1.4	1	n	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 4.2		μg/kg dry	4.2	2.9	1	"	"	n	"	"	Х
78-87-5	1,2-Dichloropropane	< 4.2		μg/kg dry	4.2	1.9	1	II .	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 4.2		μg/kg dry	4.2	1.5	1	II .	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 4.2		μg/kg dry	4.2	2.6	1	II .	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 4.2		μg/kg dry	4.2	2.5	1	II .	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 4.2		μg/kg dry	4.2	1.1	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 4.2		μg/kg dry	4.2	2.1	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 4.2		μg/kg dry	4.2	1.4	1		"	"	"	"	Х

Sample Identification BB-US-SEDV-08 SB98147-44				<u>Project #</u> 218G3		<u>Matrix</u> Soil		ection Date -Oct-14 09			ceived Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters % Solids	80.9	SOLI	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	!

BB-US-S					Project # 218G3		Matrix Surface Wa		ection Date 5-Oct-14 09			oceived Oct-14	
SB98147-	-45												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	Χ
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Χ
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	u u	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	п	u	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1		"	"		"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	m .	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	II .	n	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	m .	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	u	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	m .	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	u	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	m .	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	u	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"	"	"		Х

NR-DS-S SB98147				Client P 08-142			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date -Oct-14 10			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Series	s Methods											
7440-38-2	Arsenic	< 2.04		mg/kg dry	2.04	0.721	1	SW846 6010C	22-Oct-14	27-Oct-14	TBC	1424871	ı x
7440-39-3	Barium	30.1		mg/kg dry	1.36	0.247	1		"	"	"	"	Х
7440-43-9	Cadmium	< 0.679		mg/kg dry	0.679	0.0910	1		"	"	"	"	Х
7440-47-3	Chromium	10.4		mg/kg dry	1.36	0.246	1	"	"	"		"	Χ
7440-50-8	Copper	19.9		mg/kg dry	1.36	0.186	1	"	"	"		"	Χ
7439-89-6	Iron	8,300		mg/kg dry	5.43	2.46	1		"	"		"	Х
7439-96-5	Manganese	144		mg/kg dry	1.36	0.205	1	"	"	"		"	Х
7440-23-5	Sodium	106		mg/kg dry	33.9	7.62	1	"	"	"	"	"	Χ
7440-02-0	Nickel	7.43		mg/kg dry	1.36	0.189	1		"	"		"	Х
7439-92-1	Lead	10.2		mg/kg dry	2.04	0.945	1	"	"	"	"	"	Χ
7440-66-6	Zinc	56.1		mg/kg dry	1.36	0.339	1	"	"	"	"	"	Χ
General C	Chemistry Parameters												
	% Solids	73.4		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	<u> </u>
	Total Organic Carbon	8,230	E	mg/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	Χ
Toxicity C	haracteristics												
	e - Reported as % retaine by method General Prepa												
	Fractional % Sieve #4 (>4750µm)	1.33		% Retained			1	ASTM D422	22-Oct-14	23-Oct-14	EEM	1425083	;
	Fractional % Sieve #10 (4750-2000µm)	5.03		% Retained			1	"	"	ı	"	"	
	Fractional % Sieve #20 (2000-850µm)	20.2		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	26.9		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	21.7		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	2.85		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	18.8		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #230 (less than 75µm)	3.13		% Retained			1	n .	"	"	"	"	

Sample Id NR-DS-S SB98147-				Client Pr 08-142			<u>Matrix</u> Soil	<u></u>	ection Date 5-Oct-14 10			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Oı	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	
	rganic Compounds by SW by method SW846 5035A					lnit	ial waight:	11 24 a					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 4.8		μg/kg dry	4.8	3.9	ial weight:	SW846 8260C	20-Oct-14	21-Oct-14	JEG	1424672	. X
67-64-1	Acetone	< 48.2		μg/kg dry	48.2	25.4	1	п	"	"	"	"	Х
107-13-1	Acrylonitrile	< 4.8		μg/kg dry	4.8	3.2	1	н	"	"	"	"	Х
71-43-2	Benzene	< 4.8		μg/kg dry	4.8	1.7	1	н	"	"	"	"	Х
108-86-1	Bromobenzene	< 4.8		μg/kg dry	4.8	3.2	1	п	"	"	"	"	Х
74-97-5	Bromochloromethane	< 4.8		μg/kg dry	4.8	4.8	1	"	n n	"	"		Х
75-27-4	Bromodichloromethane	< 4.8		μg/kg dry	4.8	3.8	1	п	"	"	"	"	Х
75-25-2	Bromoform	< 4.8		μg/kg dry	4.8	4.6	1	"	n n	"	"		Х
74-83-9	Bromomethane	< 9.6		μg/kg dry	9.6	9.5	1		"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 48.2		μg/kg dry	48.2	16.2	1		"	"	"		Х
104-51-8	n-Butylbenzene	< 4.8		μg/kg dry	4.8	4.0	1		"	"	"		Х
135-98-8	sec-Butylbenzene	< 4.8		μg/kg dry	4.8	3.1	1		"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 4.8		μg/kg dry	4.8	3.4	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 9.6		μg/kg dry	9.6	2.4	1				"		Х
56-23-5	Carbon tetrachloride	< 4.8		μg/kg dry	4.8	2.3	1				"		Х
108-90-7	Chlorobenzene	< 4.8		μg/kg dry	4.8	1.7	1		"	"	"		X
75-00-3	Chloroethane	< 9.6		μg/kg dry	9.6	4.2	1		"	"	"		X
67-66-3	Chloroform	< 4.8		μg/kg dry	4.8	2.5	1	"	"	"	"		X
74-87-3	Chloromethane	< 9.6		μg/kg dry	9.6	9.4	1		"	"	"		X
95-49-8	2-Chlorotoluene	< 4.8		μg/kg dry	4.8	2.2	1	"	"	"	"		X
106-43-4	4-Chlorotoluene	< 4.8		μg/kg dry	4.8	2.5	1		"	"	"		X
96-12-8	1,2-Dibromo-3-chloroprop	< 9.6		μg/kg dry	9.6	6.3	1	н	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 4.8		μg/kg dry	4.8	1.7	1		"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 4.8		μg/kg dry	4.8	1.1	1		"	"	"		Х
74-95-3	Dibromomethane	< 4.8		μg/kg dry	4.8	2.7	1				"		Х
95-50-1	1,2-Dichlorobenzene	< 4.8		μg/kg dry	4.8	2.3	1				"		Х
541-73-1	1,3-Dichlorobenzene	< 4.8		μg/kg dry	4.8	3.4	1		"	"	"		Х
106-46-7	1,4-Dichlorobenzene	< 4.8		μg/kg dry	4.8	2.7	1		"	"	"		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 9.6		μg/kg dry	9.6	3.5	1	u	n .	"	"	ıı	Х
75-34-3	1,1-Dichloroethane	< 4.8		μg/kg dry	4.8	1.9	1	"	"	"	"	"	X
107-06-2	1,2-Dichloroethane	< 4.8		μg/kg dry	4.8	2.5	1	w w	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 4.8		μg/kg dry	4.8	3.2	1	w w	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 4.8		μg/kg dry	4.8	1.6	1	п	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 4.8		μg/kg dry	4.8	3.3	1	w w	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 4.8		μg/kg dry	4.8	2.2	1	w w	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 4.8		μg/kg dry	4.8	1.7	1	п	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 4.8		μg/kg dry	4.8	3.0	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 4.8		μg/kg dry	4.8	2.9	1	"	"	"	"	"	X
10061-01-5	cis-1,3-Dichloropropene	< 4.8		μg/kg dry	4.8	1.3	1	"	"	"	"	"	X
10061-02-6	trans-1,3-Dichloropropene	< 4.8		μg/kg dry	4.8	2.4	1	"	"	"	"	"	X
100-41-4	Ethylbenzene	< 4.8		μg/kg dry	4.8	1.6	1	"					Х

NR-DS-SEDV-06 SB98147-47				<u>Project #</u> 218G3		<u>Matrix</u> Soil		-Oct-14 10			Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters												
% Solids	73.4	SOLm	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	2

NR-DS-S SB98147-				Client P 08-142			Matrix Surface Wa	· · · · · · · · · · · · · · · · · · ·	ection Date 5-Oct-14 10			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	Х
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"		"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	"		"	"	Χ
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	u	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Χ
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	II .	"	"	"	"	X
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	II .	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	II .	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	II .	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	X
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"		"	"	X
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"		"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"	"	"		Х

Sample Id NR-DS-S SB98147-				Client F 08-142	<u>Project #</u> 218G3		<u>Matrix</u> Surface Wa		ection Date 5-Oct-14 10			ceived Oct-14	
CAS No.	Analyte(s)	Result F	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW												
	by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.5	1	•	"	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"		"	"		X
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.5	1		"	"	"	"	Х
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Х
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1		"	"	"	"	Х
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1		"	"	"	"	Х
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	X
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	•	"	"	"	"	X
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.8	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Χ
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1	"	"	"	"	"	X
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1	"	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	"	"	"	"	"	X
64-17-5	Ethanol	< 400		μg/l	400	80.8	1	"	"	"	"	"	X
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	99			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	106			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	113			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	114			70-13	0 %		"	"	"	"	"	

NR-DS-S SB98147				Client Pr 08-142	•		<u>Matrix</u> Soil	·	ection Date -Oct-14 10			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Meta	als by EPA 6000/7000 Serie	es Methods											
7440-38-2	Arsenic	< 1.78		mg/kg dry	1.78	0.630	1	SW846 6010C	22-Oct-14	27-Oct-14	TBC	1424871	Х
7440-39-3	Barium	22.9		mg/kg dry	1.19	0.216	1		"	u u	"		Х
7440-43-9	Cadmium	< 0.593		mg/kg dry	0.593	0.0795	1	"	"	"			Χ
7440-47-3	Chromium	10.2		mg/kg dry	1.19	0.215	1		"	u u	"		Х
7440-50-8	Copper	40.6		mg/kg dry	1.19	0.163	1		"	u u	"		Х
7439-89-6	Iron	6,430		mg/kg dry	4.75	2.15	1	"	"	"	"		Х
7439-96-5	Manganese	100		mg/kg dry	1.19	0.179	1	"	"	"	"		Х
7440-23-5	Sodium	63.7		mg/kg dry	29.7	6.66	1	"	"	"	"		Х
7440-02-0	Nickel	7.01		mg/kg dry	1.19	0.165	1	"	"	"	"		Х
7439-92-1	Lead	8.68		mg/kg dry	1.78	0.826	1	"	"	"	"		Х
7440-66-6	Zinc	55.7		mg/kg dry	1.19	0.297	1	"	"	"	"		Х
General C	Themistry Parameters												
	% Solids	75.6		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424442	!
	Total Organic Carbon	296		mg/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	X
Toxicity C	haracteristics												
Grain Size	e - Reported as % retaine by method General Prep												
	Fractional % Sieve #4 (>4750µm)	0.250		% Retained			1	ASTM D422	22-Oct-14	23-Oct-14	EEM	1425083	i
	Fractional % Sieve #10 (4750-2000µm)	2.75		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	14.9		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	33.8		% Retained			1	"	"	"	· ·	"	
	Fractional % Sieve #60 (425-250µm)	29.3		% Retained			1	"	"	"	ıı	"	
	Fractional % Sieve #100 (250-150µm)	0.00		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	18.2		% Retained			1	"	"	"	II.	"	
	Fractional % Sieve #230 (less than 75µm)	0.900		% Retained			1	"	"	"	"	"	

NR-DS-S SB98147-				<u>Client P</u> 08-142			<u>Matrix</u> Soil		ection Date 5-Oct-14 10			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	
	rganic Compounds by SW by method SW846 5035A					Init	ial weight:	13 28 n					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 4.1		μg/kg dry	4.1	3.3	1	SW846 8260C	20-Oct-14	21-Oct-14	JEG	1424672	Х
67-64-1	Acetone	< 41.0		μg/kg dry	41.0	21.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 4.1		μg/kg dry	4.1	2.7	1	"	"	"	"	"	Χ
71-43-2	Benzene	< 4.1		μg/kg dry	4.1	1.5	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 4.1		μg/kg dry	4.1	2.8	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 4.1		μg/kg dry	4.1	4.1	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 4.1		μg/kg dry	4.1	3.2	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 4.1		μg/kg dry	4.1	3.9	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 8.2		μg/kg dry	8.2	8.1	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 41.0		μg/kg dry	41.0	13.8	1	"	"	"	•	"	Х
104-51-8	n-Butylbenzene	< 4.1		μg/kg dry	4.1	3.4	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 4.1		μg/kg dry	4.1	2.7	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 4.1		μg/kg dry	4.1	2.9	1	"	"	"	•	"	Х
75-15-0	Carbon disulfide	< 8.2		μg/kg dry	8.2	2.0	1	"	"	"	"		Х
56-23-5	Carbon tetrachloride	< 4.1		μg/kg dry	4.1	2.0	1	"	"	"	"		Х
108-90-7	Chlorobenzene	< 4.1		μg/kg dry	4.1	1.4	1	II .	"	"	"	"	Х
75-00-3	Chloroethane	< 8.2		μg/kg dry	8.2	3.5	1	"	"	"	"		Х
67-66-3	Chloroform	< 4.1		μg/kg dry	4.1	2.1	1	n	"	"			Х
74-87-3	Chloromethane	< 8.2		μg/kg dry	8.2	8.0	1		"	"	"		Х
95-49-8	2-Chlorotoluene	< 4.1		μg/kg dry	4.1	1.8	1		"	"	"		Х
106-43-4	4-Chlorotoluene	< 4.1		μg/kg dry	4.1	2.2	1	n	"	"			Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 8.2		μg/kg dry	8.2	5.3	1	u u	"	n n	"	"	Х
124-48-1	Dibromochloromethane	< 4.1		μg/kg dry	4.1	1.5	1	"	"	"	"		Х
106-93-4	1,2-Dibromoethane (EDB)	< 4.1		μg/kg dry	4.1	0.9	1	n	"	"			Х
74-95-3	Dibromomethane	< 4.1		μg/kg dry	4.1	2.3	1		"	"	"		Х
95-50-1	1,2-Dichlorobenzene	< 4.1		μg/kg dry	4.1	1.9	1		"	"	"		Х
541-73-1	1,3-Dichlorobenzene	< 4.1		μg/kg dry	4.1	2.9	1	n	"	"			Х
106-46-7	1,4-Dichlorobenzene	< 4.1		μg/kg dry	4.1	2.3	1	"	"	"	"		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 8.2		μg/kg dry	8.2	3.0	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 4.1		μg/kg dry	4.1	1.6	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 4.1		μg/kg dry	4.1	2.1	1	w w	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 4.1		μg/kg dry	4.1	2.7	1	n .	п	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 4.1		μg/kg dry	4.1	1.4	1	n .	п	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 4.1		μg/kg dry	4.1	2.8	1	n .	п	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 4.1		μg/kg dry	4.1	1.9	1	n .	п	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 4.1		μg/kg dry	4.1	1.4	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 4.1		μg/kg dry	4.1	2.6	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 4.1		μg/kg dry	4.1	2.5	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 4.1		μg/kg dry	4.1	1.1	1			"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 4.1		μg/kg dry	4.1	2.1	1	m .	"	"	"		Х
100-41-4	Ethylbenzene	< 4.1		μg/kg dry	4.1	1.4	1		"				X

NR-DS-SEDV-07 SB98147-50				<u>Project #</u> 218G3		<u>Matrix</u> Soil		-Oct-14 10			Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters												
% Solids	75.6	SOLn	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	i

NR-DS-S SB98147-				<u>Client P</u> 08-142			Matrix Surface Wa		ection Date 5-Oct-14 10			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Dvanavad	Analyzed	Analyst	Ratch	Cart
CAS NO.	Anatyte(s)	Kesuti	riug	Unus	KDL	MDL	Ditution	Meinou Kej.	Freparea	Anuiyzeu	Anuiysi	Duich	Ceri.
Volatile O	rganic Compounds rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	X
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	II .	"	"	"	"	Χ
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Χ
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	X
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Χ
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	X
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	II .	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	II .	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	II .	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	II .	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	X
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"		"	"	X
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	X
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	II .	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"	"	"	"	Х

NR-DS-S	lentification WV-07				Project #		Matrix		ection Date	/Time		ceived	
SB98147-				08-142	218G3		Surface Wa	ater 15	5-Oct-14 10	:35	15-0	Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
/olatile O	rganic Compounds by SW	846 8260											
Prepared	by method SW846 5030 V	Vater MS											
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	X
9-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.5	1	"	"	u	"	"	X
634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	u	"	"	Х
08-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.5	1	"	"	"	"	u	Х
5-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
1-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1	"	"	·	"	"	Х
03-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Х
00-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"	·	"	"	Х
30-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	·	"	"	Х
9-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	"	"	·	"	"	Х
27-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	·	"	"	Х
08-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
7-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	Х
20-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	×
08-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	×
9-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
9-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	·	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	II	Х
6-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	·	"	"	Х
5-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
08-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
5-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	"	"	"	"	"	X
79601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
5-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
09-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.8	1	"	"	"	"	"	
0-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
94-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	m .	"	"	"	"	X
37-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
08-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
5-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1	"	"	"	"	"	Х
23-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1	"	"	"	"	"	Х
10-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	"	"	"	"	"	Х
4-17-5	Ethanol	< 400		μg/l	400	80.8	1	n .	"	"	"	"	Х
Surrogate i	recoveries:												
60-00-4	4-Bromofluorobenzene	99			70-13	0 %		II .	п	"	"	"	
037-26-5	Toluene-d8	104			70-13	0 %		II .	п	"	"	"	
7060-07-0	1,2-Dichloroethane-d4	112			70-13	0 %		u u	"	"	"	"	
868-53-7	Dibromofluoromethane	119			70-13	0 %		"	"		"		

NR-DS-S				<u>lient Pr</u> 08-142	roject # 18G3		<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date -Oct-14 10			Oct-14	
CAS No.	Analyte(s)	Result	Flag U	nits	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 2.02	mg/l	kg dry	2.02	0.714	1	SW846 6010C	22-Oct-14	27-Oct-14	TBC	1424871	ı x
7440-39-3	Barium	38.6	mg/l	kg dry	1.34	0.245	1	"	"	"	"		Х
7440-43-9	Cadmium	< 0.672	mg/l	kg dry	0.672	0.0900	1	"	"	"	"		Х
7440-47-3	Chromium	14.8	mg/l	kg dry	1.34	0.243	1	"	"	"	"	"	Х
7440-50-8	Copper	34.8	mg/l	kg dry	1.34	0.184	1	"	"	"	"		Х
7439-89-6	Iron	9,560	mg/l	kg dry	5.37	2.44	1	"	"	"		"	Х
7439-96-5	Manganese	143		kg dry	1.34	0.203	1	"	"	"		"	Х
7440-23-5	Sodium	118	mg/l	kg dry	33.6	7.54	1	"	"	"		"	Х
7440-02-0	Nickel	10.6	mg/l	kg dry	1.34	0.187	1	"	"	"		"	Х
7439-92-1	Lead	12.7	mg/l	kg dry	2.02	0.935	1	"	"	"		"	Х
7440-66-6	Zinc	89.2	mg/l	kg dry	1.34	0.336	1	"	"	"		"	Х
General C	Chemistry Parameters												
	% Solids	70.2		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	3
	Total Organic Carbon	2,880	m	g/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	X
Toxicity C	Characteristics												
	e - Reported as % retaine by method General Prep												
	Fractional % Sieve #4 (>4750µm)	-0.145		% ained			1	ASTM D422	22-Oct-14	23-Oct-14	EEM	1425083	}
	Fractional % Sieve #10 (4750-2000µm)	0.530		% ained			1	"	"		"	"	
	Fractional % Sieve #20 (2000-850µm)	3.52		% ained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	7.81		% ained			1	"	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	21.8		% ained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	3.86		% ained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	60.3		% ained			1	"	"	"	"	"	
	Fractional % Sieve #230 (less than 75µm)	2.31		% ained			1	"	"	"	"	"	

NR-DS-S SB98147-				<u>Client Pr</u> 08-142			<u>Matrix</u> Soil		ection Date 5-Oct-14 10			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	
	rganic Compounds by SW by method SW846 5035A					<u>Init</u>	ial weight:	14.32 <u>g</u>					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 4.6		μg/kg dry	4.6	3.7	1	SW846 8260C	20-Oct-14	21-Oct-14	JEG	1424672	X
67-64-1	Acetone	< 46.0		μg/kg dry	46.0	24.3	1	W .	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 4.6		μg/kg dry	4.6	3.1	1	"	"	"	"	"	X
71-43-2	Benzene	< 4.6		μg/kg dry	4.6	1.7	1	"	"	"	"	"	X
108-86-1	Bromobenzene	< 4.6		μg/kg dry	4.6	3.1	1	"	"	"	"	"	X
74-97-5	Bromochloromethane	< 4.6		μg/kg dry	4.6	4.6	1	"	"	"	"	"	X
75-27-4	Bromodichloromethane	< 4.6		μg/kg dry	4.6	3.6	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 4.6		μg/kg dry	4.6	4.4	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 9.2		μg/kg dry	9.2	9.1	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 46.0		μg/kg dry	46.0	15.5	1	II .	II .	"	"	"	Х
104-51-8	n-Butylbenzene	< 4.6		μg/kg dry	4.6	3.8	1	n	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 4.6		μg/kg dry	4.6	3.0	1	n	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 4.6		μg/kg dry	4.6	3.3	1	n	"	"	"	"	Х
75-15-0	Carbon disulfide	< 9.2		μg/kg dry	9.2	2.3	1	"	u u	"	"	"	Х
56-23-5	Carbon tetrachloride	< 4.6		μg/kg dry	4.6	2.2	1	"	u u	"	"	"	Х
108-90-7	Chlorobenzene	< 4.6		μg/kg dry	4.6	1.6	1	u u	"	"	"	"	Х
75-00-3	Chloroethane	< 9.2		μg/kg dry	9.2	4.0	1	"	u u	"	"	"	Х
67-66-3	Chloroform	< 4.6		μg/kg dry	4.6	2.4	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 9.2		μg/kg dry	9.2	9.0	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 4.6		μg/kg dry	4.6	2.1	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 4.6		μg/kg dry	4.6	2.4	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 9.2		μg/kg dry	9.2	6.0	1	u	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 4.6		μg/kg dry	4.6	1.7	1	"	u u	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 4.6		μg/kg dry	4.6	1.0	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 4.6		μg/kg dry	4.6	2.6	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 4.6		μg/kg dry	4.6	2.2	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 4.6		μg/kg dry	4.6	3.3	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 4.6		μg/kg dry	4.6	2.5	1		"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 9.2		μg/kg dry	9.2	3.3	1	n .	W	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 4.6		μg/kg dry	4.6	1.8	1		"	"	"		Х
107-06-2	1,2-Dichloroethane	< 4.6		μg/kg dry	4.6	2.3	1	W .	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 4.6		μg/kg dry	4.6	3.1	1	n n	"		"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 4.6		μg/kg dry	4.6	1.6	1	W .	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 4.6		μg/kg dry	4.6	3.2	1	n n	"		"	"	Х
78-87-5	1,2-Dichloropropane	< 4.6		μg/kg dry	4.6	2.1	1	W .	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 4.6		μg/kg dry	4.6	1.6	1	"	"	"	"		Х
594-20-7	2,2-Dichloropropane	< 4.6		μg/kg dry	4.6	2.9	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 4.6		μg/kg dry	4.6	2.8	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 4.6		μg/kg dry	4.6	1.2	1			"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 4.6		μg/kg dry	4.6	2.3	1	m .	"	"	"	"	Х
100-41-4	Ethylbenzene	< 4.6		μg/kg dry	4.6	1.5	1						X

Sample Identification NR-DS-SEDV-08 SB98147-53				<u>Project #</u> 218G3		<u>Matrix</u> Soil		ection Date -Oct-14 10			Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters % Solids	70.2	SOLo	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	

NR-DS-S	dentification WV-08				Project #		Matrix	· · · · · · · · · · · · · · · · · · ·	ection Date			eceived	
SB98147-	-54			08-142	218G3		Surface Wa	ater 15	5-Oct-14 10	:45	15-	Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	X
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	u	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1		"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	u u	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	u u	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	n n	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1		"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1		"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	n	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	u	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	u u	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	u u	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1		"	"	"		Х

NR-DS-S				Client F 08-142	<u>Project #</u> 218G3		Matrix Surface Wa		ection Date 5-Oct-14 10			ceived Oct-14	
SB98147-													
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
	rganic Compounds by SW												
<u> </u>	by method SW846 5030 W Isopropylbenzene	< 1.0		ug/l	1.0	0.5	1	SW846 8260C	17 Oct 14	17-Oct-14	GMA	1424541	ı x
99-87-6	4-Isopropyltoluene	< 1.0		μg/l μg/l	1.0	0.5	1	"	"	"	UIVIA "	"	X
1634-04-4	Methyl tert-butyl ether	< 1.0			1.0	0.3	1	"	"		,,		X
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l μg/l	10.0	2.5	1	"	"	"	"	"	X
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1	"	"	"			Х
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	"	"	"	"		Х
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
37-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	Х
20-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	II .	"	"	"	"	Х
08-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"		
1-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	II .	"		"	"	Х
9-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
9-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.8	1	"	"	"	II	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
08-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
′5-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	"	"	"	"	"	Х
79601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
5-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	II .	u u	"	"	"	X
09-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.8	1	II .	u u	"	"	"	
0-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	II .	u u	"	"	"	Х
94-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	II .	u u	"	"	"	X
37-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	II .	"	"	"	X
08-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1	"	II .	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1	"	"	"	"	"	X
23-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1	"	"	"	"	"	X
10-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	"	"	"	"	"	Х
64-17-5	Ethanol	< 400		μg/l	400	80.8	1	"	"	"	"	"	Х
Surrogate i	recoveries:												
160-00-4	4-Bromofluorobenzene	98			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	103			70-13	0 %		"	"	"	"	"	
7060-07-0	1,2-Dichloroethane-d4	109			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	112			70-13	0 %		"	"	"	"		

NR-US-S SB98147				Client Po 08-142			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 5-Oct-14 11			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 2.04		mg/kg dry	2.04	0.721	1	SW846 6010C	22-Oct-14	27-Oct-14	TBC	1424871	ı x
7440-39-3	Barium	47.6		mg/kg dry	1.36	0.247	1	"	"	"	"	"	Х
7440-43-9	Cadmium	< 0.679		mg/kg dry	0.679	0.0910	1		"	"		"	Х
7440-47-3	Chromium	19.2		mg/kg dry	1.36	0.246	1		"	"		"	Х
7440-50-8	Copper	53.3		mg/kg dry	1.36	0.186	1		"	"		"	Х
7439-89-6	Iron	10,500		mg/kg dry	5.43	2.46	1	"	"	"	"	"	Х
7439-96-5	Manganese	208		mg/kg dry	1.36	0.205	1	"	"	"	"	"	Х
7440-23-5	Sodium	129		mg/kg dry	34.0	7.63	1	"	"	"	"		Х
7440-02-0	Nickel	12.9		mg/kg dry	1.36	0.189	1	"	"	"	"	"	Х
7439-92-1	Lead	18.1		mg/kg dry	2.04	0.946	1	"	"	"		"	Х
7440-66-6	Zinc	135		mg/kg dry	1.36	0.340	1	"	"	"		"	Х
General C	Chemistry Parameters												
	% Solids	65.1		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	3
	Total Organic Carbon	6,960	TOC 1	mg/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	X
Toxicity C	Characteristics												
	e - Reported as % retaine by method General Prep												
	Fractional % Sieve #4 (>4750µm)	29.2		% Retained			1	ASTM D422	22-Oct-14	23-Oct-14	EEM	1425083	}
	Fractional % Sieve #10 (4750-2000µm)	0.280		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	0.280		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	1.73		% Retained			1	n	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	13.2		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	-0.0560		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	50.6		% Retained			1	"	"	"	ıı	"	
	Fractional % Sieve #230 (less than 75µm)	4.81		% Retained			1	"	"	"	"	"	

NR-US-SI SB98147-				<u>Client Pr</u> 08-142			<u>Matrix</u> Soil		ection Date 5-Oct-14 11			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	
	rganic Compounds by SW by method SW846 5035A					<u>Init</u>	ial weight: 8	3.08 g					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 7.4		μg/kg dry	7.4	6.0	1	SW846 8260C	21-Oct-14	21-Oct-14	JEG	1424777	×
67-64-1	Acetone	< 74.3		μg/kg dry	74.3	39.2	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 7.4		μg/kg dry	7.4	5.0	1	n .	n n	"	"	"	X
71-43-2	Benzene	< 7.4		μg/kg dry	7.4	2.7	1	n .	"	"	"	"	Х
108-86-1	Bromobenzene	< 7.4		μg/kg dry	7.4	5.0	1	"	n n	"	"	"	Х
74-97-5	Bromochloromethane	< 7.4		μg/kg dry	7.4	7.4	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 7.4		μg/kg dry	7.4	5.8	1	"	u u	"	"	"	Х
75-25-2	Bromoform	< 7.4		μg/kg dry	7.4	7.1	1	"	u u	"	"	"	Х
74-83-9	Bromomethane	< 14.9		μg/kg dry	14.9	14.6	1	"	u u	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 74.3		μg/kg dry	74.3	25.0	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 7.4		μg/kg dry	7.4	6.1	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 7.4		μg/kg dry	7.4	4.8	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 7.4		μg/kg dry	7.4	5.3	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 14.9		μg/kg dry	14.9	3.7	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 7.4		μg/kg dry	7.4	3.6	1	"		"	"	"	Х
108-90-7	Chlorobenzene	< 7.4		μg/kg dry	7.4	2.6	1	"	"	"	"		Х
75-00-3	Chloroethane	< 14.9		μg/kg dry	14.9	6.4	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 7.4		μg/kg dry	7.4	3.9	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 14.9		μg/kg dry	14.9	14.6	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 7.4		μg/kg dry	7.4	3.3	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 7.4		μg/kg dry	7.4	3.9	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 14.9		μg/kg dry	14.9	9.7	1	"	n .	"	"	"	Х
124-48-1	Dibromochloromethane	< 7.4		μg/kg dry	7.4	2.7	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 7.4		μg/kg dry	7.4	1.7	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 7.4		μg/kg dry	7.4	4.1	1	m .	n n	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 7.4		μg/kg dry	7.4	3.5	1	m .	n n	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 7.4		μg/kg dry	7.4	5.3	1	m .	n n	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 7.4		μg/kg dry	7.4	4.1	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 14.9		μg/kg dry	14.9	5.4	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 7.4		μg/kg dry	7.4	2.9	1	m .	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 7.4		μg/kg dry	7.4	3.8	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 7.4		μg/kg dry	7.4	5.0	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 7.4		μg/kg dry	7.4	2.5	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 7.4		μg/kg dry	7.4	5.1	1	"	"	"	"	"	X
78-87-5	1,2-Dichloropropane	< 7.4		μg/kg dry	7.4	3.4	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 7.4		μg/kg dry	7.4	2.6	1	"		"	"	"	Х
594-20-7	2,2-Dichloropropane	< 7.4		μg/kg dry	7.4	4.7	1	"		"	"	"	Х
563-58-6	1,1-Dichloropropene	< 7.4		μg/kg dry	7.4	4.5	1	"	"	"	"	"	X
10061-01-5	cis-1,3-Dichloropropene	< 7.4		μg/kg dry	7.4	2.0	1	"		"	"	"	X
10061-02-6	trans-1,3-Dichloropropene	< 7.4		μg/kg dry μg/kg dry	7.4	3.8	1	"		"	"	"	X
100-41-4	Ethylbenzene	< 7.4		μg/kg dry μg/kg dry	7.4	2.5	1				_	_	X

NR-US-SEDV-01 SB98147-56				<u>Project #</u> 218G3		<u>Matrix</u> Soil		-Oct-14 11			-Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters												
% Solids	65.1	SOLp	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	i

Sample Identification NR-US-SWV-01				Project #				Collection Date/Time			Received		
SB98147-	-57			08-142	218G3	Surface Water			15-Oct-14 11:25			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	ı X
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	m .	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Χ
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	u u	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	n .	u	"	X
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1		"	"		"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	·	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	m .	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	u	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	m .	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	m .	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	m .	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	u	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	u	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"	"	"		Х

Sample Identification NR-US-SWV-01 SD09147-57				Client F 08-142	<u>Project #</u> 218G3		Matrix Surface Wa		Collection Date/Time 15-Oct-14 11:25			Received 15-Oct-14		
SB98147- CAS No.	-5 / ————————————————————————————————————	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
	• ,,													
	rganic Compounds organic Compounds by SW	846 8260												
	by method SW846 5030 V													
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	ı x	
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	X	
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х	
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.5	1	"	"	H	"	"	Х	
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Х	
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1	"	n n	"	"	"	Χ	
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ	
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X	
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X	
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	X	
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	X	
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X	
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	X	
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ	
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"		
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X	
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X	
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X	
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.8	1	"	u	W	"	"	Х	
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ	
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х	
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х	
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	"	n n	"	"	"	Х	
179601-23-1	1 m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	II .	"	"	"	Χ	
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	II .	"	"	"	Χ	
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.8	1	"	II .	"	"	"		
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х	
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X	
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ	
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ	
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1	"	"	"	"	"	Χ	
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1	"	"	"	"	"	Χ	
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	"	"	W .	"	"	Х	
64-17-5 	Ethanol	< 400		μg/l	400	80.8	1	"	"	"	"	"	Х	
Surrogate	recoveries:													
460-00-4	4-Bromofluorobenzene	99			70-13	0 %		"	"	"	"	"		
2037-26-5	Toluene-d8	105			70-13	0 %		"	"	"	"	"		
17060-07-0	1,2-Dichloroethane-d4	110			70-13	0 %		"	"	"	"	"		
1868-53-7	Dibromofluoromethane	114			70-13	0 %		"	"	"	"	"		

Sample Id NR-US-S SB98147-				Client Project # 08-14218G3			<u> </u>		ection Date i-Oct-14 11		<u>Re</u> 15-		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Meta	als by EPA 6000/7000 Series	s Methods											
7440-38-2	Arsenic	< 2.01		mg/kg dry	2.01	0.711	1	SW846 6010C	22-Oct-14	27-Oct-14	TBC	1424871	I X
7440-39-3	Barium	23.5		mg/kg dry	1.34	0.244	1	"	"	"	"	"	Χ
7440-43-9	Cadmium	< 0.670		mg/kg dry	0.670	0.0897	1		"	"	"	"	Χ
7440-47-3	Chromium	11.1		mg/kg dry	1.34	0.242	1		"	u u	"	"	Х
7440-50-8	Copper	22.4		mg/kg dry	1.34	0.183	1	"	u u	"		"	Х
7439-89-6	Iron	6,380		mg/kg dry	5.36	2.43	1	"	"	"	"		X
7439-96-5	Manganese	140		mg/kg dry	1.34	0.202	1	"	"	"	"	"	Х
7440-23-5	Sodium	73.5		mg/kg dry	33.5	7.52	1	"	"	"		"	Х
7440-02-0	Nickel	6.11		mg/kg dry	1.34	0.186	1	"	"	"		"	Х
7439-92-1	Lead	9.16		mg/kg dry	2.01	0.932	1		"	"	"	"	Х
7440-66-6	Zinc	51.1		mg/kg dry	1.34	0.335	1		"	"	"	"	Х
General C	hemistry Parameters												
	% Solids	69.2		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	}
	Total Organic Carbon	3,070		mg/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	Х
Toxicity C	haracteristics	•		0 0				,					
•	e - Reported as % retaine	d											
	by method General Prepa												
	Fractional % Sieve #4 (>4750µm)	0.500		% Retained			1	ASTM D422	24-Oct-14	24-Oct-14	EEM	1425210	1
	Fractional % Sieve #10 (4750-2000µm)	1.10		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	3.70		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	8.00		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	40.4		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	12.5		% Retained			1	"	"	"	ıı	ıı	
	Fractional % Sieve #200 (150-75µm)	32.5		% Retained			1	"	"	"	ıı	ıı	
	Fractional % Sieve #230 (less than 75µm)	1.30		% Retained			1	"	"	"	"	"	

Sample Identification NR-US-SEDV-02 SB98147-59		<u>Client Project #</u> 08-14218G3				<u>Matrix</u> Soil	Collection Date/Time 15-Oct-14 11:35			<u>Re</u> 15-			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Oı	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	
	rganic Compounds by SW					lnit	ial waight:	10 15 ~					
76-13-1	by method SW846 5035A 1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.2		μg/kg dry	5.2	4.2	ial weight:	SW846 8260C	20-Oct-14	21-Oct-14	JEG	1424672	. X
67-64-1	Acetone	< 52.0		μg/kg dry	52.0	27.4	1	"		"	"	"	Х
107-13-1	Acrylonitrile	< 5.2		μg/kg dry	5.2	3.5	1		"	"	"	"	Х
71-43-2	Benzene	< 5.2		μg/kg dry	5.2	1.9	1	11	"	"	"	"	Х
108-86-1	Bromobenzene	< 5.2		μg/kg dry	5.2	3.5	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 5.2		μg/kg dry	5.2	5.2	1	"		"	"	"	Х
75-27-4	Bromodichloromethane	< 5.2		μg/kg dry	5.2	4.1	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 5.2		μg/kg dry	5.2	5.0	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 10.4		μg/kg dry	10.4	10.3	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 52.0		μg/kg dry	52.0	17.5	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 5.2		μg/kg dry	5.2	4.3	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 5.2		μg/kg dry	5.2	3.4	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 5.2		μg/kg dry	5.2	3.7	1	"	"	"	"		Х
75-15-0	Carbon disulfide	< 10.4		μg/kg dry	10.4	2.6	1	"		"	"	"	Х
56-23-5	Carbon tetrachloride	< 5.2		μg/kg dry	5.2	2.5	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 5.2		μg/kg dry	5.2	1.8	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 10.4		μg/kg dry	10.4	4.5	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 5.2		μg/kg dry	5.2	2.7	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 10.4		μg/kg dry	10.4	10.2	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 5.2		μg/kg dry	5.2	2.3	1	n n	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 5.2		μg/kg dry	5.2	2.7	1		"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 10.4		μg/kg dry	10.4	6.8	1	u	"	n .	u	"	X
124-48-1	Dibromochloromethane	< 5.2		μg/kg dry	5.2	1.9	1	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 5.2		μg/kg dry	5.2	1.2	1	"	"	"	"		Χ
74-95-3	Dibromomethane	< 5.2		μg/kg dry	5.2	2.9	1	"	"	"	"		Χ
95-50-1	1,2-Dichlorobenzene	< 5.2		μg/kg dry	5.2	2.4	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 5.2		μg/kg dry	5.2	3.7	1	"	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 5.2		μg/kg dry	5.2	2.9	1	"	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.4		μg/kg dry	10.4	3.8	1	u u	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 5.2		μg/kg dry	5.2	2.0	1	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 5.2		μg/kg dry	5.2	2.6	1	"	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	< 5.2		μg/kg dry	5.2	3.5	1	"	"	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	< 5.2		μg/kg dry	5.2	1.8	1	"	"	"	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	< 5.2		μg/kg dry	5.2	3.6	1	"	"	"	"	"	Χ
78-87-5	1,2-Dichloropropane	< 5.2		μg/kg dry	5.2	2.4	1	п	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 5.2		μg/kg dry	5.2	1.8	1	"	"	"	"	"	X
594-20-7	2,2-Dichloropropane	< 5.2		μg/kg dry	5.2	3.3	1	"	"	"	"	"	X
563-58-6	1,1-Dichloropropene	< 5.2		μg/kg dry	5.2	3.1	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 5.2		μg/kg dry	5.2	1.4	1	"	"	"	"	"	X
10061-02-6	trans-1,3-Dichloropropene	< 5.2		μg/kg dry	5.2	2.6	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 5.2		μg/kg dry	5.2	1.7	1	"	"	"	"		Х

Sample Identification NR-US-SEDV-02 SB98147-59				<u>Project #</u> 218G3		<u>Matrix</u> Soil		ection Date -Oct-14 11			ceived Oct-14	
CAS No. Analyte(s)		Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters % Solids	69.2	SOLq	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	.

NR-US-S' SB98147-				Client P 08-142			Matrix Surface Wa		ection Date 5-Oct-14 11			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds								<u> </u>				
Volatile O	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	ı X
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Χ
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"		"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	"		"	"	Χ
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	u u	"	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Χ
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	n .	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	X
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	X
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"		"	"	X
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	X
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	II .	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	II .	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"	"			Х

NR-US-S SB98147				Client F 08-142	<u>Project #</u> 218G3		Matrix Surface Wa		ection Date 5-Oct-14 11			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW												
Prepared	by method SW846 5030 V	Vater MS											
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	17-Oct-14	17-Oct-14	GMA	1424541	I X
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.5	1	"	"	"	"	"	Х
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	"	"	"		"	Χ
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Χ
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Χ
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	"	u u	"	"	"	Х
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Χ
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	"	u u	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	n n	"	"	"	Х
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	n n	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	"	"	"	"	"	Х
179601-23-1	1 m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	8.0	1	"	u u	"	"	"	
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Х
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1		"	"	"	"	Х
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1	"	"	"	•	"	Χ
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	"	"	"	"	"	X
64-17-5	Ethanol	< 400		μg/l	400	80.8	1	"	"	"	"	"	Χ
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	99			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	104			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	111			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	111			70-13	0 %		"	"	"	"		

NR-US-S SB98147				<u>Client Pr</u> 08-142			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 5-Oct-14 11			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Series	s Methods											
7440-38-2	Arsenic	< 1.77		mg/kg dry	1.77	0.627	1	SW846 6010C	22-Oct-14	27-Oct-14	TBC	1424871	ı x
7440-39-3	Barium	19.9		mg/kg dry	1.18	0.215	1	"	"	"	"	"	Х
7440-43-9	Cadmium	< 0.591		mg/kg dry	0.591	0.0791	1	"	"	u	"	"	Х
7440-47-3	Chromium	14.0		mg/kg dry	1.18	0.214	1	"	"	·		"	Х
7440-50-8	Copper	16.5		mg/kg dry	1.18	0.162	1	"	"	·		"	Х
7439-89-6	Iron	5,860		mg/kg dry	4.72	2.14	1	"	"	"	"	"	Х
7439-96-5	Manganese	85.1		mg/kg dry	1.18	0.178	1	"	"	"	"	"	Χ
7440-23-5	Sodium	63.4		mg/kg dry	29.5	6.63	1	"	"	"		"	Х
7440-02-0	Nickel	6.53		mg/kg dry	1.18	0.164	1	"	"	"		"	Х
7439-92-1	Lead	7.80		mg/kg dry	1.77	0.822	1	n	"	"			Х
7440-66-6	Zinc	55.2		mg/kg dry	1.18	0.295	1	"	"	"		"	Х
General C	Chemistry Parameters												
	% Solids	75.6		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	3
	Total Organic Carbon	378		mg/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	X
Toxicity C	Characteristics												
	e - Reported as % retaine by method General Prepa												
	Fractional % Sieve #4 (>4750µm)	0.900		% Retained			1	ASTM D422	24-Oct-14	24-Oct-14	EEM	1425210)
	Fractional % Sieve #10 (4750-2000µm)	0.100		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	1.00		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	21.3		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	51.0		% Retained			1	"	II	"	"	"	
	Fractional % Sieve #100 (250-150µm)	0.200		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	24.0		% Retained			1	"	II	"	"	"	
	Fractional % Sieve #230 (less than 75µm)	1.40		% Retained			1	"	"	"	"	"	

NR-US-S SB98147-				Client Pr 08-142			<u>Matrix</u> Soil	·	ection Date 5-Oct-14 11			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	
	rganic Compounds by SW					lnit	ial waight:	10 11 ~					
76-13-1	by method SW846 5035A 1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 4.8		μg/kg dry	4.8	3.9	ial weight: 1	SW846 8260C	21-Oct-14	21-Oct-14	JEG	1424777	Х
67-64-1	Acetone	< 47.8		μg/kg dry	47.8	25.2	1	"		"	"	"	Х
107-13-1	Acrylonitrile	< 4.8		μg/kg dry	4.8	3.2	1	п	"		"	"	Х
71-43-2	Benzene	< 4.8		μg/kg dry	4.8	1.7	1	11	"	"	"	"	Х
108-86-1	Bromobenzene	< 4.8		μg/kg dry	4.8	3.2	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 4.8		μg/kg dry	4.8	4.8	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 4.8		μg/kg dry	4.8	3.7	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 4.8		μg/kg dry	4.8	4.6	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 9.6		μg/kg dry	9.6	9.4	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 47.8		μg/kg dry	47.8	16.1	1		"	"	"	"	Х
104-51-8	n-Butylbenzene	< 4.8		μg/kg dry	4.8	3.9	1		"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 4.8		μg/kg dry	4.8	3.1	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 4.8		μg/kg dry	4.8	3.4	1		"	"	"	"	Х
75-15-0	Carbon disulfide	< 9.6		μg/kg dry	9.6	2.4	1	"			"		Х
56-23-5	Carbon tetrachloride	< 4.8		μg/kg dry	4.8	2.3	1	"			"		Х
108-90-7	Chlorobenzene	< 4.8		μg/kg dry	4.8	1.7	1	"	"	"	"	"	X
75-00-3	Chloroethane	< 9.6		μg/kg dry	9.6	4.1	1	"	"	"	"	"	X
67-66-3	Chloroform	< 4.8		μg/kg dry	4.8	2.5	1	"	"	"	"	"	X
74-87-3	Chloromethane	< 9.6		μg/kg dry	9.6	9.4	1	"	"	"	"	"	X
95-49-8	2-Chlorotoluene	< 4.8		μg/kg dry	4.8	2.1	1	"	"	"	"	"	X
106-43-4	4-Chlorotoluene	< 4.8		μg/kg dry	4.8	2.5	1	"			"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 9.6		μg/kg dry	9.6	6.2	1	u	"	u	"	"	Х
124-48-1	Dibromochloromethane	< 4.8		μg/kg dry	4.8	1.7	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 4.8		μg/kg dry	4.8	1.1	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 4.8		μg/kg dry	4.8	2.7	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 4.8		μg/kg dry	4.8	2.2	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 4.8		μg/kg dry	4.8	3.4	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 4.8		μg/kg dry	4.8	2.6	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 9.6		μg/kg dry	9.6	3.5	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 4.8		μg/kg dry	4.8	1.9	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 4.8		μg/kg dry	4.8	2.4	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 4.8		μg/kg dry	4.8	3.2	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 4.8		μg/kg dry	4.8	1.6	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 4.8		μg/kg dry	4.8	3.3	1	"	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 4.8		μg/kg dry	4.8	2.2	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 4.8		μg/kg dry	4.8	1.7	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 4.8		μg/kg dry	4.8	3.0	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 4.8		μg/kg dry	4.8	2.9	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 4.8		μg/kg dry	4.8	1.3	1	п	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 4.8		μg/kg dry	4.8	2.4	1	п	"	"	"	"	Х
100-41-4	Ethylbenzene	< 4.8		μg/kg dry	4.8	1.6	1	"	"	"	"	"	Х

General Chemistry Parameters

NR-US-SEDV-03 SB98147-62				<u>Project #</u> 218G3		<u>Matrix</u> Soil		-Oct-14 11			Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters												
% Solids	75.6	SOLr	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	3

NR-US-S	dentification WV-03				Project #		Matrix	· · · · · · · · · · · · · · · · · · ·	ection Date			ceived	
SB98147-	-63			08-14.	218G3		Surface Wa	ater 13	5-Oct-14 11	:50	15-	Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	NAA	1424525	х
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1		n n	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1		n n	"	"	"	Х
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1		"	"	"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1		n n	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"		Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"		Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	"	"	"		Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"		Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	n .	u	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Χ
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	u u	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	u u	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	u u	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1		"	"		"	Х

NR-US-S SB98147				Client F 08-142	<u>roject #</u> 218G3		Matrix Surface Wa		ection Date 5-Oct-14 11			ceived Oct-14	
CAS No.	Analyte(s)	Result I	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	organic Compounds by SW												
<u>Prepared</u> 98-82-8	by method SW846 5030 V Isopropylbenzene	<u>/ater MS</u> < 1.0		ug/l	1.0	0.5	1	SW846 8260C	17 Oct 14	17-Oct-14	NAA	1424525	Х
99-87-6	4-Isopropyltoluene	< 1.0		μg/l μg/l	1.0	0.5	1	"	"	"	INAA "	"	X
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"		,,	"	"	X
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.5	1	п	"	"	"	"	Х
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1	·	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	"	u u	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	8.0	1	"	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	"	"	"	"	"	Χ
179601-23-1	1 m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	X
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.8	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	X
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1	"	"	"	"	"	Х
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1	"	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	"	"	"	•	"	Х
64-17-5 ————	Ethanol	< 400		μg/l	400	8.08	1	"	"	"	"	"	Х
=	recoveries:												
460-00-4	4-Bromofluorobenzene	98			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	99			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	105			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	85			70-13	0 %		"	"	"	"	"	

NR-US-S				Client P: 08-142			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 5-Oct-14 12			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Serie	es Methods											
7440-38-2	Arsenic	< 1.89		mg/kg dry	1.89	0.668	1	SW846 6010C	22-Oct-14	27-Oct-14	TBC	1424871	ı x
7440-39-3	Barium	24.4		mg/kg dry	1.26	0.229	1	"	"	"	"	"	Х
7440-43-9	Cadmium	< 0.629		mg/kg dry	0.629	0.0842	1	"	"	"	"	"	Х
7440-47-3	Chromium	9.97		mg/kg dry	1.26	0.228	1	"	"	"	"	"	Х
7440-50-8	Copper	19.9		mg/kg dry	1.26	0.172	1	"	"	"	"	"	Х
7439-89-6	Iron	6,620		mg/kg dry	5.03	2.28	1	"	"	"	"	"	Х
7439-96-5	Manganese	81.7		mg/kg dry	1.26	0.190	1	"	"	"	"	"	Х
7440-23-5	Sodium	82.9		mg/kg dry	31.4	7.06	1	"	"	"			Х
7440-02-0	Nickel	7.23		mg/kg dry	1.26	0.175	1	"	"	"	"	"	Х
7439-92-1	Lead	7.90		mg/kg dry	1.89	0.875	1	n	"	"		"	Х
7440-66-6	Zinc	54.2		mg/kg dry	1.26	0.314	1	"	"	"			Х
General C	Chemistry Parameters												
	% Solids	70.4		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	3
	Total Organic Carbon	1,960		mg/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	X
Toxicity C	Characteristics												
	e - Reported as % retaine by method General Prep												
	Fractional % Sieve #4 (>4750µm)	0.200		% Retained			1	ASTM D422	24-Oct-14	24-Oct-14	EEM	1425210)
	Fractional % Sieve #10 (4750-2000µm)	0.300		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	0.400		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	8.10		% Retained			1	"	II	"	"	"	
	Fractional % Sieve #60 (425-250µm)	45.7		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	0.900		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	43.0		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #230 (less than 75µm)	1.40		% Retained			1	"	"	"	"	"	

NR-US-S SB98147-				<u>Client Pr</u> 08-142			<u>Matrix</u> Soil		ection Date 5-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	
	rganic Compounds by SW by method SW846 5035A					<u>Init</u>	ial weight: 1	10.99 <u>g</u>					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.3		μg/kg dry	5.3	4.3	1	SW846 8260C	20-Oct-14	21-Oct-14	JEG	1424672	X
67-64-1	Acetone	< 53.3		μg/kg dry	53.3	28.1	1	"	"		"	"	Χ
107-13-1	Acrylonitrile	< 5.3		μg/kg dry	5.3	3.6	1	"	n n	"	"	"	Х
71-43-2	Benzene	< 5.3		μg/kg dry	5.3	1.9	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 5.3		μg/kg dry	5.3	3.6	1	"	n n	"	"	"	Х
74-97-5	Bromochloromethane	< 5.3		μg/kg dry	5.3	5.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 5.3		μg/kg dry	5.3	4.2	1	"	u u	"	"	"	Х
75-25-2	Bromoform	< 5.3		μg/kg dry	5.3	5.1	1	"	u u	"	"	"	Х
74-83-9	Bromomethane	< 10.7		μg/kg dry	10.7	10.5	1	"	u u	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 53.3		μg/kg dry	53.3	18.0	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 5.3		μg/kg dry	5.3	4.4	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 5.3		μg/kg dry	5.3	3.5	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 5.3		μg/kg dry	5.3	3.8	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 10.7		μg/kg dry	10.7	2.7	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 5.3		μg/kg dry	5.3	2.6	1	"		"	"	"	Х
108-90-7	Chlorobenzene	< 5.3		μg/kg dry	5.3	1.9	1	"	"	"	"		Х
75-00-3	Chloroethane	< 10.7		μg/kg dry	10.7	4.6	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 5.3		μg/kg dry	5.3	2.8	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 10.7		μg/kg dry	10.7	10.4	1	"	n n	"	"	"	Х
95-49-8	2-Chlorotoluene	< 5.3		μg/kg dry	5.3	2.4	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 5.3		μg/kg dry	5.3	2.8	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 10.7		μg/kg dry	10.7	6.9	1	"	n .	"	"	"	Χ
124-48-1	Dibromochloromethane	< 5.3		μg/kg dry	5.3	1.9	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 5.3		μg/kg dry	5.3	1.2	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 5.3		μg/kg dry	5.3	3.0	1	"	n n	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 5.3		μg/kg dry	5.3	2.5	1	"	n n	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 5.3		μg/kg dry	5.3	3.8	1	"	n n	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 5.3		μg/kg dry	5.3	2.9	1	m .	"		"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.7		μg/kg dry	10.7	3.9	1	"	"	п	"	"	Х
75-34-3	1,1-Dichloroethane	< 5.3		μg/kg dry	5.3	2.1	1	m .	"		"	"	Х
107-06-2	1,2-Dichloroethane	< 5.3		μg/kg dry	5.3	2.7	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 5.3		μg/kg dry	5.3	3.6	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 5.3		μg/kg dry	5.3	1.8	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 5.3		μg/kg dry	5.3	3.7	1	"	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 5.3		μg/kg dry	5.3	2.4	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 5.3		μg/kg dry	5.3	1.9	1	n .	"		"	"	Х
594-20-7	2,2-Dichloropropane	< 5.3		μg/kg dry	5.3	3.4	1	"		"	"	"	Х
563-58-6	1,1-Dichloropropene	< 5.3		μg/kg dry	5.3	3.2	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 5.3		μg/kg dry	5.3	1.4	1	"			"	"	X
10061-02-6	trans-1,3-Dichloropropene	< 5.3		μg/kg dry μg/kg dry	5.3	2.7	1	"			"	"	X
100-41-4	Ethylbenzene	< 5.3		μg/kg dry μg/kg dry	5.3	1.8	1	,,					X

Sample Identification

NR-US-SEDV-04 SB98147-65				<u>Project #</u> 218G3		<u>Matrix</u> Soil		-Oct-14 12			Oct-14	
CAS No. Analyte(s)		Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters												
% Solids	70.4	SOLs	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	i

NR-US-S	dentification WV-04				Project #		Matrix	· · · · · · · · · · · · · · · · · · ·	ection Date			ceived	
SB98147-	-66			08-142	218G3		Surface Wa	ater 15	5-Oct-14 12	::50	15-	Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		µg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	NAA	1424525	X
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Χ
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1		"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		u u	"	"	"	Х
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		n n	"	"	"	Х
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1		u u	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	u u	"	"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	n .	u	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	n n	"		"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1		n n	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	H .	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	u u	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	u u	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1		"	"	"		Х

NR-US-S SB98147				<u>Client F</u> 08-142			Matrix Surface Wa		ection Date 5-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW												
<u>Prepared</u> 98-82-8	by method SW846 5030 V				4.0	0.5	4	CM04C 00C0C	47.0-4.44	47.0-1.44	NIA A	4404505	
99-87-6	Isopropylbenzene	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	17-Oct-14	17-Oct-14	NAA "	1424525	
1634-04-4	4-Isopropyltoluene Methyl tert-butyl ether	< 1.0 < 1.0		μg/l	1.0 1.0	0.5 0.4	1 1	"			,,	"	X X
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l μg/l	10.0	2.5	1	II .	"		"	"	X
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	"	"		"	"	Х
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1	"		"	"	"	Х
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	·	"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	·	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.8	1	"	u	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	•	"	Χ
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1		"	"	"	"	Χ
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Χ
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.8	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	•	"	Х
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1	"	"	"	"	"	Х
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1	"	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	"	"	"	"	"	Х
64-17-5	Ethanol	< 400		μg/l	400	80.8	1	"	"	"	"	"	Х
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	99			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	98			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	106			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	85			70-13	0 %		II .	"	u u	"	"	

NR-US-S SB98147				Client Pr 08-142	_		<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date i-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Meta	als by EPA 6000/7000 Series	s Methods											
7440-38-2	Arsenic	< 1.99		mg/kg dry	1.99	0.704	1	SW846 6010C	22-Oct-14	27-Oct-14	TBC	1424871	X
7440-39-3	Barium	27.4		mg/kg dry	1.33	0.241	1	"	"	"	"	"	X
7440-43-9	Cadmium	< 0.663		mg/kg dry	0.663	0.0889	1	"	"	"	"	"	X
7440-47-3	Chromium	13.2		mg/kg dry	1.33	0.240	1	"	"	"	"	"	Х
7440-50-8	Copper	20.8		mg/kg dry	1.33	0.182	1	"	"	"	"	"	X
7439-89-6	Iron	7,040		mg/kg dry	5.31	2.40	1	"	"	"	"	"	Х
7439-96-5	Manganese	112		mg/kg dry	1.33	0.200	1	"	"	"	"	"	Х
7440-23-5	Sodium	83.4		mg/kg dry	33.2	7.45	1	"	"	"	"	"	Х
7440-02-0	Nickel	7.56		mg/kg dry	1.33	0.184	1		"	"	"	"	Х
7439-92-1	Lead	14.1		mg/kg dry	1.99	0.923	1		"	"	"	"	Х
7440-66-6	Zinc	60.7		mg/kg dry	1.33	0.332	1		"	"	"	"	Х
General C	hemistry Parameters												
	% Solids	71.2		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	í
	Total Organic Carbon	2,620		mg/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	Х
Toxicity C	haracteristics												
	e - Reported as % retaine												
Prepared	by method General Prepa	<u>aration</u>											
	Fractional % Sieve #4 (>4750µm)	0.100		% Retained			1	ASTM D422	24-Oct-14	24-Oct-14	EEM	1425210	I
	Fractional % Sieve #10 (4750-2000µm)	0.100		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	0.100		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	2.60		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	33.2		% Retained			1	"	"	n .	"	"	
	Fractional % Sieve #100 (250-150µm)	3.20		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	58.3		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #230 (less than 75µm)	2.40		% Retained			1	"	"	"	"	"	

NR-US-SI SB98147-				<u>Client Pr</u> 08-142			<u>Matrix</u> Soil		ection Date 5-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	
	rganic Compounds by SW by method SW846 5035A					<u>Init</u>	ial weight: 9	9.67 g					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.6		μg/kg dry	5.6	4.6	1	SW846 8260C	20-Oct-14	21-Oct-14	JEG	1424672	. X
67-64-1	Acetone	< 56.5		μg/kg dry	56.5	29.8	1	n .	n .	"	"	"	Χ
107-13-1	Acrylonitrile	< 5.6		μg/kg dry	5.6	3.8	1	"	"	"	"	"	Х
71-43-2	Benzene	< 5.6		μg/kg dry	5.6	2.0	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 5.6		μg/kg dry	5.6	3.8	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 5.6		μg/kg dry	5.6	5.6	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 5.6		μg/kg dry	5.6	4.4	1	II .	II .	"	"	"	Х
75-25-2	Bromoform	< 5.6		μg/kg dry	5.6	5.4	1	II .	u u	"	"	"	Х
74-83-9	Bromomethane	< 11.3		μg/kg dry	11.3	11.1	1	II .	u u	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 56.5		μg/kg dry	56.5	19.0	1	"	"	"	"	"	X
104-51-8	n-Butylbenzene	< 5.6		μg/kg dry	5.6	4.7	1	"	"	"	"	"	X
135-98-8	sec-Butylbenzene	< 5.6		μg/kg dry	5.6	3.7	1	"	"	"	"	"	X
98-06-6	tert-Butylbenzene	< 5.6		μg/kg dry	5.6	4.0	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 11.3		μg/kg dry	11.3	2.8	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 5.6		μg/kg dry	5.6	2.8	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 5.6		μg/kg dry	5.6	2.0	1		"	"	"		Х
75-00-3	Chloroethane	< 11.3		μg/kg dry	11.3	4.9	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 5.6		μg/kg dry	5.6	2.9	1	"	"	"	"	"	Х
74-87-3	Chloromethane	< 11.3		μg/kg dry	11.3	11.1	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 5.6		μg/kg dry	5.6	2.5	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 5.6		μg/kg dry	5.6	3.0	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 11.3		μg/kg dry	11.3	7.3	1	"	W	W.	"	"	Χ
124-48-1	Dibromochloromethane	< 5.6		μg/kg dry	5.6	2.0	1	n .	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 5.6		μg/kg dry	5.6	1.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 5.6		μg/kg dry	5.6	3.1	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 5.6		μg/kg dry	5.6	2.6	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 5.6		μg/kg dry	5.6	4.0	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 5.6		μg/kg dry	5.6	3.1	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 11.3		μg/kg dry	11.3	4.1	1	"	"	"	"	"	X
75-34-3	1,1-Dichloroethane	< 5.6		μg/kg dry	5.6	2.2	1	n .	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 5.6		μg/kg dry	5.6	2.9	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 5.6		μg/kg dry	5.6	3.8	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 5.6		μg/kg dry	5.6	1.9	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 5.6		μg/kg dry	5.6	3.9	1	"	"	"	"	"	X
78-87-5	1,2-Dichloropropane	< 5.6		μg/kg dry	5.6	2.6	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 5.6		μg/kg dry	5.6	2.0	1			"	"	"	Х
594-20-7	2,2-Dichloropropane	< 5.6		μg/kg dry	5.6	3.6	1			"	"	"	Х
563-58-6	1,1-Dichloropropene	< 5.6		μg/kg dry	5.6	3.4	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 5.6		μg/kg dry	5.6	1.5	1	"	"	"	"	"	X
10061-02-6	trans-1,3-Dichloropropene	< 5.6		μg/kg dry μg/kg dry	5.6	2.9	1	"	"	"	"	"	X
100-41-4	1,0 Diomoroproperie	< 5.6		μg/kg dry μg/kg dry	5.6	1.9	1						X

Sample Identification

NR-US-SEDV-05 SB98147-68				<u>Project #</u> 218G3		<u>Matrix</u> Soil		-Oct-14 13			Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters												
% Solids	71.2	SOLt	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	

NR-US-S	dentification WV-05				Project #		Matrix	· · · · · · · · · · · · · · · · · · ·	ection Date			ceived	
SB98147-	-69			08-142	218G3		Surface Wa	ater 15	5-Oct-14 13	:05	15-	Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		µg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	NAA	1424525	х
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	II .	"	"	"	"	Χ
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	II .	"	"	"	"	Χ
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	II .	"	"	"	Χ
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	II .	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	II .	"	"	"	Χ
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Χ
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	W	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	n n	"		"	Χ
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	u u	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	u u	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1		"	"	"		Х

Sample Id NR-US-S SB98147-				Client F 08-142	<u>Project #</u> 218G3		<u>Matrix</u> Surface Wa		ection Date 5-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result F	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW												
	by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	17-Oct-14	17-Oct-14	NAA	1424525	
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"		"	"		X
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.5	1		"	"	"	"	Х
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	"		"	"	"	Х
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Х
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Х
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	X
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	X
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Х
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	"	u u	"	"	"	Х
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Χ
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	8.0	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	X
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1	"	"	"	"	"	Χ
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1	"	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	"	"	"	"	"	Х
64-17-5	Ethanol	< 400		μg/l	400	80.8	1	"	"	"	"	"	X
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	101			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	99			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	106			70-13	0 %		"	u u	"	"	"	
1868-53-7	Dibromofluoromethane	99			70-13	0 %		"	"	"	"	"	

NR-US-S				Client P: 08-142			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date -Oct-14 13			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-38-2	Arsenic	< 2.01		mg/kg dry	2.01	0.712	1	SW846 6010C	22-Oct-14	27-Oct-14	TBC	1424871	ı x
7440-39-3	Barium	27.0		mg/kg dry	1.34	0.244	1	"	"	"		"	Х
7440-43-9	Cadmium	< 0.670		mg/kg dry	0.670	0.0898	1	"	"	"	"	"	Х
7440-47-3	Chromium	11.3		mg/kg dry	1.34	0.243	1	"	"	"	"	"	Х
7440-50-8	Copper	19.8		mg/kg dry	1.34	0.184	1	"	"	"		"	Х
7439-89-6	Iron	7,080		mg/kg dry	5.36	2.43	1	"	"	"		"	Х
7439-96-5	Manganese	236		mg/kg dry	1.34	0.202	1	"	"	"		"	Х
7440-23-5	Sodium	73.7		mg/kg dry	33.5	7.53	1	"	"	"		"	Х
7440-02-0	Nickel	8.68		mg/kg dry	1.34	0.186	1	"	"	"		"	Х
7439-92-1	Lead	14.5		mg/kg dry	2.01	0.933	1		"	"		"	Х
7440-66-6	Zinc	61.7		mg/kg dry	1.34	0.335	1		"	"		"	Х
General C	Chemistry Parameters												
	% Solids	71.8		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	3
	Total Organic Carbon	5,280		mg/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	X
Toxicity C	Characteristics							-					
	e - Reported as % retaine by method General Prep												
	Fractional % Sieve #4 (>4750µm)	0.00		% Retained			1	ASTM D422	24-Oct-14	24-Oct-14	EEM	1425210)
	Fractional % Sieve #10 (4750-2000µm)	5.20		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #20 (2000-850µm)	23.5		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	23.7		% Retained			1	n	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	24.1		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	0.100		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	20.1		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #230 (less than 75µm)	3.20		% Retained			1	"	"	"	"	"	

NR-US-S SB98147-				Client P 08-142			<u>Matrix</u> Soil		ection Date 5-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	
	rganic Compounds by SW					114		44.00					
<u>Prepared</u> 76-13-1	by method SW846 5035A 1,1,2-Trichlorotrifluoroetha	< 5.1		μg/kg dry	5.1	<u>init</u> 4.1	ial weight: 1	11.29 g SW846 8260C	20-Oct-14	21-Oct-14	JEG	1424672	Х
67-64-1	ne (Freon 113) Acetone	< 50.5		ua/ka day	50.5	26.7	1	п	"		"	"	Х
107-13-1	Acrylonitrile	< 5.1		μg/kg dry μg/kg dry	5.1	3.4	1	**	"	"		"	X
71-43-2	Benzene	< 5.1		μg/kg dry	5.1	1.8	1	"			"	"	X
108-86-1	Bromobenzene	< 5.1		μg/kg dry μg/kg dry	5.1	3.4	1		"	"		"	X
74-97-5	Bromochloromethane	< 5.1		μg/kg dry	5.1	5.0	1				"	"	X
75-27-4	Bromodichloromethane	< 5.1		μg/kg dry	5.1	3.9	1				"	"	X
75-25-2	Bromoform	< 5.1		μg/kg dry	5.1	4.8	1				"	"	X
74-83-9	Bromomethane	< 10.1		μg/kg dry	10.1	10.0	1				"		X
78-93-3	2-Butanone (MEK)	< 50.5		μg/kg dry	50.5	17.0	1				"		Х
104-51-8	n-Butylbenzene	< 5.1		μg/kg dry	5.1	4.2	1				"		X
135-98-8	sec-Butylbenzene	< 5.1		μg/kg dry	5.1	3.3	1	"			"		Х
98-06-6	tert-Butylbenzene	< 5.1		μg/kg dry	5.1	3.6	1	"	"	"			X
75-15-0	Carbon disulfide	< 10.1		μg/kg dry	10.1	2.5	1	"			"		Х
56-23-5	Carbon tetrachloride	< 5.1		μg/kg dry	5.1	2.5	1	"	"		"	"	Х
108-90-7	Chlorobenzene	< 5.1		μg/kg dry	5.1	1.8	1	"	"		"	"	Х
75-00-3	Chloroethane	< 10.1		μg/kg dry	10.1	4.4	1	"	"		"	"	Х
67-66-3	Chloroform	< 5.1		μg/kg dry	5.1	2.6	1	"			"		Х
74-87-3	Chloromethane	< 10.1		μg/kg dry	10.1	9.9	1	"	"	"			Х
95-49-8	2-Chlorotoluene	< 5.1		μg/kg dry	5.1	2.3	1	"	"	"			Х
106-43-4	4-Chlorotoluene	< 5.1		μg/kg dry	5.1	2.7	1		"	"	"		X
96-12-8	1,2-Dibromo-3-chloroprop	< 10.1		μg/kg dry	10.1	6.6	1	п	"	"	"	"	X
124-48-1	Dibromochloromethane	< 5.1		μg/kg dry	5.1	1.8	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 5.1		μg/kg dry	5.1	1.1	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 5.1		μg/kg dry	5.1	2.8	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 5.1		μg/kg dry	5.1	2.4	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 5.1		μg/kg dry	5.1	3.6	1	"		"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 5.1		μg/kg dry	5.1	2.8	1	"		"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.1		μg/kg dry	10.1	3.7	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 5.1		μg/kg dry	5.1	2.0	1	u u	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 5.1		μg/kg dry	5.1	2.6	1	п	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 5.1		μg/kg dry	5.1	3.4	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 5.1		μg/kg dry	5.1	1.7	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 5.1		μg/kg dry	5.1	3.5	1	п	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 5.1		μg/kg dry	5.1	2.3	1	п	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 5.1		μg/kg dry	5.1	1.8	1	п	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 5.1		μg/kg dry	5.1	3.2	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 5.1		μg/kg dry	5.1	3.1	1	п	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 5.1		μg/kg dry	5.1	1.3	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 5.1		μg/kg dry	5.1	2.6	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 5.1		μg/kg dry	5.1	1.7	1		"	"	"		Х

Sample Identification

R-US-SEDV-06 B98147-71				<u>Project #</u> 218G3		Matrix Soil		-Oct-14 13			ceived Oct-14	
AS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
eneral Chemistry Parameters												

NR-US-S	dentification WV-06				Project #		Matrix	· · · · · · · · · · · · · · · · · · ·	ection Date			ceived	
SB98147-				08-142	218G3		Surface Wa	ater 15	5-Oct-14 13	:15	15-	Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	NAA	1424525	5 X
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1		"	"	"	"	Χ
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Χ
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Χ
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	"	"	"	"	Χ
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	II .	"	"	"	Χ
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	II .	"	"	"	Χ
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	II .	"	"	"	Χ
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	Χ
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	W	"	"	"	Х
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	n n	"		"	Х
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	u u	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	u u	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	u u	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1		"	"	"		Х

NR-US-S	lentification WV-06				Project #		Matrix		ection Date			ceived	
SB98147-	-72			08-142	218G3		Surface Wa	ater 15	5-Oct-14 13	:15	15-	Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile Oı	rganic Compounds												
	rganic Compounds by SW												
Prepared	by method SW846 5030 V	Vater MS											
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	17-Oct-14	17-Oct-14	NAA	1424525	5 X
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.5	1	"	"	"	"	"	Х
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	"	"	u u	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	8.0	1	u	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	"	"	"	"	"	Х
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.8	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1	"	"	"	"	"	Х
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1	"	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	n .	"	"	"	"	Х
64-17-5	Ethanol	< 400		μg/l	400	80.8	1	"	II .	"	"	"	Х
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	100			70-13	0 %		II .	"	"	"	"	
2037-26-5	Toluene-d8	99			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	105			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	96			70-13	0 %		"	"	"	"		

NR-US-S SB98147				Client Pr 08-142			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date -Oct-14 13			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Series	s Methods											
7440-38-2	Arsenic	< 1.76		mg/kg dry	1.76	0.622	1	SW846 6010C	22-Oct-14	27-Oct-14	TBC	1424871	ı x
7440-39-3	Barium	19.3		mg/kg dry	1.17	0.213	1	"	"	"	"	"	Х
7440-43-9	Cadmium	< 0.586		mg/kg dry	0.586	0.0785	1	"	"	"	"	"	Х
7440-47-3	Chromium	9.30		mg/kg dry	1.17	0.212	1	"	"	"	"	"	Х
7440-50-8	Copper	16.9		mg/kg dry	1.17	0.161	1	"	"	"	"	"	Х
7439-89-6	Iron	7,210		mg/kg dry	4.69	2.12	1	"	"	"	"	"	Х
7439-96-5	Manganese	113		mg/kg dry	1.17	0.177	1	"	"	"	"		Х
7440-23-5	Sodium	88.8		mg/kg dry	29.3	6.58	1	"	"	"	"		Х
7440-02-0	Nickel	6.08		mg/kg dry	1.17	0.163	1	"	"	"	"	"	Х
7439-92-1	Lead	12.5		mg/kg dry	1.76	0.816	1	n	"	"	"	"	Х
7440-66-6	Zinc	41.6		mg/kg dry	1.17	0.293	1	n	"	"	"	"	Х
General C	Chemistry Parameters												
	% Solids	76.2		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	3
	Total Organic Carbon	2,870		mg/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	X
Toxicity C	Characteristics												
	e - Reported as % retaine by method General Prepa												
	Fractional % Sieve #4 (>4750µm)	1.10		% Retained			1	ASTM D422	24-Oct-14	24-Oct-14	EEM	1425210)
	Fractional % Sieve #10 (4750-2000µm)	7.10		% Retained			1	"	"	ı	"	"	
	Fractional % Sieve #20 (2000-850µm)	48.5		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #40 (850-425µm)	29.5		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #60 (425-250µm)	8.60		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #100 (250-150µm)	0.200		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #200 (150-75µm)	4.50		% Retained			1	"	"	"	"	"	
	Fractional % Sieve #230 (less than 75µm)	0.600		% Retained			1	"	"	"	"	"	

General Chemistry Parameters

Sample Identification NR-US-SEDV-07 SB98147-74		<u>Client Project #</u> 08-14218G3			<u>Matrix</u> Soil		Collection Date/Time 15-Oct-14 13:30			Received 15-Oct-14		
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters												
% Solids	76.2	SOLv	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	

Sample Identification NR-US-SWV-07					Project #				Collection Date/Time			Received		
SB98147-			08-142	218G3	Surface Water			15-Oct-14 13:30			15-Oct-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Volatile O	rganic Compounds													
Volatile O	rganic Compounds by SW by method SW846 5030 V													
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	NAA	1424525	5 X	
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х	
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Χ	
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ	
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ	
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ	
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Χ	
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Χ	
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Χ	
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1	"	"	"	"	"	Х	
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Χ	
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х	
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Χ	
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1		"	"	"	"	Χ	
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х	
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Χ	
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	u u	"	"	"	Χ	
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Χ	
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	u u	"	"	"	Χ	
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Χ	
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	u u	"	"	"	Χ	
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	n .	u	"	Х	
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"		"	Х	
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"		"	Х	
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Χ	
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Χ	
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	u u	"	"	"	Χ	
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1	"	u u	"	"	"	Χ	
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	"	"	"	"	"	Х	
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х	
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х	
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	n	"	"	"	Х	
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"	u	"	"	"	Х	
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	u u	"	"	"	"	Х	
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	u u	"	"	"	"	Х	
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	u u	"	"	"	"	Х	
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	"	u	"	"	"	Х	
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х	
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х	
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х	
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х	
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х	
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1		"	"	"		Х	

Sample Identification NR-US-SWV-07 SB98147-75				<u>Client F</u> 08-142	<u>Project #</u> 218G3	Matrix Surface Water			Collection Date/Time 15-Oct-14 13:30			Received 15-Oct-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Volatile O	rganic Compounds													
	rganic Compounds by SW													
<u>Prepared</u> 98-82-8	by method SW846 5030 V Isopropylbenzene	<u>< 1.0</u>		ug/l	1.0	0.5	1	SW846 8260C	17 Oct 14	17-Oct-14	NAA	1424525	Х	
99-87-6	4-Isopropyltoluene	< 1.0		μg/l μg/l	1.0	0.5	1	"	"	"	"	"	X	
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	X	
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.5	1	"	"	"	"	"	X	
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	Х	
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х	
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х	
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х	
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1	ıı	"	"	"	"	Х	
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	u	"	u	"	"	Х	
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	u	"	u	"	"	Х	
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	X	
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	X	
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	II .	u u	"	"	"	Х	
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"		
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	II .	u u	"	"	"	Х	
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	II .	"	"	"	"	Χ	
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ	
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	8.0	1	"	"	"	"	"	Χ	
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ	
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ	
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ	
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	"	"	"	"	"	Χ	
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Χ	
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ	
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.8	1	"	"	"	"	"		
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Х	
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1	· ·	"	"	"	"	Х	
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х	
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х	
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1	"	"	"	"	"	Х	
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1	"	"	"	"	"	Х	
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	"	"	"	"	"	X	
64-17-5 ————	Ethanol	< 400		μg/l	400	80.8	1	"	"	"	"	"	Х	
Surrogate	recoveries:													
460-00-4	4-Bromofluorobenzene	101			70-13	0 %			"	"	"	"		
2037-26-5	Toluene-d8	97			70-13	0 %			"	"	"	"		
17060-07-0	1,2-Dichloroethane-d4	105			70-13	0 %		"	"	"	"	"		
1868-53-7	Dibromofluoromethane	85			70-13	0 %		II .		"	"	"		

Sample Identification NR-US-SED-08 SB98147-76				Client Po 08-142			<u>Matrix</u> Soil		Collection Date/Time 15-Oct-14 13:40			Received 15-Oct-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Total Met	als by EPA 6000/7000 Serie	es Methods												
7440-38-2	Arsenic	< 1.80		mg/kg dry	1.80	0.636	1	SW846 6010C	22-Oct-14	27-Oct-14	TBC	1424871	1 X	
7440-39-3	Barium	18.6		mg/kg dry	1.20	0.218	1		"	"	"	"	Х	
7440-43-9	Cadmium	< 0.599		mg/kg dry	0.599	0.0803	1	"	"	"	"	"	Х	
7440-47-3	Chromium	10.1		mg/kg dry	1.20	0.217	1	"	"	"		"	Х	
7440-50-8	Copper	20.8		mg/kg dry	1.20	0.164	1	"	"	"		"	Х	
7439-89-6	Iron	8,080		mg/kg dry	4.79	2.17	1		"	"		"	Х	
7439-96-5	Manganese	219		mg/kg dry	1.20	0.181	1		"	"		"	Х	
7440-23-5	Sodium	55.3		mg/kg dry	30.0	6.73	1		"	"		"	Х	
7440-02-0	Nickel	8.32		mg/kg dry	1.20	0.167	1		"	"		"	Х	
7439-92-1	Lead	6.06		mg/kg dry	1.80	0.834	1	"		"			Х	
7440-66-6	Zinc	47.6		mg/kg dry	1.20	0.300	1		"	"		"	Х	
General C	Chemistry Parameters			0 0 ,										
	% Solids	77.2		%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	3	
	Total Organic Carbon	260		mg/kg	100	44.9	1	Lloyd Kahn	24-Oct-14	24-Oct-14	DJB	1425331	ı x	
Toxicity C	Characteristics			0 0				,						
Grain Siz	e - Reported as % retaine by method General Prep													
	Fractional % Sieve #4 (>4750µm)	0.600		% Retained			1	ASTM D422	24-Oct-14	24-Oct-14	EEM	1425210)	
	Fractional % Sieve #10 (4750-2000µm)	9.20		% Retained			1	"	"	"	"	"		
	Fractional % Sieve #20 (2000-850µm)	45.0		% Retained			1	"	"	"	"	"		
	Fractional % Sieve #40 (850-425µm)	36.9		% Retained			1	n	"	"	"	"		
	Fractional % Sieve #60 (425-250µm)	6.70		% Retained			1	"	"	"	"	"		
	Fractional % Sieve #100 (250-150µm)	0.700		% Retained			1	"	"	"	"	"		
	Fractional % Sieve #200 (150-75µm)	0.900		% Retained			1	"	"	"	"	"		
	Fractional % Sieve #230 (less than 75µm)	0.100		% Retained			1	"	"	"	"	"		

Sample Identification NR-US-SEDV-08 SB98147-77				Client Pr 08-142			<u>Matrix</u> Soil	<u>Coll</u> 15	Received 15-Oct-14				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
	VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction			BD	1424453	
	rganic Compounds by SW												
	by method SW846 5035A						ial weight: 1						
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 3.9		μg/kg dry	3.9	3.2	1	SW846 8260C	21-Oct-14	21-Oct-14	JEG	1424777	X
67-64-1	Acetone	< 39.1		μg/kg dry	39.1	20.6	1	n .	n n	"	"	"	Х
107-13-1	Acrylonitrile	< 3.9		μg/kg dry	3.9	2.6	1	"	"	"	"	"	Х
71-43-2	Benzene	< 3.9		μg/kg dry	3.9	1.4	1	"	"	"	"	"	Х
108-86-1	Bromobenzene	< 3.9		μg/kg dry	3.9	2.6	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 3.9		μg/kg dry	3.9	3.9	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 3.9		μg/kg dry	3.9	3.1	1	II .	II .	n	"	"	Х
75-25-2	Bromoform	< 3.9		μg/kg dry	3.9	3.7	1	II .	II .	n	"	"	Х
74-83-9	Bromomethane	< 7.8		μg/kg dry	7.8	7.7	1	II .	u u	n n	"	"	Х
78-93-3	2-Butanone (MEK)	< 39.1		μg/kg dry	39.1	13.2	1	"	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 3.9		μg/kg dry	3.9	3.2	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 3.9		μg/kg dry	3.9	2.5	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 3.9		μg/kg dry	3.9	2.8	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 7.8		μg/kg dry	7.8	2.0	1	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 3.9		μg/kg dry	3.9	1.9	1	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 3.9		μg/kg dry	3.9	1.4	1	"	"	"	"	"	Х
75-00-3	Chloroethane	< 7.8		μg/kg dry	7.8	3.4	1	"	"	"	"	"	Х
67-66-3	Chloroform	< 3.9		μg/kg dry	3.9	2.0	1	n .	"	"	"	"	Х
74-87-3	Chloromethane	< 7.8		μg/kg dry	7.8	7.7	1	n .	"	"	"	"	Х
95-49-8	2-Chlorotoluene	< 3.9		μg/kg dry	3.9	1.8	1	n .	"	"	"	"	Х
106-43-4	4-Chlorotoluene	< 3.9		μg/kg dry	3.9	2.1	1	n .	"	"	"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 7.8		μg/kg dry	7.8	5.1	1	"	"	"	"	u	Х
124-48-1	Dibromochloromethane	< 3.9		μg/kg dry	3.9	1.4	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 3.9		μg/kg dry	3.9	0.9	1	"	"		"		Х
74-95-3	Dibromomethane	< 3.9		μg/kg dry	3.9	2.2	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 3.9		μg/kg dry	3.9	1.8	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 3.9		μg/kg dry	3.9	2.8	1	"	"		"		Х
106-46-7	1,4-Dichlorobenzene	< 3.9		μg/kg dry	3.9	2.2	1	"	"		"		Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 7.8		μg/kg dry	7.8	2.8	1	**	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 3.9		μg/kg dry	3.9	1.5	1	n .	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 3.9		μg/kg dry	3.9	2.0	1	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 3.9		μg/kg dry	3.9	2.6	1	"	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 3.9		μg/kg dry	3.9	1.3	1	"	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 3.9		μg/kg dry	3.9	2.7	1		"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 3.9		μg/kg dry	3.9	1.8	1	"	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 3.9		μg/kg dry	3.9	1.4	1	n .	n .	"	"	"	X
594-20-7	2,2-Dichloropropane	< 3.9		μg/kg dry	3.9	2.5	1	n .	n .	"	"	"	X
563-58-6	1,1-Dichloropropene	< 3.9		μg/kg dry	3.9	2.4	1	n .	n .	"	"	"	X
10061-01-5	cis-1,3-Dichloropropene	< 3.9		μg/kg dry μg/kg dry	3.9	1.0	1	"	"		"	"	X
10061-01-3	trans-1,3-Dichloropropene	< 3.9		μg/kg dry μg/kg dry	3.9	2.0	1					"	X
10001-02-0	Ethylbenzene	< 3.9		μg/kg dry μg/kg dry	3.9	1.3	1						X

Sample Identification NR-US-SEDV-08 SB98147-77				<u>Project #</u> 218G3		<u>Matrix</u> Soil		ection Date -Oct-14 13			Oct-14	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Chemistry Parameters % Solids	77.2	SOLw	%			1	SM2540 G Mod.	16-Oct-14	16-Oct-14	DT	1424443	

NR-US-S SB98147-					Project # 218G3		Matrix Surface Wa		-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.0		μg/l	1.0	0.7	1	SW846 8260C	17-Oct-14	17-Oct-14	NAA	1424525	5 X
67-64-1	Acetone	< 10.0		μg/l	10.0	3.6	1	"	"	"	"	"	Х
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"		"	"	X
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1		"	"	"	"	Х
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.5	1		"	"	"	"	Х
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	3.1	1		"	"	"	"	Х
104-51-8	n-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
98-06-6	tert-Butylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
75-15-0	Carbon disulfide	< 2.0		μg/l	2.0	0.7	1	"	"	"	"	"	X
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"			"	"	Х
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.3	1	"	"		"	"	Х
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.7	1	"	"		"	"	Х
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.5	1	"	"		"	"	Х
74-87-3	Chloromethane	< 2.0		μg/l	2.0	0.5	1	"	"		"	"	Х
95-49-8	2-Chlorotoluene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Х
106-43-4	4-Chlorotoluene	< 1.0		μg/l	1.0	0.3	1	"	"		"	"	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1	"	"	"	"	"	X
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1	"	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1	"	"	"	"	"	Х
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1	u	"	"	"	"	X
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"		"	"	X
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"		"	"	X
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"		"	"	X
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	n n	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1	11	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	n n	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1	"	"	"	"	"	Χ
594-20-7	2,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1	п	"	"	"	"	X
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1	п	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1	п	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"		"	"	Х
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1	"	"		"	"	Х
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"	"		"		Х

NR-US-S SB98147-				<u>Client P</u> 08-142	-		Matrix Surface Wa		ection Date I-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result F	lag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW	846 8260											
	by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	17-Oct-14	17-Oct-14	NAA	1424525	X
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	X
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.5	1	"	"	"	"	"	Х
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1		"	"	"	"	Х
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Х
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1	"	"	"	"	"	X
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	Х
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1	"	"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	X
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1	"	"	"		"	
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	8.0	1	"	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1	"	"	"	"	"	Х
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Х
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Х
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.8	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1		"	"	"	"	Х
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	8.9	1		"	"	"	"	Х
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1		"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1	"	"	n .	"	ıı	Х
64-17-5	Ethanol	< 400		μg/l	400	80.8	1	"	"	"	"	"	Х
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	103			70-13	0 %		· ·	"	"	"	"	
2037-26-5	Toluene-d8	97			70-13	0 %		· ·	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	107			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	88			70-13	0 %			"	"	"	"	

Prepared by method SW846 5035A Soil (high level)

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424512 - SW846 5035A Soil (low level)										
Blank (1424512-BLK1)					Pre	epared & Ar	nalyzed: 17-	Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 5.0		μg/kg wet	5.0						
Acetone	< 50.0		μg/kg wet	50.0						
Acrylonitrile	< 5.0		μg/kg wet	5.0						
Benzene	< 5.0		μg/kg wet	5.0						
Bromobenzene	< 5.0		μg/kg wet	5.0						
Bromochloromethane	< 5.0		μg/kg wet	5.0						
Bromodichloromethane	< 5.0		μg/kg wet	5.0						
Bromoform	< 5.0		μg/kg wet	5.0						
Bromomethane	< 10.0		μg/kg wet	10.0						
2-Butanone (MEK)	< 50.0		μg/kg wet	50.0						
n-Butylbenzene	< 5.0		μg/kg wet	5.0						
sec-Butylbenzene	< 5.0		μg/kg wet	5.0						
tert-Butylbenzene	< 5.0		μg/kg wet	5.0						
Carbon disulfide	< 10.0		μg/kg wet	10.0						
Carbon tetrachloride	< 5.0		μg/kg wet	5.0						
Chlorobenzene	< 5.0		μg/kg wet	5.0						
Chloroethane	< 10.0		μg/kg wet	10.0						
Chloroform	< 5.0		μg/kg wet	5.0						
Chloromethane	< 10.0		μg/kg wet	10.0						
2-Chlorotoluene	< 5.0		μg/kg wet	5.0						
4-Chlorotoluene	< 5.0		μg/kg wet	5.0						
1,2-Dibromo-3-chloropropane	< 10.0		μg/kg wet	10.0						
Dibromochloromethane	< 5.0		μg/kg wet	5.0						
1,2-Dibromoethane (EDB)	< 5.0		μg/kg wet	5.0						
Dibromomethane	< 5.0		μg/kg wet	5.0						
1,2-Dichlorobenzene	< 5.0		μg/kg wet	5.0						
1,3-Dichlorobenzene	< 5.0		μg/kg wet	5.0						
1,4-Dichlorobenzene	< 5.0		μg/kg wet	5.0						
Dichlorodifluoromethane (Freon12)	< 10.0		μg/kg wet	10.0						
1,1-Dichloroethane	< 5.0		μg/kg wet	5.0						
1,2-Dichloroethane	< 5.0		μg/kg wet	5.0						
1,1-Dichloroethene	< 5.0		μg/kg wet	5.0						
cis-1,2-Dichloroethene	< 5.0		μg/kg wet	5.0						
trans-1,2-Dichloroethene	< 5.0		μg/kg wet	5.0						
1,2-Dichloropropane	< 5.0		μg/kg wet	5.0						
1,3-Dichloropropane	< 5.0		μg/kg wet	5.0						
2,2-Dichloropropane	< 5.0		μg/kg wet	5.0						
1,1-Dichloropropene	< 5.0		μg/kg wet	5.0						
cis-1,3-Dichloropropene	< 5.0		μg/kg wet	5.0						
trans-1,3-Dichloropropene	< 5.0		μg/kg wet	5.0						
Ethylbenzene	< 5.0		μg/kg wet	5.0						
Hexachlorobutadiene	< 5.0		μg/kg wet	5.0						
2-Hexanone (MBK)	< 50.0		μg/kg wet	50.0						
Isopropylbenzene	< 5.0		μg/kg wet	5.0						
4-Isopropyltoluene	< 5.0		μg/kg wet	5.0						
Methyl tert-butyl ether	< 5.0		μg/kg wet	5.0						
4-Methyl-2-pentanone (MIBK)	< 50.0		μg/kg wet	50.0						
Methylene chloride	< 10.0		μg/kg wet	10.0						
Naphthalene	< 5.0		μg/kg wet	5.0						
n-Propylbenzene	< 5.0		μg/kg wet	5.0						
Styrene	< 5.0		μg/kg wet	5.0						
1,1,1,2-Tetrachloroethane	< 5.0		μg/kg wet	5.0						

	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
				Pre	epared & Ai	nalyzed: 17-	Oct-14		
< 5.0		μg/kg wet	5.0			-			
< 5.0									
< 2000			2000						
48.6				50.0		97	70-130		
49.7		μg/kg wet		50.0		99	70-130		
54.6		μg/kg wet		50.0		109	70-130		
49.9		μg/kg wet		50.0		100	70-130		
				Pre	epared & Ai	nalyzed: 17-	Oct-14		
18.6		μg/kg wet		20.0		93	70-130		
20.7		μg/kg wet		20.0		103	70-130		
20.9		μg/kg wet		20.0		104	70-130		
19.8		μg/kg wet		20.0		99	70-130		
20.1		μg/kg wet		20.0		100	70-130		
20.5		μg/kg wet		20.0		103	70-130		
19.6		μg/kg wet		20.0		98	70-130		
21.3		μg/kg wet		20.0		107	70-130		
21.0				20.0		105	70-130		
22.8				20.0		114	70-130		
							70-130		
	< 5.0 < 10.0 < 5.0 < 10.0 < 5.0 < 5.0 < 4.00 < 5.0 < 5.0 < 5.0 < 5.0 < 10.0 < 5.0 < 5.0 < 10.0 < 5.0 < 5.0 < 10.0 < 5.0 < 10.0 < 5.0 < 10.0 < 5.0 < 10.0 < 10.0	< 5.0 < 10.0 < 5.0 < 100 < 25.0 < 2000 48.6 49.7 54.6 49.9 18.6 20.7 20.9 19.8 20.1 20.5 19.6 21.3 21.0 22.8 19.6 20.3 20.6 18.9 18.6 20.1 19.7 19.0 19.0 20.7	<pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre> <ppe> <pre> <ppe> <pre> <ppe> <pre> <ppe> <pre> <ppe> <ppe> <pre></pre></ppe></ppe></pre></ppe></pre></ppe></pre></ppe></pre></ppe></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	< 5.0	 < 5.0 µg/kg wet 5.0 µg/kg wet 25.0 µg/kg wet 25.0 µg/kg wet 20.0 µg/kg we	 5.0. μg/kg wet 5.0 6.5.0 μg/kg wet 10.0 6.5.0 μg/kg wet 10.0 6.5.0 μg/kg wet 5.0 6.0 μg/kg wet 5.0 7.0 μg/kg wet 5.0<td> < 5.0</td><td> \$5.0 \$6.0 \$6.0</td>	< 5.0	 \$5.0 \$6.0 \$6.0

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424512 - SW846 5035A Soil (low level)										
LCS (1424512-BS1)					Pre	epared & Ar	nalyzed: 17-	Oct-14		
1,2-Dibromo-3-chloropropane	18.5		μg/kg wet		20.0		93	70-130		
Dibromochloromethane	19.9		μg/kg wet		20.0		99	70-130		
1,2-Dibromoethane (EDB)	21.1		μg/kg wet		20.0		105	70-130		
Dibromomethane	19.8		μg/kg wet		20.0		99	70-130		
1,2-Dichlorobenzene	20.6		μg/kg wet		20.0		103	70-130		
1,3-Dichlorobenzene	20.6		μg/kg wet		20.0		103	70-130		
1,4-Dichlorobenzene	19.2		μg/kg wet		20.0		96	70-130		
Dichlorodifluoromethane (Freon12)	18.4		μg/kg wet		20.0		92	70-130		
1,1-Dichloroethane	19.3		μg/kg wet		20.0		96	70-130		
1,2-Dichloroethane	19.4		μg/kg wet		20.0		97	70-130		
1,1-Dichloroethene	19.1		μg/kg wet		20.0		96	70-130		
cis-1,2-Dichloroethene	20.0		μg/kg wet		20.0		100	70-130		
trans-1,2-Dichloroethene	19.2		μg/kg wet		20.0		96	70-130		
1,2-Dichloropropane	20.0		μg/kg wet		20.0		100	70-130		
1,3-Dichloropropane	20.0		μg/kg wet		20.0		100	70-130		
2,2-Dichloropropane	17.2		μg/kg wet		20.0		86	70-130		
1,1-Dichloropropene	19.3		μg/kg wet		20.0		97	70-130		
cis-1,3-Dichloropropene	19.6		μg/kg wet		20.0		98	70-130		
trans-1,3-Dichloropropene	18.3		μg/kg wet		20.0		91	70-130		
Ethylbenzene	20.4		μg/kg wet		20.0		102	70-130		
Hexachlorobutadiene	19.0		μg/kg wet μg/kg wet		20.0		95	70-130		
	16.2				20.0		93 81	70-130		
2-Hexanone (MBK)			μg/kg wet							
Isopropylbenzene	20.5		μg/kg wet		20.0		102	70-130		
4-Isopropyltoluene	20.5		μg/kg wet		20.0		102	70-130		
Methyl tert-butyl ether	20.7		μg/kg wet		20.0		103	70-130		
4-Methyl-2-pentanone (MIBK)	19.4		μg/kg wet		20.0		97	70-130		
Methylene chloride	19.4		μg/kg wet		20.0		97	70-130		
Naphthalene	17.9		μg/kg wet		20.0		89	70-130		
n-Propylbenzene	20.5		μg/kg wet		20.0		102	70-130		
Styrene	21.3		μg/kg wet		20.0		107	70-130		
1,1,1,2-Tetrachloroethane	20.0		μg/kg wet		20.0		100	70-130		
1,1,2,2-Tetrachloroethane	20.7		μg/kg wet		20.0		104	70-130		
Tetrachloroethene	18.6		μg/kg wet		20.0		93	70-130		
Toluene	19.5		μg/kg wet		20.0		98	70-130		
1,2,3-Trichlorobenzene	18.8		μg/kg wet		20.0		94	70-130		
1,2,4-Trichlorobenzene	17.6		μg/kg wet		20.0		88	70-130		
1,3,5-Trichlorobenzene	20.3		μg/kg wet		20.0		102	70-130		
1,1,1-Trichloroethane	19.2		μg/kg wet		20.0		96	70-130		
1,1,2-Trichloroethane	20.0		μg/kg wet		20.0		100	70-130		
Trichloroethene	19.2		μg/kg wet		20.0		96	70-130		
Trichlorofluoromethane (Freon 11)	18.0		μg/kg wet		20.0		90	70-130		
1,2,3-Trichloropropane	20.4		μg/kg wet		20.0		102	70-130		
1,2,4-Trimethylbenzene	21.1		μg/kg wet		20.0		105	70-130		
1,3,5-Trimethylbenzene	20.7		μg/kg wet		20.0		104	70-130		
Vinyl chloride	19.5		μg/kg wet		20.0		97	70-130		
m,p-Xylene	20.5		μg/kg wet		20.0		102	70-130		
o-Xylene	21.0		μg/kg wet		20.0		105	70-130		
Tetrahydrofuran	18.7		μg/kg wet		20.0		93	70-130		
Ethyl ether	21.3		μg/kg wet		20.0		106	70-130		
Tert-amyl methyl ether	19.8		μg/kg wet		20.0		99	70-130		
Ethyl tert-butyl ether	20.7		μg/kg wet		20.0		103	70-130		
Di-isopropyl ether	20.6		μg/kg wet		20.0		103	70-130		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	resuit	1145	- CIII W	TOL	Level	resuit	, under	Linno	10.10	Limit
Batch 1424512 - SW846 5035A Soil (low level)					D		l	0-144		
LCS (1424512-BS1)						epared & Ar	nalyzed: 17-			
Tert-Butanol / butyl alcohol	183		μg/kg wet		200		91	70-130		
1,4-Dioxane	193		μg/kg wet		200		97	70-130		
trans-1,4-Dichloro-2-butene	17.9		μg/kg wet		20.0		90	70-130		
Ethanol	392		μg/kg wet		400		98	70-130		
Surrogate: 4-Bromofluorobenzene	51.4		μg/kg wet		50.0		103	70-130		
Surrogate: Toluene-d8	49.9		μg/kg wet		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.6		μg/kg wet		50.0		97	70-130		
Surrogate: Dibromofluoromethane	50.3		μg/kg wet		50.0		101	70-130		
LCS Dup (1424512-BSD1)					Pre	epared & Ar	nalyzed: 17-	-Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	16.7		μg/kg wet		20.0		84	70-130	11	30
Acetone	20.9		μg/kg wet		20.0		104	70-130	1	30
Acrylonitrile	21.0		μg/kg wet		20.0		105	70-130	0.3	30
Benzene	18.6		μg/kg wet		20.0		93	70-130	6	30
Bromobenzene	19.6		μg/kg wet		20.0		98	70-130	2	30
Bromochloromethane	19.3		μg/kg wet		20.0		96	70-130	6	30
Bromodichloromethane	18.7		μg/kg wet		20.0		93	70-130	5	30
Bromoform	21.0		μg/kg wet		20.0		105	70-130	2	30
Bromomethane	19.1		μg/kg wet		20.0		95	70-130	9	30
2-Butanone (MEK)	16.5	QR2	μg/kg wet		20.0		83	70-130	32	30
n-Butylbenzene	18.7		μg/kg wet		20.0		94	70-130	5	30
sec-Butylbenzene	19.3		μg/kg wet		20.0		96	70-130	5	30
tert-Butylbenzene	19.9		μg/kg wet		20.0		100	70-130	3	30
Carbon disulfide	17.9		μg/kg wet		20.0		90	70-130	5	30
Carbon tetrachloride	17.0		μg/kg wet		20.0		85	70-130	9	30
Chlorobenzene	19.4		μg/kg wet		20.0		97	70-130	4	30
Chloroethane	18.0		μg/kg wet		20.0		90	70-130	9	30
Chloroform	17.6		μg/kg wet		20.0		88	70-130	8	30
Chloromethane	18.1		μg/kg wet		20.0		91	70-130	5	30
2-Chlorotoluene	19.4		μg/kg wet		20.0		97	70-130	6	30
4-Chlorotoluene	19.9		μg/kg wet		20.0		100	70-130	4	30
1,2-Dibromo-3-chloropropane	18.4		μg/kg wet		20.0		92	70-130	0.9	30
Dibromochloromethane	19.3		μg/kg wet		20.0		96	70-130	3	30
1,2-Dibromoethane (EDB)	20.1		μg/kg wet		20.0		100	70-130	5	30
Dibromomethane	19.2		μg/kg wet		20.0		96	70-130	3	30
1,2-Dichlorobenzene	19.4		μg/kg wet		20.0		97	70-130	6	30 30
1,3-Dichlorobenzene	20.0		μg/kg wet		20.0		100	70-130	3	
1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12)	18.3		μg/kg wet		20.0 20.0		91 96	70-130 70-130	5 6	30 30
1,1-Dichloroethane	17.3 17.6		μg/kg wet		20.0		86 88	70-130	9	30
1,2-Dichloroethane	18.6		μg/kg wet μg/kg wet		20.0		93	70-130	4	30
1.1-Dichloroethene	17.8		μg/kg wet μg/kg wet		20.0		93 89	70-130	7	30
cis-1,2-Dichloroethene	18.7		μg/kg wet μg/kg wet		20.0		94	70-130	7	30
trans-1,2-Dichloroethene	17.7		μg/kg wet		20.0		88	70-130	8	30
1,2-Dichloropropane	18.8		μg/kg wet μg/kg wet		20.0		94	70-130	6	30
1,3-Dichloropropane	19.5		μg/kg wet μg/kg wet		20.0		98	70-130	2	30
2,2-Dichloropropane	15.9		μg/kg wet μg/kg wet		20.0		80	70-130	8	30
1,1-Dichloropropene	18.0		μg/kg wet μg/kg wet		20.0		90	70-130	7	30
cis-1,3-Dichloropropene	18.3		μg/kg wet μg/kg wet		20.0		90	70-130 70-130	, 7	30
·	18.3 17.8				20.0		89	70-130 70-130	2	30
trans-1,3-Dichloropropene Ethylbenzene			µg/kg wet		20.0		100	70-130 70-130	2	30
Ethylbenzene	20.0		μg/kg wet		20.0		100	10-130	2	30

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424512 - SW846 5035A Soil (low level)										
LCS Dup (1424512-BSD1)					Pre	epared & Ai	nalyzed: 17-	Oct-14		
2-Hexanone (MBK)	16.7		μg/kg wet		20.0		83	70-130	3	30
Isopropylbenzene	19.6		μg/kg wet		20.0		98	70-130	4	30
4-Isopropyltoluene	19.0		μg/kg wet		20.0		95	70-130	7	30
Methyl tert-butyl ether	20.1		μg/kg wet		20.0		101	70-130	3	30
4-Methyl-2-pentanone (MIBK)	19.5		μg/kg wet		20.0		98	70-130	0.6	30
Methylene chloride	17.7		μg/kg wet		20.0		89	70-130	9	30
Naphthalene	17.0		μg/kg wet		20.0		85	70-130	5	30
n-Propylbenzene	19.6		μg/kg wet		20.0		98	70-130	5	30
Styrene	20.8		μg/kg wet		20.0		104	70-130	2	30
1,1,1,2-Tetrachloroethane	19.2		μg/kg wet		20.0		96	70-130	4	30
1,1,2,2-Tetrachloroethane	21.1		μg/kg wet		20.0		106	70-130	2	30
Tetrachloroethene	17.7		μg/kg wet		20.0		88	70-130	5	30
Toluene	18.6		μg/kg wet		20.0		93	70-130	5	30
1,2,3-Trichlorobenzene	17.9		μg/kg wet		20.0		90	70-130	5	30
1,2,4-Trichlorobenzene	16.7		μg/kg wet		20.0		83	70-130	5	30
1,3,5-Trichlorobenzene	19.6		μg/kg wet		20.0		98	70-130	3	30
1,1,1-Trichloroethane	17.2		μg/kg wet		20.0		86	70-130	11	30
1,1,2-Trichloroethane	19.6		μg/kg wet		20.0		98	70-130	2	30
Trichloroethene	18.0		μg/kg wet		20.0		90	70-130	7	30
Trichlorofluoromethane (Freon 11)	16.6		μg/kg wet		20.0		83	70-130	8	30
1,2,3-Trichloropropane	20.3		μg/kg wet		20.0		102	70-130	0.2	30
1,2,4-Trimethylbenzene	20.4		μg/kg wet		20.0		102	70-130	3	30
1,3,5-Trimethylbenzene	20.1		μg/kg wet		20.0		101	70-130	3	30
Vinyl chloride	17.7		μg/kg wet		20.0		88	70-130	10	30
m,p-Xylene	19.9		μg/kg wet		20.0		100	70-130	3	30
o-Xylene	20.6		μg/kg wet		20.0		103	70-130	2	30
Tetrahydrofuran	18.5		μg/kg wet		20.0		92	70-130	1	30
Ethyl ether	20.5		μg/kg wet		20.0		102	70-130	4	30
Tert-amyl methyl ether	19.3		μg/kg wet		20.0		96	70-130	3	30
Ethyl tert-butyl ether	19.8		μg/kg wet		20.0		99	70-130	4	30
Di-isopropyl ether	19.8		μg/kg wet		20.0		99	70-130	4	30
Tert-Butanol / butyl alcohol	195		μg/kg wet		200		97	70-130	6	30
1,4-Dioxane	173		μg/kg wet		200		87	70-130	11	30
trans-1,4-Dichloro-2-butene	17.6		μg/kg wet		20.0		88	70-130	2	30
Ethanol	383		μg/kg wet		400		96	70-130	2	30
Surrogate: 4-Bromofluorobenzene	52.4		μg/kg wet		50.0		105	70-130		
Surrogate: Toluene-d8	50.0		μg/kg wet		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.2		μg/kg wet		50.0		96	70-130		
Surrogate: Dibromofluoromethane	49.0		μg/kg wet		50.0		98	70-130		
atch 1424514 - SW846 5035A Soil (high level)			- -							
Blank (1424514-BLK1)					Pre	epared & Ai	nalyzed: 17-	-Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 50.0	D	μg/kg wet	50.0						
Acetone	< 500	D	μg/kg wet	500						
Acrylonitrile	< 50.0	D	μg/kg wet	50.0						
Benzene	< 50.0	D	μg/kg wet	50.0						
Bromobenzene	< 50.0	D	μg/kg wet	50.0						
Bromochloromethane	< 50.0	D	μg/kg wet	50.0						
Bromodichloromethane	< 50.0	D	μg/kg wet	50.0						
Bromoform	< 50.0	D	μg/kg wet	50.0						
Bromomethane	< 100	D	μg/kg wet	100						
2-Butanone (MEK)	< 500	D	μg/kg wet	500						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	Toodit	1 145	Jii 10	- NDE	20101	resurt	, ,,,,,,,,	Limb		Limit
Batch 1424514 - SW846 5035A Soil (high level)					De	O A		0-14		
Blank (1424514-BLK1)	. 50.0	Б		50.0	Pre	epared & A	nalyzed: 17-	OCt-14		
n-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
sec-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
tert-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
Carbon disulfide	< 100	D	μg/kg wet	100						
Carbon tetrachloride	< 50.0	D	μg/kg wet	50.0						
Chloroptene	< 50.0	D	μg/kg wet	50.0						
Chloroethane	< 100	D	μg/kg wet	100						
Chloroform	< 50.0	D	μg/kg wet	50.0						
Chloromethane	< 100	D	μg/kg wet	100						
2-Chlorotoluene	< 50.0	D	μg/kg wet	50.0						
4-Chlorotoluene	< 50.0	D	μg/kg wet	50.0						
1,2-Dibromo-3-chloropropane	< 100	D	μg/kg wet	100						
Dibromochloromethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dibromoethane (EDB)	< 50.0	D	μg/kg wet	50.0						
Dibromomethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,3-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,4-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
Dichlorodifluoromethane (Freon12)	< 100	D	μg/kg wet	100						
1,1-Dichloroethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dichloroethane	< 50.0	D	μg/kg wet	50.0						
1,1-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
cis-1,2-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
trans-1,2-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
1,2-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
1,3-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
2,2-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
1,1-Dichloropropene	< 50.0	D	μg/kg wet	50.0						
cis-1,3-Dichloropropene	< 50.0	D	μg/kg wet	50.0						
trans-1,3-Dichloropropene	< 50.0	D	μg/kg wet	50.0						
Ethylbenzene	< 50.0	D	μg/kg wet	50.0						
Hexachlorobutadiene	< 50.0	D	μg/kg wet	50.0						
2-Hexanone (MBK)	< 500	D	μg/kg wet	500						
Isopropylbenzene	< 50.0	D	μg/kg wet	50.0						
4-Isopropyltoluene	< 50.0	D	μg/kg wet	50.0						
Methyl tert-butyl ether	< 50.0	D	μg/kg wet	50.0						
4-Methyl-2-pentanone (MIBK)	< 500	D	μg/kg wet	500						
Methylene chloride	< 100	D	μg/kg wet	100						
Naphthalene	< 50.0	D	μg/kg wet	50.0						
n-Propylbenzene	< 50.0	D	μg/kg wet	50.0						
Styrene	< 50.0	D	μg/kg wet	50.0						
1,1,1,2-Tetrachloroethane	< 50.0	D	μg/kg wet	50.0						
1,1,2,2-Tetrachloroethane	< 50.0	D	μg/kg wet	50.0						
Tetrachloroethene	< 50.0	D	μg/kg wet	50.0						
Toluene	< 50.0	D	μg/kg wet	50.0						
1,2,3-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,2,4-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,3,5-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,1,1-Trichloroethane	< 50.0	D	μg/kg wet	50.0						
1,1,2-Trichloroethane	< 50.0	D	μg/kg wet	50.0						
Trichloroethene	< 50.0	D	μg/kg wet	50.0						
Trichlorofluoromethane (Freon 11)	< 50.0	D	μg/kg wet	50.0						

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424514 - SW846 5035A Soil (high level)										
Blank (1424514-BLK1)					Pre	epared & Ar	nalyzed: 17-	Oct-14		
1,2,3-Trichloropropane	< 50.0	D	μg/kg wet	50.0						
1,2,4-Trimethylbenzene	< 50.0	D	μg/kg wet	50.0						
1,3,5-Trimethylbenzene	< 50.0	D	μg/kg wet	50.0						
Vinyl chloride	< 50.0	D	μg/kg wet	50.0						
m,p-Xylene	< 100	D	μg/kg wet	100						
o-Xylene	< 50.0	D	μg/kg wet	50.0						
Tetrahydrofuran	< 100	D	μg/kg wet	100						
Ethyl ether	< 50.0	D	μg/kg wet	50.0						
Tert-amyl methyl ether	< 50.0	D	μg/kg wet	50.0						
Ethyl tert-butyl ether	< 50.0	D	μg/kg wet	50.0						
Di-isopropyl ether	< 50.0	D	μg/kg wet	50.0						
Tert-Butanol / butyl alcohol	< 500	D	μg/kg wet μg/kg wet	500						
1,4-Dioxane	< 1000	D	μg/kg wet	1000						
trans-1,4-Dichloro-2-butene	< 250	D	μg/kg wet μg/kg wet	250						
Ethanol	< 20000	D	μg/kg wet μg/kg wet	20000						
Surrogate: 4-Bromofluorobenzene	34.7		μg/kg wet	20000	30.0		116	70-130		
Surrogate: Toluene-d8	30.0		μg/kg wet μg/kg wet		30.0		100	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	34.7		μg/kg wet		30.0		116	70-130 70-130		
Surrogate: 1,2-Dictriordetriane-u4 Surrogate: Dibromofluoromethane	31.9		μg/kg wet μg/kg wet		30.0		106	70-130 70-130		
-	31.9		µg/kg wet							
LCS (1424514-BS1)						epared & Ar	nalyzed: 17-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.4	D	μg/kg wet		20.0		102	70-130		
Acetone	19.6	D -	μg/kg wet		20.0		98	70-130		
Acrylonitrile	22.5	D -	μg/kg wet		20.0		112	70-130		
Benzene	19.6	D	μg/kg wet		20.0		98	70-130		
Bromobenzene	20.9	D	μg/kg wet		20.0		104	70-130		
Bromochloromethane	21.3	D	μg/kg wet		20.0		106	70-130		
Bromodichloromethane	20.1	D	μg/kg wet		20.0		101	70-130		
Bromoform	22.0	D	μg/kg wet		20.0		110	70-130		
Bromomethane	20.9	D	μg/kg wet		20.0		105	70-130		
2-Butanone (MEK)	22.0	D	μg/kg wet		20.0		110	70-130		
n-Butylbenzene	23.8	D	μg/kg wet		20.0		119	70-130		
sec-Butylbenzene	21.4	D	μg/kg wet		20.0		107	70-130		
tert-Butylbenzene	21.6	D	μg/kg wet		20.0		108	70-130		
Carbon disulfide	22.1	D	μg/kg wet		20.0		110	70-130		
Carbon tetrachloride	22.4	D	μg/kg wet		20.0		112	70-130		
Chlorobenzene	19.3	D	μg/kg wet		20.0		97	70-130		
Chloroethane	20.0	D	μg/kg wet		20.0		100	70-130		
Chloroform	20.0	D	μg/kg wet		20.0		100	70-130		
Chloromethane	17.8	D	μg/kg wet		20.0		89	70-130		
2-Chlorotoluene	20.2	D	μg/kg wet		20.0		101	70-130		
4-Chlorotoluene	20.8	D	μg/kg wet		20.0		104	70-130		
1,2-Dibromo-3-chloropropane	22.0	D	μg/kg wet		20.0		110	70-130		
Dibromochloromethane	18.1	D	μg/kg wet		20.0		91	70-130		
1,2-Dibromoethane (EDB)	18.2	D	μg/kg wet		20.0		91	70-130		
Dibromomethane	20.4	D	μg/kg wet		20.0		102	70-130		
1,2-Dichlorobenzene	23.2	D	μg/kg wet		20.0		116	70-130		
1,3-Dichlorobenzene	20.2	D	μg/kg wet		20.0		101	70-130		
1,4-Dichlorobenzene	20.3	D	μg/kg wet		20.0		102	70-130		
Dichlorodifluoromethane (Freon12)	18.6	D	μg/kg wet		20.0		93	70-130		
1,1-Dichloroethane	20.4	D	μg/kg wet		20.0		102	70-130		
1,2-Dichloroethane	20.6	D	μg/kg wet		20.0		103	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1424514 - SW846 5035A Soil (high level)										
LCS (1424514-BS1)					Pre	epared & A	nalyzed: 17-	Oct-14		
1,1-Dichloroethene	21.8	D	μg/kg wet		20.0		109	70-130		
cis-1,2-Dichloroethene	20.9	D	μg/kg wet		20.0		104	70-130		
trans-1,2-Dichloroethene	20.6	D	μg/kg wet		20.0		103	70-130		
1,2-Dichloropropane	18.4	D	μg/kg wet		20.0		92	70-130		
1,3-Dichloropropane	16.7	D	μg/kg wet		20.0		83	70-130		
2,2-Dichloropropane	21.5	D	μg/kg wet		20.0		107	70-130		
1,1-Dichloropropene	21.0	D	μg/kg wet		20.0		105	70-130		
cis-1,3-Dichloropropene	18.8	D	μg/kg wet		20.0		94	70-130		
trans-1,3-Dichloropropene	16.2	D	μg/kg wet		20.0		81	70-130		
Ethylbenzene	20.4	D	μg/kg wet		20.0		102	70-130		
Hexachlorobutadiene	28.2	QM9, D	μg/kg wet		20.0		141	70-130		
2-Hexanone (MBK)	15.1	D	μg/kg wet		20.0		76	70-130		
Isopropylbenzene	20.9	D	μg/kg wet		20.0		104	70-130		
4-Isopropyltoluene	21.9	D	μg/kg wet		20.0		110	70-130		
Methyl tert-butyl ether	22.0	D	μg/kg wet		20.0		110	70-130		
4-Methyl-2-pentanone (MIBK)	17.7	D	μg/kg wet		20.0		88	70-130		
Methylene chloride	20.9	D	μg/kg wet		20.0		105	70-130		
Naphthalene	25.3	D	μg/kg wet μg/kg wet		20.0		127	70-130		
·	21.2	D			20.0		106	70-130		
n-Propylbenzene		D	μg/kg wet							
Styrene	20.8	D	μg/kg wet		20.0		104	70-130		
1,1,1,2-Tetrachloroethane	22.6	D	μg/kg wet		20.0		113	70-130		
1,1,2,2-Tetrachloroethane	18.5		μg/kg wet		20.0		92	70-130		
Tetrachloroethene	18.6	D	μg/kg wet		20.0		93	70-130		
Toluene	16.5	D	μg/kg wet		20.0		82	70-130		
1,2,3-Trichlorobenzene	25.2	D	μg/kg wet		20.0		126	70-130		
1,2,4-Trichlorobenzene	24.0	D	μg/kg wet		20.0		120	70-130		
1,3,5-Trichlorobenzene	23.5	D	μg/kg wet		20.0		118	70-130		
1,1,1-Trichloroethane	22.2	D	μg/kg wet		20.0		111	70-130		
1,1,2-Trichloroethane	16.5	D	μg/kg wet		20.0		82	70-130		
Trichloroethene	21.1	D	μg/kg wet		20.0		106	70-130		
Trichlorofluoromethane (Freon 11)	23.8	D	μg/kg wet		20.0		119	70-130		
1,2,3-Trichloropropane	20.2	D	μg/kg wet		20.0		101	70-130		
1,2,4-Trimethylbenzene	21.9	D	μg/kg wet		20.0		109	70-130		
1,3,5-Trimethylbenzene	21.3	D	μg/kg wet		20.0		106	70-130		
Vinyl chloride	22.4	D	μg/kg wet		20.0		112	70-130		
m,p-Xylene	20.2	D	μg/kg wet		20.0		101	70-130		
o-Xylene	20.0	D	μg/kg wet		20.0		100	70-130		
Tetrahydrofuran	18.0	D	μg/kg wet		20.0		90	70-130		
Ethyl ether	22.3	D	μg/kg wet		20.0		111	70-130		
Tert-amyl methyl ether	20.1	D	μg/kg wet		20.0		101	70-130		
Ethyl tert-butyl ether	20.1	D	μg/kg wet		20.0		100	70-130		
Di-isopropyl ether	18.6	D	μg/kg wet		20.0		93	70-130		
Tert-Butanol / butyl alcohol	219	D	μg/kg wet		200		109	70-130		
1,4-Dioxane	208	D	μg/kg wet		200		104	70-130		
trans-1,4-Dichloro-2-butene	18.2	D	μg/kg wet		20.0		91	70-130		
Ethanol	371	D	μg/kg wet		400		93	70-130		
Surrogate: 4-Bromofluorobenzene	30.5		μg/kg wet		30.0		102	70-130		
Surrogate: Toluene-d8	24.7		μg/kg wet		30.0		82	70-130		
Surrogate: 1,2-Dichloroethane-d4	31.3		μg/kg wet		30.0		104	70-130		
Surrogate: Dibromofluoromethane	31.6		μg/kg wet		30.0		105	70-130		
LCS Dup (1424514-BSD1)	31.0		HALLA MEL				nalyzed: 17-			

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1424514 - SW846 5035A Soil (high level)										
LCS Dup (1424514-BSD1)					Pre	epared & Ar	nalyzed: 17-	Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	19.6	D	μg/kg wet		20.0		98	70-130	4	30
Acetone	18.6	D	μg/kg wet		20.0		93	70-130	6	30
Acrylonitrile	18.6	D	μg/kg wet		20.0		93	70-130	19	30
Benzene	19.2	D	μg/kg wet		20.0		96	70-130	2	30
Bromobenzene	20.1	D	μg/kg wet		20.0		100	70-130	4	30
Bromochloromethane	21.3	D	μg/kg wet		20.0		106	70-130	0	30
Bromodichloromethane	20.2	D	μg/kg wet		20.0		101	70-130	0.6	30
Bromoform	20.1	D	μg/kg wet		20.0		100	70-130	9	30
Bromomethane	19.8	D	μg/kg wet		20.0		99	70-130	6	30
2-Butanone (MEK)	20.2	D	μg/kg wet		20.0		101	70-130	9	30
n-Butylbenzene	20.1	D	μg/kg wet		20.0		100	70-130	17	30
sec-Butylbenzene	20.2	D	μg/kg wet		20.0		101	70-130	6	30
tert-Butylbenzene	20.2	D	μg/kg wet		20.0		101	70-130	7	30
Carbon disulfide	20.2	D	μg/kg wet		20.0		101	70-130	9	30
Carbon tetrachloride	22.0	D	μg/kg wet		20.0		110	70-130	2	30
Chlorobenzene	19.3	D	μg/kg wet μg/kg wet		20.0		97	70-130	0	30
Chloroethane	18.8	D			20.0		94	70-130	6	30
		D	μg/kg wet					70-130		
Chloroporthana	19.6		μg/kg wet		20.0		98		2	30
Chloromethane	16.8	D	μg/kg wet		20.0		84	70-130	6	30
2-Chlorotoluene	19.4	D	μg/kg wet		20.0		97	70-130	4	30
4-Chlorotoluene	19.6	D	μg/kg wet		20.0		98	70-130	6	30
1,2-Dibromo-3-chloropropane	17.7	D	μg/kg wet		20.0		89	70-130	21	30
Dibromochloromethane	21.0	D	μg/kg wet		20.0		105	70-130	15	30
1,2-Dibromoethane (EDB)	21.0	D	μg/kg wet		20.0		105	70-130	14	30
Dibromomethane	19.8	D	μg/kg wet		20.0		99	70-130	3	30
1,2-Dichlorobenzene	19.7	D	μg/kg wet		20.0		98	70-130	17	30
1,3-Dichlorobenzene	19.4	D	μg/kg wet		20.0		97	70-130	4	30
1,4-Dichlorobenzene	18.8	D	μg/kg wet		20.0		94	70-130	8	30
Dichlorodifluoromethane (Freon12)	17.7	D	μg/kg wet		20.0		88	70-130	5	30
1,1-Dichloroethane	19.3	D	μg/kg wet		20.0		97	70-130	5	30
1,2-Dichloroethane	19.8	D	μg/kg wet		20.0		99	70-130	4	30
1,1-Dichloroethene	19.2	D	μg/kg wet		20.0		96	70-130	12	30
cis-1,2-Dichloroethene	20.2	D	μg/kg wet		20.0		101	70-130	3	30
trans-1,2-Dichloroethene	19.5	D	μg/kg wet		20.0		98	70-130	6	30
1,2-Dichloropropane	18.6	D	μg/kg wet		20.0		93	70-130	1	30
1,3-Dichloropropane	20.2	D	μg/kg wet		20.0		101	70-130	19	30
2,2-Dichloropropane	20.2	D	μg/kg wet		20.0		101	70-130	6	30
1,1-Dichloropropene	19.6	D	μg/kg wet		20.0		98	70-130	7	30
cis-1,3-Dichloropropene	20.0	D	μg/kg wet		20.0		100	70-130	6	30
trans-1,3-Dichloropropene	19.3	D	μg/kg wet		20.0		97	70-130	17	30
Ethylbenzene	19.9	D	μg/kg wet		20.0		100	70-130	3	30
Hexachlorobutadiene	19.4	QR5, D	μg/kg wet		20.0		97	70-130	37	30
2-Hexanone (MBK)	19.8	D	μg/kg wet		20.0		99	70-130	27	30
Isopropylbenzene	20.3	D	μg/kg wet		20.0		102	70-130	3	30
4-Isopropyltoluene	20.5	D	μg/kg wet		20.0		103	70-130	7	30
Methyl tert-butyl ether	21.0	D	μg/kg wet		20.0		105	70-130	4	30
4-Methyl-2-pentanone (MIBK)	21.3	D	μg/kg wet μg/kg wet		20.0		106	70-130	18	30
Methylene chloride	19.3	D	μg/kg wet μg/kg wet		20.0		96	70-130	8	30
Naphthalene	16.4	QR2, D	μg/kg wet μg/kg wet		20.0		82	70-130	43	30
n-Propylbenzene	20.1	D D			20.0		100	70-130	4 3	30
		D	μg/kg wet							30
Styrene 1,1,1,2-Tetrachloroethane	20.7 21.1	D	μg/kg wet μg/kg wet		20.0 20.0		103 106	70-130 70-130	0.3 7	30

\\\\	D 1.	F1	TT '4	*0.01	Spike	Source	0/BEC	%REC	DDD	RPD
analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1424514 - SW846 5035A Soil (high level)										
LCS Dup (1424514-BSD1)					Pre	epared & Ar	nalyzed: 17	Oct-14		
1,1,2,2-Tetrachloroethane	19.5	D	μg/kg wet		20.0		97	70-130	5	30
Tetrachloroethene	20.8	D	μg/kg wet		20.0		104	70-130	11	30
Toluene	19.8	D	μg/kg wet		20.0		99	70-130	18	30
1,2,3-Trichlorobenzene	16.5	QR2, D	μg/kg wet		20.0		83	70-130	42	30
1,2,4-Trichlorobenzene	15.4	QR2, D	μg/kg wet		20.0		77	70-130	44	30
1,3,5-Trichlorobenzene	18.5	D	μg/kg wet		20.0		93	70-130	24	30
1,1,1-Trichloroethane	20.9	D	μg/kg wet		20.0		104	70-130	6	30
1,1,2-Trichloroethane	20.7	D	μg/kg wet		20.0		103	70-130	23	30
Trichloroethene	20.5	D	μg/kg wet		20.0		103	70-130	3	30
Trichlorofluoromethane (Freon 11)	22.1	D	μg/kg wet		20.0		110	70-130	8	30
1,2,3-Trichloropropane	20.1	D	μg/kg wet		20.0		101	70-130	0.6	30
1,2,4-Trimethylbenzene	20.6	D	μg/kg wet		20.0		103	70-130	6	30
1,3,5-Trimethylbenzene	20.2	D	μg/kg wet		20.0		101	70-130	5	30
Vinyl chloride	21.5	D	μg/kg wet		20.0		108	70-130	4	30
m,p-Xylene	20.0	D	μg/kg wet		20.0		100	70-130	1	30
o-Xylene	20.0	D	μg/kg wet		20.0		100	70-130	0.4	30
Tetrahydrofuran	16.5	D	μg/kg wet		20.0		82	70-130	9	30
Ethyl ether	20.4	D	μg/kg wet		20.0		102	70-130	9	30
Tert-amyl methyl ether	19.3	D	μg/kg wet		20.0		96	70-130	4	30
Ethyl tert-butyl ether	19.7	D	μg/kg wet		20.0		99	70-130	2	30
Di-isopropyl ether	18.4	D	μg/kg wet		20.0		92	70-130	1	30
Tert-Butanol / butyl alcohol	196	D	μg/kg wet		200		98	70-130	11	30
1,4-Dioxane	197	D	μg/kg wet		200		98	70-130	6	30
trans-1,4-Dichloro-2-butene	18.3	D	μg/kg wet		20.0		91	70-130	0.7	30
Ethanol	389	D	μg/kg wet		400		97	70-130	5	30
Surrogate: 4-Bromofluorobenzene	29.7		μg/kg wet		30.0		99	70-130		
Surrogate: Toluene-d8	30.4		μg/kg wet		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	31.1		μg/kg wet		30.0		104	70-130		
Surrogate: Dibromofluoromethane	31.6		μg/kg wet		30.0		105	70-130		
Matrix Spike (1424514-MS1)			Source: SB9	98147-14	Pre	<u>epared: 17-</u>	Oct-14 An	alyzed: 18-O	ct-14	
1,1,2-Trichlorotrifluoroethane (Freon 113)	26.4	QM7, D	μg/kg dry		20.0	BRL	132	70-130		
Acetone	23.3	D	μg/kg dry		20.0	BRL	116	70-130		
Acrylonitrile	22.3	D	μg/kg dry		20.0	BRL	112	70-130		
Benzene	23.7	D	μg/kg dry		20.0	BRL	118	70-130		
Bromobenzene	26.1	QM7, D	μg/kg dry		20.0	BRL	131	70-130		
Bromochloromethane	24.3	D	μg/kg dry		20.0	BRL	122	70-130		
Bromodichloromethane	20.1	D	μg/kg dry		20.0	BRL	100	70-130		
Bromoform	19.2	D	μg/kg dry		20.0	BRL	96	70-130		
Bromomethane	16.6	D	μg/kg dry		20.0	BRL	83	70-130		
2-Butanone (MEK)	22.7	D	μg/kg dry		20.0	BRL	114	70-130		
n-Butylbenzene	26.4	QM7, D	μg/kg dry		20.0	BRL	132	70-130		
sec-Butylbenzene	29.8	QM7, D	μg/kg dry		20.0	BRL	149	70-130		
tert-Butylbenzene	29.4	QM7, D	μg/kg dry		20.0	BRL	147	70-130		
Carbon disulfide	25.6	D	μg/kg dry		20.0	BRL	128	70-130		
Carbon tetrachloride	23.3	D	μg/kg dry		20.0	BRL	116	70-130		
Chlorobenzene	23.0	D	μg/kg dry		20.0	BRL	115	70-130		
Chloroethane	24.0	D	μg/kg dry		20.0	BRL	120	70-130		
Chloroform	24.0	D	μg/kg dry		20.0	BRL	120	70-130		
Chloromethane	19.4	D	μg/kg dry		20.0	BRL	97	70-130		
2-Chlorotoluene	27.4	QM7, D	μg/kg dry		20.0	BRL	137	70-130		
4-Chlorotoluene	28.0	QM7, D	μg/kg dry		20.0	BRL	140	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424514 - SW846 5035A Soil (high level)										
Matrix Spike (1424514-MS1)			Source: SB	98147-14	Pre	epared: 17-	Oct-14 Ana	alyzed: 18-O	ct-14	
1,2-Dibromo-3-chloropropane	17.9	D	μg/kg dry		20.0	BRL	90	70-130		
Dibromochloromethane	17.4	D	μg/kg dry		20.0	BRL	87	70-130		
1,2-Dibromoethane (EDB)	19.0	D	μg/kg dry		20.0	BRL	95	70-130		
Dibromomethane	21.8	D	μg/kg dry		20.0	BRL	109	70-130		
1,2-Dichlorobenzene	22.8	D	μg/kg dry		20.0	BRL	114	70-130		
1,3-Dichlorobenzene	26.9	QM7, D	μg/kg dry		20.0	BRL	135	70-130		
1,4-Dichlorobenzene	22.5	D	μg/kg dry		20.0	BRL	113	70-130		
Dichlorodifluoromethane (Freon12)	22.4	D	μg/kg dry		20.0	BRL	112	70-130		
1,1-Dichloroethane	25.1	D	μg/kg dry		20.0	BRL	126	70-130		
1,2-Dichloroethane	23.0	D	μg/kg dry		20.0	BRL	115	70-130		
1,1-Dichloroethene	27.0	QM7, D	μg/kg dry		20.0	BRL	135	70-130		
cis-1,2-Dichloroethene	25.9	D	μg/kg dry		20.0	BRL	129	70-130		
trans-1,2-Dichloroethene	27.0	QM7, D	μg/kg dry		20.0	BRL	135	70-130		
1,2-Dichloropropane	21.9	D	μg/kg dry		20.0	BRL	110	70-130		
1,3-Dichloropropane	19.0	D	μg/kg dry		20.0	BRL	95	70-130		
2,2-Dichloropropane	24.0	D	μg/kg dry		20.0	BRL	120	70-130		
1,1-Dichloropropene	25.9	D	μg/kg dry		20.0	BRL	130	70-130		
cis-1,3-Dichloropropene	19.3	D	μg/kg dry		20.0	BRL	96	70-130		
trans-1,3-Dichloropropene	17.6	D	μg/kg dry		20.0	BRL	88	70-130		
Ethylbenzene	23.9	D	μg/kg dry		20.0	BRL	119	70-130		
Hexachlorobutadiene	30.2	QM7, D	μg/kg dry		20.0	BRL	151	70-130		
2-Hexanone (MBK)	16.9	D	μg/kg dry		20.0	BRL	85	70-130		
Isopropylbenzene	28.0	QM7, D	μg/kg dry		20.0	BRL	140	70-130		
4-Isopropyltoluene	26.1	QM7, D	μg/kg dry		20.0	BRL	131	70-130		
Methyl tert-butyl ether	23.9	D	μg/kg dry		20.0	BRL	119	70-130		
4-Methyl-2-pentanone (MIBK)	20.4	D	μg/kg dry		20.0	BRL	102	70-130		
Methylene chloride	23.7	D	μg/kg dry		20.0	BRL	118	70-130		
Naphthalene	21.3	D	μg/kg dry		20.0	BRL	106	70-130		
n-Propylbenzene	27.4	QM7, D	μg/kg dry		20.0	BRL	137	70-130		
Styrene	24.2	D	μg/kg dry		20.0	BRL	121	70-130		
1,1,1,2-Tetrachloroethane	23.3	D	μg/kg dry		20.0	BRL	116	70-130		
1,1,2,2-Tetrachloroethane	20.2	D	μg/kg dry		20.0	BRL	101	70-130		
Tetrachloroethene	21.9	D	μg/kg dry		20.0	BRL	109	70-130		
Toluene	20.9	D	μg/kg dry		20.0	BRL	104	70-130		
1,2,3-Trichlorobenzene	22.1	D	μg/kg dry		20.0	BRL	111	70-130		
1,2,4-Trichlorobenzene	22.6	D	μg/kg dry		20.0	BRL	113	70-130		
1,3,5-Trichlorobenzene	27.8	QM7, D	μg/kg dry		20.0	BRL	139	70-130		
1,1,1-Trichloroethane	25.7	D	μg/kg dry		20.0	BRL	128	70-130		
1,1,2-Trichloroethane	18.7	D	μg/kg dry		20.0	BRL	93	70-130		
Trichloroethene	25.4	D	μg/kg dry		20.0	BRL	127	70-130		
Trichlorofluoromethane (Freon 11)	27.1	QM7, D	μg/kg dry		20.0	BRL	135	70-130		
1,2,3-Trichloropropane	22.9	D	μg/kg dry		20.0	BRL	115	70-130		
1,2,4-Trimethylbenzene	29.4	QM7, D	μg/kg dry		20.0	BRL	147	70-130		
1,3,5-Trimethylbenzene	31.3	QM7, D	μg/kg dry		20.0	BRL	156	70-130		
Vinyl chloride	24.1	D	μg/kg dry		20.0	BRL	120	70-130		
m,p-Xylene	24.5	D	μg/kg dry		20.0	BRL	122	70-130		
o-Xylene	23.7	D	μg/kg dry		20.0	BRL	119	70-130		
Tetrahydrofuran	19.3	D	μg/kg dry		20.0	BRL	97	70-130		
Ethyl ether	24.4	D	μg/kg dry		20.0	BRL	122	70-130		
Tert-amyl methyl ether	20.9	D	μg/kg dry		20.0	BRL	104	70-130		
Ethyl tert-butyl ether	22.7	D	μg/kg dry		20.0	BRL	114	70-130		
Di-isopropyl ether	21.7	D	μg/kg dry		20.0	BRL	109	70-130		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Satch 1424514 - SW846 5035A Soil (high level)										
Matrix Spike (1424514-MS1)			Source: SB	98147-14	Pre	epared: 17-	Oct-14 An	alyzed: 18-O	ct-14	
Tert-Butanol / butyl alcohol	218	D	μg/kg dry		200	BRL	109	70-130		
1,4-Dioxane	206	D	μg/kg dry		200	BRL	103	70-130		
trans-1,4-Dichloro-2-butene	18.6	D	μg/kg dry		20.0	BRL	93	70-130		
Ethanol	442	D	μg/kg dry		400	BRL	111	70-130		
Surrogate: 4-Bromofluorobenzene	34.6		μg/kg dry		30.0		115	70-130		
Surrogate: Toluene-d8	26.3		μg/kg dry		30.0		88	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.8		μg/kg dry		30.0		103	70-130		
Surrogate: Dibromofluoromethane	31.6		μg/kg dry		30.0		105	70-130		
Matrix Spike Dup (1424514-MSD1)			Source: SB	98147-1 <u>4</u>	Pre	epared: 17-	Oct-14 Ana	alyzed: 18-O	ct-14	
1,1,2-Trichlorotrifluoroethane (Freon 113)	23.3	D	μg/kg dry		20.0	BRL	116	70-130	12	30
Acetone	24.0	D	μg/kg dry		20.0	BRL	120	70-130	3	30
Acrylonitrile	23.6	D	μg/kg dry		20.0	BRL	118	70-130	6	30
Benzene	23.4	D	μg/kg dry		20.0	BRL	117	70-130	1	30
Bromobenzene	25.0	D	μg/kg dry		20.0	BRL	125	70-130	4	30
Bromochloromethane	24.1	D	μg/kg dry		20.0	BRL	121	70-130	0.7	30
Bromodichloromethane	21.6	D	μg/kg dry		20.0	BRL	108	70-130	7	30
Bromoform	21.5	D	μg/kg dry		20.0	BRL	107	70-130	11	30
Bromomethane	17.3	D	μg/kg dry		20.0	BRL	86	70-130	4	30
2-Butanone (MEK)	22.9	D	μg/kg dry		20.0	BRL	114	70-130	0.8	30
n-Butylbenzene	25.0	D	μg/kg dry		20.0	BRL	125	70-130	5	30
sec-Butylbenzene	26.3	QM7, D	μg/kg dry		20.0	BRL	131	70-130	13	30
tert-Butylbenzene	26.0	D	μg/kg dry		20.0	BRL	130	70-130	12	30
Carbon disulfide	23.7	D	μg/kg dry		20.0	BRL	118	70-130	8	30
Carbon tetrachloride	22.8	D	μg/kg dry		20.0	BRL	114	70-130	2	30
Chlorobenzene	23.2	D	μg/kg dry		20.0	BRL	116	70-130	1	30
Chloroethane	22.9	D	μg/kg dry		20.0	BRL	114	70-130	5	30
Chloroform	23.6	D	μg/kg dry		20.0	BRL	118	70-130	2	30
Chloromethane	19.8	D	μg/kg dry		20.0	BRL	99	70-130	2	30
2-Chlorotoluene	25.2	D	μg/kg dry		20.0	BRL	126	70-130	8	30
4-Chlorotoluene	26.2	QM7, D	μg/kg dry		20.0	BRL	131	70-130	7	30
1,2-Dibromo-3-chloropropane	16.8	D	μg/kg dry		20.0	BRL	84	70-130	7	30
Dibromochloromethane	19.5	D	μg/kg dry		20.0	BRL	97	70-130	11	30
1,2-Dibromoethane (EDB)	22.0	D	μg/kg dry		20.0	BRL	110	70-130	15	30
Dibromomethane	23.4	D	μg/kg dry		20.0	BRL	117	70-130	7	30
1,2-Dichlorobenzene	22.8	D	μg/kg dry		20.0	BRL	114	70-130	0.3	30
1,3-Dichlorobenzene	25.7	D	μg/kg dry		20.0	BRL	128	70-130	5	30
1,4-Dichlorobenzene	22.4	D	μg/kg dry		20.0	BRL	112	70-130	0.4	30
Dichlorodifluoromethane (Freon12)	20.1	D	μg/kg dry		20.0	BRL	100	70-130	11	30
1,1-Dichloroethane	24.4	D	μg/kg dry		20.0	BRL	122	70-130	3	30
1,2-Dichloroethane	24.4	D	μg/kg dry		20.0	BRL	122	70-130	6	30
1,1-Dichloroethene	24.8	D	μg/kg dry		20.0	BRL	124	70-130	8	30
cis-1,2-Dichloroethene	24.7	D	μg/kg dry		20.0	BRL	124	70-130	5	30
trans-1,2-Dichloroethene	24.6	D	μg/kg dry		20.0	BRL	123	70-130	9	30
1,2-Dichloropropane	22.5	D	μg/kg dry		20.0	BRL	112	70-130	2	30
1,3-Dichloropropane	21.6	D	μg/kg dry		20.0	BRL	108	70-130	13	30
2,2-Dichloropropane	23.3	D	μg/kg dry		20.0	BRL	116	70-130	3	30
1,1-Dichloropropene	24.9	D	μg/kg dry		20.0	BRL	125	70-130	4	30
cis-1,3-Dichloropropene	21.9	D	μg/kg dry		20.0	BRL	109	70-130	13	30
trans-1,3-Dichloropropene	19.8	D	μg/kg dry		20.0	BRL	99	70-130	12	30
Ethylbenzene	23.5	D	μg/kg dry		20.0	BRL	117	70-130	2	30
Hexachlorobutadiene	27.7	QM7, D	μg/kg dry		20.0	BRL	139	70-130	9	30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424514 - SW846 5035A Soil (high level)										
Matrix Spike Dup (1424514-MSD1)			Source: SB	98147-14	Pro	epared: 17-	Oct-14 Ana	alyzed: 18-O	ct-14	
2-Hexanone (MBK)	20.8	D	μg/kg dry		20.0	BRL	104	70-130	21	30
Isopropylbenzene	24.7	D	μg/kg dry		20.0	BRL	123	70-130	13	30
4-Isopropyltoluene	24.3	D	μg/kg dry		20.0	BRL	122	70-130	7	30
Methyl tert-butyl ether	24.3	D	μg/kg dry		20.0	BRL	122	70-130	2	30
4-Methyl-2-pentanone (MIBK)	22.9	D	μg/kg dry		20.0	BRL	115	70-130	12	30
Methylene chloride	23.6	D	μg/kg dry		20.0	BRL	118	70-130	0.6	30
Naphthalene	21.1	D	μg/kg dry		20.0	BRL	106	70-130	0.8	30
n-Propylbenzene	26.2	QM7, D	μg/kg dry		20.0	BRL	131	70-130	5	30
Styrene	25.5	D	μg/kg dry		20.0	BRL	127	70-130	5	30
1,1,1,2-Tetrachloroethane	23.2	D	μg/kg dry		20.0	BRL	116	70-130	0.5	30
1,1,2,2-Tetrachloroethane	22.9	D	μg/kg dry		20.0	BRL	114	70-130	12	30
Tetrachloroethene	23.3	D	μg/kg dry		20.0	BRL	116	70-130	6	30
Toluene	21.7	D	μg/kg dry		20.0	BRL	108	70-130	4	30
1,2,3-Trichlorobenzene	22.3	D	μg/kg dry		20.0	BRL	111	70-130	0.6	30
1,2,4-Trichlorobenzene	22.2	D	μg/kg dry		20.0	BRL	111	70-130	2	30
1,3,5-Trichlorobenzene	24.9	D	μg/kg dry		20.0	BRL	125	70-130	11	30
1,1,1-Trichloroethane	24.4	D	μg/kg dry		20.0	BRL	122	70-130	5	30
1,1,2-Trichloroethane	22.0	D	μg/kg dry		20.0	BRL	110	70-130	16	30
Trichloroethene	23.8	D	μg/kg dry		20.0	BRL	119	70-130	6	30
Trichlorofluoromethane (Freon 11)	25.4	D	μg/kg dry		20.0	BRL	127	70-130	6	30
1,2,3-Trichloropropane	23.9	D	μg/kg dry		20.0	BRL	120	70-130	4	30
1,2,4-Trimethylbenzene	26.6	QM7, D	μg/kg dry		20.0	BRL	133	70-130	10	30
1,3,5-Trimethylbenzene	26.2	QM7, D	μg/kg dry		20.0	BRL	131	70-130	18	30
Vinyl chloride	23.4	D	μg/kg dry		20.0	BRL	117	70-130	3	30
m,p-Xylene	23.6	D	μg/kg dry		20.0	BRL	118	70-130	4	30
o-Xylene	24.4	D	μg/kg dry		20.0	BRL	122	70-130	3	30
Tetrahydrofuran	19.0	D	μg/kg dry		20.0	BRL	95	70-130	2	30
Ethyl ether	25.2	D	μg/kg dry		20.0	BRL	126	70-130	4	30
Tert-amyl methyl ether	22.5	D	μg/kg dry		20.0	BRL	113	70-130	8	30
Ethyl tert-butyl ether	23.6	D	μg/kg dry		20.0	BRL	118	70-130	4	30
Di-isopropyl ether	22.1	D	μg/kg dry		20.0	BRL	110	70-130	2	30
Tert-Butanol / butyl alcohol	218	D	μg/kg dry		200	BRL	109	70-130	0.2	30
1,4-Dioxane	228	D	μg/kg dry		200	BRL	114	70-130	10	30
trans-1,4-Dichloro-2-butene	20.8	D	μg/kg dry		20.0	BRL	104	70-130	11	30
Ethanol	448	D	μg/kg dry		400	BRL	112	70-130	1	30
Surrogate: 4-Bromofluorobenzene	32.8		μg/kg dry		30.0		109	70-130		
Surrogate: Toluene-d8	27.1		μg/kg dry		30.0		90	70-130		
Surrogate: 1,2-Dichloroethane-d4	33.6		μg/kg dry		30.0		112	70-130		
Surrogate: Dibromofluoromethane	33.0		μg/kg dry		30.0		110	70-130		
atch 1424519 - SW846 5030 Water MS										
Blank (1424519-BLK1)					Pro	epared & Ar	nalyzed: 17-	Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.0		μg/l	1.0						
Acetone	< 10.0		μg/l	10.0						
Acrylonitrile	< 0.5		μg/l	0.5						
Benzene	< 1.0		μg/l	1.0						
Bromobenzene	< 1.0		μg/l	1.0						
Bromochloromethane	< 1.0		μg/l	1.0						
Bromodichloromethane	< 0.5		μg/l	0.5						
Bromoform	< 1.0		μg/l	1.0						
Bromomethane	< 2.0		μg/l	2.0						
2-Butanone (MEK)	< 10.0		μg/l	10.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424519 - SW846 5030 Water MS										
Blank (1424519-BLK1)					Pre	epared & Ar	nalyzed: 17-	-Oct-14		
n-Butylbenzene	< 1.0		μg/l	1.0			•			
sec-Butylbenzene	< 1.0		μg/l	1.0						
tert-Butylbenzene	< 1.0		μg/l	1.0						
Carbon disulfide	< 2.0		μg/l	2.0						
Carbon tetrachloride	< 1.0		μg/l	1.0						
Chlorobenzene	< 1.0		μg/l	1.0						
Chloroethane	< 2.0		μg/l	2.0						
Chloroform	< 1.0		μg/l	1.0						
Chloromethane	< 2.0		μg/l	2.0						
2-Chlorotoluene	< 1.0		μg/l	1.0						
4-Chlorotoluene	< 1.0		μg/l	1.0						
1,2-Dibromo-3-chloropropane	< 2.0		μg/l	2.0						
Dibromochloromethane	< 0.5		μg/l	0.5						
1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5						
Dibromomethane	< 1.0		μg/l	1.0						
1,2-Dichlorobenzene	< 1.0		μg/l	1.0						
1,3-Dichlorobenzene	< 1.0		μg/l	1.0						
1,4-Dichlorobenzene	< 1.0		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0						
1,1-Dichloroethane	< 1.0		μg/l	1.0						
1,2-Dichloroethane	< 1.0		μg/l	1.0						
1,1-Dichloroethene	< 1.0		μg/l	1.0						
cis-1,2-Dichloroethene	< 1.0		μg/l	1.0						
trans-1,2-Dichloroethene	< 1.0		μg/l	1.0						
1,2-Dichloropropane	< 1.0		μg/l	1.0						
1,3-Dichloropropane	< 1.0		μg/l	1.0						
2,2-Dichloropropane	< 1.0		μg/l	1.0						
1,1-Dichloropropene	< 1.0		μg/l	1.0						
cis-1,3-Dichloropropene	< 0.5		μg/l	0.5						
trans-1,3-Dichloropropene	< 0.5		μg/l	0.5						
Ethylbenzene	< 1.0		μg/l	1.0						
Hexachlorobutadiene	< 0.5		μg/l	0.5						
2-Hexanone (MBK)	< 10.0		μg/l	10.0						
Isopropylbenzene	< 1.0		μg/l	1.0						
4-Isopropyltoluene	< 1.0		μg/l	1.0						
Methyl tert-butyl ether	< 1.0		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0						
Methylene chloride	< 2.0		μg/l	2.0						
Naphthalene	< 1.0		μg/l	1.0						
n-Propylbenzene	< 1.0		μg/l	1.0						
Styrene	< 1.0		μg/l	1.0						
1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0						
1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5						
Tetrachloroethene	< 1.0		μg/l	1.0						
Toluene	< 1.0		μg/l	1.0						
1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0						
1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0						
1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0						
1,1,1-Trichloroethane	< 1.0		μg/l	1.0						
1,1,2-Trichloroethane	< 1.0		μg/l	1.0						
Trichloroethene	< 1.0		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424519 - SW846 5030 Water MS								_		
Blank (1424519-BLK1)					Pre	epared & Ar	nalyzed: 17-	Oct-14		
1,2,3-Trichloropropane	< 1.0		μg/l	1.0						
1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0						
1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.0		μg/l	1.0						
m,p-Xylene	< 2.0		μg/l	2.0						
o-Xylene	< 1.0		μg/l	1.0						
Tetrahydrofuran	< 2.0		μg/l	2.0						
Ethyl ether	< 1.0		μg/l	1.0						
Tert-amyl methyl ether	< 1.0		μg/l	1.0						
Ethyl tert-butyl ether	< 1.0		μg/l	1.0						
Di-isopropyl ether	< 1.0		μg/l	1.0						
Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0						
1,4-Dioxane	< 20.0		μg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.0		μg/l	5.0						
Ethanol	< 400		μg/l	400						
Surrogate: 4-Bromofluorobenzene	44.8		μg/l		50.0		90	70-130		
Surrogate: Toluene-d8	49.2		μg/l		50.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.1		μg/l		50.0		104	70-130		
Surrogate: Dibromofluoromethane	52.3		μg/l		50.0		105	70-130		
LCS (1424519-BS1)			13			enared & Ar	nalyzed: 17-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	22.5		ua/l		20.0	spared & Ai	112	70-130		
	23.6		µg/l		20.0		118	70-130		
Acetone Acrylonitrile			µg/l		20.0		118	70-130 70-130		
•	23.5		μg/l							
Benzene	20.2		μg/l		20.0		101	70-130		
Bromobenzene	22.3		μg/l		20.0		111	70-130		
Bromochloromethane	23.8		μg/l		20.0		119	70-130		
Bromodichloromethane	21.0		μg/l "		20.0		105	70-130		
Bromoform	21.2		μg/l		20.0		106	70-130		
Bromomethane	23.3		μg/l		20.0		116	70-130		
2-Butanone (MEK)	17.7		μg/l		20.0		88	70-130		
n-Butylbenzene	17.5		μg/l		20.0		88	70-130		
sec-Butylbenzene	21.0		μg/l		20.0		105	70-130		
tert-Butylbenzene	21.1		μg/l		20.0		106	70-130		
Carbon disulfide	24.1		μg/l		20.0		120	70-130		
Carbon tetrachloride	16.8		μg/l		20.0		84	70-130		
Chlorobenzene	21.1		μg/l		20.0		105	70-130		
Chloroethane	20.9		μg/l		20.0		104	70-130		
Chloroform	20.7		μg/l		20.0		103	70-130		
Chloromethane	21.4		μg/l		20.0		107	70-130		
2-Chlorotoluene	20.8		μg/l		20.0		104	70-130		
4-Chlorotoluene	20.0		μg/l		20.0		100	70-130		
1,2-Dibromo-3-chloropropane	14.9		μg/l		20.0		74	70-130		
Dibromochloromethane	19.9		μg/l		20.0		100	70-130		
1,2-Dibromoethane (EDB)	20.4		μg/l		20.0		102	70-130		
Dibromomethane	21.5		μg/l		20.0		108	70-130		
1,2-Dichlorobenzene	19.2		μg/l		20.0		96	70-130		
1,3-Dichlorobenzene	22.8		μg/l		20.0		114	70-130		
1,4-Dichlorobenzene	18.7		μg/l		20.0		94	70-130		
Dichlorodifluoromethane (Freon12)	20.5		μg/l		20.0		103	70-130		
1,1-Dichloroethane	20.1		μg/l		20.0		100	70-130		
1,2-Dichloroethane	20.0		μg/l		20.0		100	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1424519 - SW846 5030 Water MS										
LCS (1424519-BS1)					Pre	epared & A	nalyzed: 17-	Oct-14		
1,1-Dichloroethene	20.9		μg/l		20.0		105	70-130		
cis-1,2-Dichloroethene	21.1		μg/l		20.0		106	70-130		
trans-1,2-Dichloroethene	17.4		μg/l		20.0		87	70-130		
1,2-Dichloropropane	19.3		μg/l		20.0		97	70-130		
1,3-Dichloropropane	19.9		μg/l		20.0		100	70-130		
2,2-Dichloropropane	12.8	QC2	μg/l		20.0		64	70-130		
1,1-Dichloropropene	18.5		μg/l		20.0		92	70-130		
cis-1,3-Dichloropropene	17.5		μg/l		20.0		88	70-130		
trans-1,3-Dichloropropene	15.1		μg/l		20.0		76	70-130		
Ethylbenzene	20.0		μg/l		20.0		100	70-130		
Hexachlorobutadiene	24.5		μg/l		20.0		123	70-130		
2-Hexanone (MBK)	16.9		μg/l		20.0		84	70-130		
Isopropylbenzene	20.3		μg/l		20.0		101	70-130		
4-Isopropyltoluene	18.3		μg/l		20.0		92	70-130		
Methyl tert-butyl ether	14.6		μg/l		20.0		73	70-130		
4-Methyl-2-pentanone (MIBK)	17.2		μg/l		20.0		86	70-130		
Methylene chloride	22.8		μg/l		20.0		114	70-130		
Naphthalene	14.6		μg/l		20.0		73	70-130		
n-Propylbenzene	19.8		μg/l		20.0		99	70-130		
Styrene	20.8		μg/l		20.0		104	70-130		
1,1,1,2-Tetrachloroethane	19.4		μg/l		20.0		97	70-130		
1,1,2,2-Tetrachloroethane	17.6		μg/l		20.0		88	70-130		
Tetrachloroethene	20.8		μg/l		20.0		104	70-130		
Toluene	19.8		μg/l		20.0		99	70-130		
1,2,3-Trichlorobenzene	20.0		μg/l		20.0		100	70-130		
1,2,4-Trichlorobenzene	17.8		μg/l		20.0		89	70-130		
1,3,5-Trichlorobenzene	19.2		μg/l		20.0		96	70-130		
1,1,1-Trichloroethane	17.8		μg/l		20.0		89	70-130		
1,1,2-Trichloroethane	20.5		μg/l		20.0		103	70-130		
Trichloroethene	21.8		μg/l		20.0		109	70-130		
Trichlorofluoromethane (Freon 11)	21.8		μg/l		20.0		109	70-130		
1,2,3-Trichloropropane	20.8		μg/l		20.0		104	70-130		
1,2,4-Trimethylbenzene	20.9		μg/l		20.0		105	70-130		
1,3,5-Trimethylbenzene	20.7		μg/l		20.0		104	70-130		
Vinyl chloride	24.2				20.0		121	70-130		
m,p-Xylene	20.2		μg/l μg/l		20.0		101	70-130		
o-Xylene	21.2		μg/l		20.0		106	70-130		
Tetrahydrofuran	17.7		μg/l		20.0		88	70-130		
Ethyl ether	20.2		μg/l		20.0		101	70-130		
Tert-amyl methyl ether	21.5		μg/l		20.0		107	70-130		
Ethyl tert-butyl ether	21.5 14.3				20.0		71	70-130		
Di-isopropyl ether	18.3		μg/l μg/l		20.0		92	70-130 70-130		
Tert-Butanol / butyl alcohol	198				20.0		99	70-130		
1,4-Dioxane	166		μg/l		200		83	70-130 70-130		
trans-1,4-Dichloro-2-butene			μg/l		20.0		92	70-130 70-130		
	18.4 551	QC2	μg/l		20.0 400		138	70-130 70-130		
Ethanol Surra rate 4 Branchus rahansana		Q02	μg/l							
Surrogate: 4-Bromofluorobenzene	51.5		μg/l		50.0		103	70-130		
Surrogate: Toluene-d8	49.2		μg/l		50.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.2		μg/l		50.0		100	70-130		
Surrogate: Dibromofluoromethane	53.2		μg/l		50.0		106	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424519 - SW846 5030 Water MS										
LCS Dup (1424519-BSD1)					Pre	epared & Ar	nalyzed: 17-	-Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	21.7		μg/l		20.0	Jparca a 7 ti	108	70-130	4	20
Acetone	24.8		μg/l		20.0		124	70-130	5	20
Acrylonitrile	22.2		μg/l		20.0		111	70-130	6	20
Benzene	20.0		μg/l		20.0		100	70-130	0.7	20
Bromobenzene	22.0		μg/l		20.0		110	70-130	1	20
Bromochloromethane	22.8		μg/l		20.0		114	70-130	4	20
Bromodichloromethane	20.4		μg/l		20.0		102	70-130	3	20
Bromoform	21.3		μg/l		20.0		107	70-130	0.4	20
Bromomethane	22.8		μg/l		20.0		114	70-130	2	20
2-Butanone (MEK)	21.2		μg/l		20.0		106	70-130	_ 18	20
n-Butylbenzene	18.2		μg/l		20.0		91	70-130	4	20
sec-Butylbenzene	21.3		μg/l		20.0		106	70-130	1	20
tert-Butylbenzene	20.4		μg/l		20.0		102	70-130	4	20
Carbon disulfide	24.0		μg/l		20.0		120	70-130	0.4	20
Carbon tetrachloride	16.7		μg/l		20.0		84	70-130	0.4	20
Chlorobenzene	21.2				20.0		106	70-130	0.5	20
Chloroethane	20.6		μg/l		20.0		103	70-130	1	20
Chloroform	20.6		μg/l		20.0		101	70-130	2	20
Chloromethane	20.2		μg/l		20.0		101	70-130	3	20
2-Chlorotoluene	20.6		μg/l		20.0		104	70-130	0.8	20
4-Chlorotoluene			μg/l		20.0		103	70-130 70-130	0.6 1	20
	20.3		μg/l							
1,2-Dibromo-3-chloropropane	17.6		μg/l		20.0		88	70-130	17	20
Dibromochloromethane	20.5		μg/l		20.0		103	70-130	3	20
1,2-Dibromoethane (EDB)	20.3		μg/l		20.0		102	70-130	0.3	20
Dibromomethane	21.6		μg/l		20.0		108	70-130	0.4	20
1,2-Dichlorobenzene	20.0		μg/l		20.0		100	70-130	4	20
1,3-Dichlorobenzene	22.7		μg/l 		20.0		114	70-130	0.3	20
1,4-Dichlorobenzene	18.9		μg/l "		20.0		94	70-130	0.9	20
Dichlorodifluoromethane (Freon12)	20.2		μg/l 		20.0		101	70-130	2	20
1,1-Dichloroethane	20.2		μg/l		20.0		101	70-130	0.2	20
1,2-Dichloroethane	19.3		μg/l		20.0		96	70-130	3	20
1,1-Dichloroethene	20.1		μg/l		20.0		100	70-130	4	20
cis-1,2-Dichloroethene	21.2		μg/l		20.0		106	70-130	0.2	20
trans-1,2-Dichloroethene	19.0		μg/l		20.0		95	70-130	9	20
1,2-Dichloropropane	19.6		μg/l		20.0		98	70-130	1	20
1,3-Dichloropropane	20.3		μg/l		20.0		101	70-130	2	20
2,2-Dichloropropane	12.3	QC2	μg/l		20.0		62	70-130	4	20
1,1-Dichloropropene	18.2		μg/l		20.0		91	70-130	1	20
cis-1,3-Dichloropropene	17.7		μg/l		20.0		88	70-130	1	20
trans-1,3-Dichloropropene	14.8		μg/l		20.0		74	70-130	2	20
Ethylbenzene	20.0		μg/l		20.0		100	70-130	0.4	20
Hexachlorobutadiene	26.1		μg/l		20.0		130	70-130	6	20
2-Hexanone (MBK)	17.4		μg/l		20.0		87	70-130	3	20
Isopropylbenzene	20.4		μg/l		20.0		102	70-130	0.7	20
4-Isopropyltoluene	18.8		μg/l		20.0		94	70-130	3	20
Methyl tert-butyl ether	16.3		μg/l		20.0		81	70-130	11	20
4-Methyl-2-pentanone (MIBK)	19.3		μg/l		20.0		96	70-130	12	20
Methylene chloride	21.4		μg/l		20.0		107	70-130	6	20
Naphthalene	16.1		μg/l		20.0		80	70-130	10	20
n-Propylbenzene	19.4		μg/l		20.0		97	70-130	2	20
Styrene	20.6		μg/l		20.0		103	70-130	1	20
1,1,1,2-Tetrachloroethane	18.7		μg/l		20.0		93	70-130	4	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	Result	1 145	Omo	KDL	LCVCI	resuit	, since	Limits		Lilli
Batch 1424519 - SW846 5030 Water MS					De	0 A		0-1.11		
LCS Dup (1424519-BSD1)	40.0					epared & Ar	nalyzed: 17-		-	00
1,1,2,2-Tetrachloroethane	18.9		μg/l "		20.0		95	70-130	7	20
Tetrachloroethene	20.8		μg/l		20.0		104	70-130	0.3	20
Toluene	20.3		μg/l		20.0		101	70-130	2	20
1,2,3-Trichlorobenzene	20.8		μg/l		20.0		104	70-130	4	20
1,2,4-Trichlorobenzene	19.3		μg/l		20.0		97	70-130	8	20
1,3,5-Trichlorobenzene	19.5		μg/l		20.0		97	70-130	1	20
1,1,1-Trichloroethane	18.1		μg/l		20.0		91	70-130	2	20
1,1,2-Trichloroethane	20.6		μg/l		20.0		103	70-130	0.6	20
Trichloroethene	21.6		μg/l		20.0		108	70-130	0.8	20
Trichlorofluoromethane (Freon 11)	21.1		μg/l		20.0		105	70-130	4	20
1,2,3-Trichloropropane	21.3		μg/l		20.0		106	70-130	3	20
1,2,4-Trimethylbenzene	20.8		μg/l		20.0		104	70-130	0.3	20
1,3,5-Trimethylbenzene	20.8		μg/l		20.0		104	70-130	0.2	20
Vinyl chloride	23.2		μg/l		20.0		116	70-130	4	20
m,p-Xylene	20.0		μg/l		20.0		100	70-130	0.7	20
o-Xylene	22.3		μg/l		20.0		111	70-130	5	20
Tetrahydrofuran	18.4		μg/l		20.0		92	70-130	4	20
Ethyl ether	19.6		μg/l		20.0		98	70-130	3	20
Tert-amyl methyl ether	22.7		μg/l		20.0		114	70-130	6	20
Ethyl tert-butyl ether	14.6		μg/l		20.0		73	70-130	2	20
Di-isopropyl ether	18.2		μg/l		20.0		91	70-130	0.7	20
Tert-Butanol / butyl alcohol	200		μg/l		200		100	70-130	0.8	20
1,4-Dioxane	178		μg/l		200		89	70-130	7	20
trans-1,4-Dichloro-2-butene	17.2		μg/l		20.0		86	70-130	7	20
Ethanol	574	QC2	μg/l		400		144	70-130	4	20
Surrogate: 4-Bromofluorobenzene	50.3		μg/l		50.0		101	70-130		
Surrogate: Toluene-d8	49.2		μg/l		50.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.2		μg/l		50.0		98	70-130		
Surrogate: Dibromofluoromethane	52.9		μg/l		50.0		106	70-130		
Matrix Spike (1424519-MS1)			Source: SB	98147-15	Pre	epared & Ar	nalyzed: 17-	-Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	21.6		μg/l		20.0	BRL	108	70-130		
Acetone	24.2		μg/l		20.0	BRL	121	70-130		
Acrylonitrile	22.6		μg/l		20.0	BRL	113	70-130		
Benzene	20.3		μg/l		20.0	BRL	101	70-130		
Bromobenzene	20.3		μg/l μg/l		20.0	BRL	114	70-130		
Bromochloromethane	23.0				20.0	BRL	115	70-130		
			μg/l							
Bromodichloromethane Bromoform	20.8		μg/l		20.0	BRL	104 115	70-130 70-130		
Bromoform	23.1		μg/l		20.0	BRL	115	70-130 70-130		
Bromomethane	22.8		μg/l		20.0	BRL	114	70-130 70-130		
2-Butanone (MEK)	20.2		μg/l		20.0	BRL	101	70-130		
n-Butylbenzene	19.2		μg/l		20.0	BRL	96	70-130		
sec-Butylbenzene	22.0		μg/l "		20.0	BRL	110	70-130		
tert-Butylbenzene	21.8		μg/l		20.0	BRL	109	70-130		
Carbon disulfide	23.8		μg/l 		20.0	BRL	119	70-130		
Carbon tetrachloride	17.5		μg/l		20.0	BRL	87	70-130		
Chlorobenzene	22.0		μg/l		20.0	BRL	110	70-130		
Chloroethane	21.1		μg/l		20.0	BRL	106	70-130		
Chloroform	20.5		μg/l		20.0	BRL	103	70-130		
Chloromethane	21.2		μg/l		20.0	BRL	106	70-130		
2-Chlorotoluene	21.5		μg/l		20.0	BRL	107	70-130		
4-Chlorotoluene	20.9		μg/l		20.0	BRL	104	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
• 17	Result	1 lag	Omts	NDL	LCVCI	Result	/UKEC	Finits	MD	Lillill
Batch 1424519 - SW846 5030 Water MS					_			0.44		
Matrix Spike (1424519-MS1)			Source: SE	<u> 198147-15</u>			nalyzed: 17-			
1,2-Dibromo-3-chloropropane	16.8		μg/l		20.0	BRL	84	70-130		
Dibromochloromethane	21.0		μg/l		20.0	BRL	105	70-130		
1,2-Dibromoethane (EDB)	20.6		μg/l		20.0	BRL	103	70-130		
Dibromomethane	21.4		μg/l		20.0	BRL	107	70-130		
1,2-Dichlorobenzene	20.5		μg/l		20.0	BRL	103	70-130		
1,3-Dichlorobenzene	23.9		μg/l		20.0	BRL	120	70-130		
1,4-Dichlorobenzene	19.4		μg/l		20.0	BRL	97	70-130		
Dichlorodifluoromethane (Freon12)	21.1		μg/l		20.0	BRL	106	70-130		
1,1-Dichloroethane	19.7		μg/l		20.0	BRL	99	70-130		
1,2-Dichloroethane	20.0		μg/l		20.0	BRL	100	70-130		
1,1-Dichloroethene	20.8		μg/l		20.0	BRL	104	70-130		
cis-1,2-Dichloroethene	21.8		μg/l		20.0	0.2	108	70-130		
trans-1,2-Dichloroethene	18.0		μg/l		20.0	BRL	90	70-130		
1,2-Dichloropropane	19.7		μg/l		20.0	BRL	99	70-130		
1,3-Dichloropropane	20.2	QC2	μg/l		20.0	BRL	101	70-130		
2,2-Dichloropropane	13.7	QUZ	μg/l		20.0	BRL	68 06	70-130		
1,1-Dichloropropene	19.1		μg/l		20.0	BRL	96	70-130		
cis-1,3-Dichloropropene	17.7		μg/l		20.0	BRL	89	70-130		
trans-1,3-Dichloropropene	14.7		μg/l		20.0	BRL	74	70-130		
Ethylbenzene	20.9		μg/l		20.0	BRL	105	70-130		
Hexachlorobutadiene	25.7		μg/l		20.0	BRL	129	70-130		
2-Hexanone (MBK)	18.3		μg/l		20.0	BRL	92	70-130		
Isopropylbenzene	21.3		μg/l		20.0	BRL	107	70-130		
4-Isopropyltoluene	19.3		μg/l		20.0	BRL	97 77	70-130		
Methyl tert-butyl ether	15.4		μg/l		20.0	BRL	77	70-130		
4-Methyl-2-pentanone (MIBK)	19.7		μg/l		20.0	BRL	99	70-130		
Methylene chloride	22.0		μg/l		20.0	BRL	110	70-130		
Naphthalene	17.1		μg/l		20.0	BRL	85	70-130		
n-Propylbenzene	21.1		μg/l		20.0	BRL	106	70-130		
Styrene	21.1		μg/l		20.0	BRL	106	70-130		
1,1,1,2-Tetrachloroethane	20.0		μg/l		20.0	BRL	100	70-130		
1,1,2,2-Tetrachloroethane	23.2		μg/l		20.0	BRL	116	70-130		
Tetrachloroethene	21.5		μg/l		20.0	BRL	108	70-130		
Toluene	19.9		μg/l		20.0	BRL	99	70-130		
1,2,3-Trichlorobenzene	22.2		μg/l		20.0	BRL	111	70-130		
1,2,4-Trichlorobenzene	20.4		μg/l		20.0	BRL	102	70-130		
1,3,5-Trichlorobenzene	20.9		μg/l		20.0	BRL BRL	105	70-130 70-130		
1,1,1-Trichloroethane	17.9 21.5		μg/l		20.0		90 107	70-130 70-130		
1,1,2-Trichloroethane Trichloroethene	21.5		μg/l		20.0 20.0	BRL 0.6	107 97	70-130 70-130		
Trichlorofluoromethane (Freon 11)	20.0 21.7		μg/l		20.0	0.6 BRL	108	70-130 70-130		
1,2,3-Trichloropropane	21.7 21.6		μg/l		20.0	BRL	108	70-130 70-130		
1,2,4-Trimethylbenzene	21.6		μg/l		20.0	BRL	108	70-130 70-130		
1,3,5-Trimethylbenzene	21.7		μg/l		20.0	BRL	108	70-130 70-130		
Vinyl chloride	23.5		μg/l		20.0	BRL	118	70-130 70-130		
m,p-Xylene	23.5 21.1		μg/l		20.0	BRL	106	70-130 70-130		
o-Xylene	21.1		μg/l		20.0	BRL	114	70-130 70-130		
Tetrahydrofuran	18.3		μg/l		20.0	BRL	92	70-130 70-130		
Ethyl ether	20.0		μg/l μg/l		20.0	BRL	100	70-130 70-130		
Tert-amyl methyl ether	20.0		μg/l		20.0	BRL	100	70-130		
Ethyl tert-butyl ether	14.8		μg/l μg/l		20.0	BRL	74	70-130		
Di-isopropyl ether	18.5		μg/l		20.0	BRL	93	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
ranalyte(s)	Result	riag	Omis	·KDL	Level	Resuit	/0KEC	Limits	KFD	LIIIII
Batch 1424519 - SW846 5030 Water MS								0.144		
Matrix Spike (1424519-MS1)			Source: SE	<u>398147-15</u>			nalyzed: 17-			
Tert-Butanol / butyl alcohol	197		μg/l		200	BRL	99	70-130		
1,4-Dioxane	190		μg/l		200	BRL	95	70-130		
trans-1,4-Dichloro-2-butene	19.6	QC2	μg/l		20.0	BRL	98	70-130		
Ethanol	595	QC2	μg/l		400	BRL	149	70-130		
Surrogate: 4-Bromofluorobenzene	51.2		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	47.6		μg/l		50.0		95	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.0		μg/l		50.0		96	70-130		
Surrogate: Dibromofluoromethane	54.1		μg/l		50.0		108	70-130		
Matrix Spike Dup (1424519-MSD1)			Source: SE	<u>398147-15</u>		•	nalyzed: 17-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.6		μg/l		20.0	BRL	103	70-130	5	20
Acetone	25.8		μg/l		20.0	BRL	129	70-130	6	20
Acrylonitrile	23.2		μg/l		20.0	BRL	116	70-130	3	20
Benzene	19.6		μg/l		20.0	BRL	98	70-130	4	20
Bromobenzene	21.9		μg/l		20.0	BRL	109	70-130	4	20
Bromochloromethane	22.5		μg/l 		20.0	BRL	113	70-130	2	20
Bromodichloromethane	20.5		μg/l 		20.0	BRL	103	70-130	1	20
Bromoform	21.3		μg/l		20.0	BRL	106	70-130	8	20
Bromomethane	21.9		μg/l		20.0	BRL	109	70-130	4	20
2-Butanone (MEK)	22.1		μg/l		20.0	BRL	111	70-130	9	20
n-Butylbenzene	17.5		μg/l		20.0	BRL	87	70-130	9	20
sec-Butylbenzene	20.8		μg/l		20.0	BRL	104	70-130	5	20
tert-Butylbenzene	20.9		μg/l		20.0	BRL BRL	104	70-130	4 3	20 20
Carbon disulfide	23.2 16.9		μg/l		20.0 20.0	BRL	116 84	70-130	3 4	20
Carbon tetrachloride Chlorobenzene	20.8		μg/l		20.0	BRL	0 4 104	70-130 70-130	6	20
Chloroethane	20.8 19.9		μg/l		20.0	BRL	99	70-130 70-130	6	20
Chloroform	19.8		μg/l μg/l		20.0	BRL	99	70-130	4	20
Chloromethane	20.2		μg/l		20.0	BRL	101	70-130	5	20
2-Chlorotoluene	20.2		μg/l		20.0	BRL	101	70-130	6	20
4-Chlorotoluene	20.2		μg/l		20.0	BRL	100	70-130	4	20
1,2-Dibromo-3-chloropropane	16.7		μg/l		20.0	BRL	84	70-130	0.5	20
Dibromochloromethane	21.2		μg/l		20.0	BRL	106	70-130	0.7	20
1,2-Dibromoethane (EDB)	19.6		μg/l		20.0	BRL	98	70-130	5	20
Dibromomethane	20.8		μg/l		20.0	BRL	104	70-130	3	20
1,2-Dichlorobenzene	19.2		μg/l		20.0	BRL	96	70-130	7	20
1,3-Dichlorobenzene	22.8		μg/l		20.0	BRL	114	70-130	5	20
1,4-Dichlorobenzene	18.5		μg/l		20.0	BRL	93	70-130	5	20
Dichlorodifluoromethane (Freon12)	19.8		μg/l		20.0	BRL	99	70-130	6	20
1,1-Dichloroethane	19.4		μg/l		20.0	BRL	97	70-130	2	20
1,2-Dichloroethane	19.8		μg/l		20.0	BRL	99	70-130	1	20
1,1-Dichloroethene	19.6		μg/l		20.0	BRL	98	70-130	6	20
cis-1,2-Dichloroethene	21.1		μg/l		20.0	0.2	104	70-130	3	20
trans-1,2-Dichloroethene	16.8		μg/l		20.0	BRL	84	70-130	7	20
1,2-Dichloropropane	19.7		μg/l		20.0	BRL	99	70-130	0.05	20
1,3-Dichloropropane	19.6		μg/l		20.0	BRL	98	70-130	3	20
2,2-Dichloropropane	12.2	QC2	μg/l		20.0	BRL	61	70-130	12	20
1,1-Dichloropropene	18.2		μg/l		20.0	BRL	91	70-130	5	20
cis-1,3-Dichloropropene	17.3		μg/l		20.0	BRL	87	70-130	2	20
trans-1,3-Dichloropropene	14.8		μg/l		20.0	BRL	74	70-130	0.5	20
Ethylbenzene	19.5		μg/l		20.0	BRL	98	70-130	7	20
Hexachlorobutadiene	23.8		μg/l		20.0	BRL	119	70-130	8	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424519 - SW846 5030 Water MS										
Matrix Spike Dup (1424519-MSD1)			Source: SE	<u> 398147-15</u>	Pre	epared & Ar	nalyzed: 17-	Oct-14		
2-Hexanone (MBK)	18.5		μg/l		20.0	BRL	92	70-130	0.9	20
Isopropylbenzene	20.0		μg/l		20.0	BRL	100	70-130	6	20
4-Isopropyltoluene	18.0		μg/l		20.0	BRL	90	70-130	7	20
Methyl tert-butyl ether	15.4		μg/l		20.0	BRL	77	70-130	0.2	20
4-Methyl-2-pentanone (MIBK)	18.0		μg/l		20.0	BRL	90	70-130	9	20
Methylene chloride	21.2		μg/l		20.0	BRL	106	70-130	4	20
Naphthalene	16.0		μg/l		20.0	BRL	80	70-130	6	20
n-Propylbenzene	19.9		μg/l		20.0	BRL	99	70-130	6	20
Styrene	20.3		μg/l		20.0	BRL	102	70-130	4	20
1,1,1,2-Tetrachloroethane	19.2		μg/l		20.0	BRL	96	70-130	4	20
1,1,2,2-Tetrachloroethane	22.5		μg/l		20.0	BRL	113	70-130	3	20
Tetrachloroethene	20.3		μg/l		20.0	BRL	102	70-130	6	20
Toluene	19.3		μg/l		20.0	BRL	96	70-130	3	20
1,2,3-Trichlorobenzene	20.2		μg/l		20.0	BRL	101	70-130	10	20
1,2,4-Trichlorobenzene	18.8		μg/l		20.0	BRL	94	70-130	8	20
1,3,5-Trichlorobenzene	19.5		μg/l		20.0	BRL	97	70-130	7	20
1,1,1-Trichloroethane	17.4		μg/l		20.0	BRL	87	70-130	3	20
1,1,2-Trichloroethane	20.9		μg/l		20.0	BRL	105	70-130	3	20
Trichloroethene	19.6		μg/l		20.0	0.6	95	70-130	2	20
Trichlorofluoromethane (Freon 11)	20.8		μg/l		20.0	BRL	104	70-130	4	20
1,2,3-Trichloropropane	20.8		μg/l		20.0	BRL	104	70-130	4	20
1,2,4-Trimethylbenzene	20.5		μg/l		20.0	BRL	102	70-130	6	20
1,3,5-Trimethylbenzene	20.6		μg/l		20.0	BRL	103	70-130	5	20
Vinyl chloride	22.8		μg/l		20.0	BRL	114	70-130	3	20
m,p-Xylene	20.9		μg/l		20.0	BRL	104	70-130	1	20
o-Xylene	21.8		μg/l		20.0	BRL	109	70-130	5	20
Tetrahydrofuran	18.8		μg/l		20.0	BRL	94	70-130	3	20
Ethyl ether	19.4		μg/l		20.0	BRL	97	70-130	3	20
Tert-amyl methyl ether	20.9		μg/l		20.0	BRL	105	70-130	4	20
Ethyl tert-butyl ether	14.9		μg/l		20.0	BRL	74	70-130	0.7	20
Di-isopropyl ether	18.5		μg/l		20.0	BRL	92	70-130	0.3	20
Tert-Butanol / butyl alcohol	202		μg/l		200	BRL	101	70-130	2	20
1,4-Dioxane	185		μg/l		200	BRL	92	70-130	3	20
trans-1,4-Dichloro-2-butene	17.4		μg/l		20.0	BRL	87	70-130	12	20
Ethanol	596	QC2	μg/l		400	BRL	149	70-130	0.3	20
Surrogate: 4-Bromofluorobenzene	50.5		μg/l		50.0		101	70-130 70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	49.6 48.9		μg/l		50.0 50.0		99 98	70-130 70-130		
· ·			μg/l							
Surrogate: Dibromofluoromethane	55.4		μg/l		50.0		111	70-130		
atch 1424525 - SW846 5030 Water MS					Dr	oparad 9 A	achizod: 17	Oct 14		
Blank (1424525-BLK1)	-10		//	1.0	<u> P16</u>	epareu & Ar	nalyzed: 17-	OCI-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.0 < 10.0		μg/l	1.0						
Acetone			μg/l	10.0						
Acrylonitrile	< 0.5		μg/l	0.5						
Benzene	< 1.0		μg/l	1.0						
Bromoblersmethers	< 1.0		μg/l	1.0						
Bromochloromethane	< 1.0		μg/l	1.0						
Bromodichloromethane	< 0.5		μg/l	0.5						
Bromoform	< 1.0		μg/l	1.0						
Bromomethane	< 2.0		μg/l 	2.0						
2-Butanone (MEK)	< 10.0		μg/l	10.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424525 - SW846 5030 Water MS										
Blank (1424525-BLK1)					Pre	epared & Ai	nalyzed: 17-	-Oct-14		
n-Butylbenzene	< 1.0		μg/l	1.0			•			
sec-Butylbenzene	< 1.0		μg/l	1.0						
tert-Butylbenzene	< 1.0		μg/l	1.0						
Carbon disulfide	< 2.0		μg/l	2.0						
Carbon tetrachloride	< 1.0		μg/l	1.0						
Chlorobenzene	< 1.0		μg/l	1.0						
Chloroethane	< 2.0		μg/l	2.0						
Chloroform	< 1.0		μg/l	1.0						
Chloromethane	< 2.0		μg/l	2.0						
2-Chlorotoluene	< 1.0		μg/l	1.0						
4-Chlorotoluene	< 1.0		μg/l	1.0						
1,2-Dibromo-3-chloropropane	< 2.0		μg/l	2.0						
Dibromochloromethane	< 0.5		μg/l	0.5						
1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5						
Dibromomethane	< 1.0		μg/l	1.0						
1,2-Dichlorobenzene	< 1.0		μg/l	1.0						
1,3-Dichlorobenzene	< 1.0		μg/l	1.0						
1,4-Dichlorobenzene	< 1.0		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0						
1,1-Dichloroethane	< 1.0		μg/l	1.0						
1,2-Dichloroethane	< 1.0		μg/l	1.0						
1,1-Dichloroethene	< 1.0		μg/l	1.0						
cis-1,2-Dichloroethene	< 1.0		μg/l	1.0						
trans-1,2-Dichloroethene	< 1.0		μg/l	1.0						
1,2-Dichloropropane	< 1.0		μg/l	1.0						
1,3-Dichloropropane	< 1.0		μg/l	1.0						
2,2-Dichloropropane	< 1.0		μg/l	1.0						
1,1-Dichloropropene	< 1.0		μg/l	1.0						
cis-1,3-Dichloropropene	< 0.5		μg/l	0.5						
trans-1,3-Dichloropropene	< 0.5		μg/l	0.5						
Ethylbenzene	< 1.0		μg/l	1.0						
Hexachlorobutadiene	< 0.5		μg/l	0.5						
2-Hexanone (MBK)	< 10.0		μg/l	10.0						
Isopropylbenzene	< 1.0		μg/l	1.0						
4-Isopropyltoluene	< 1.0		μg/l	1.0						
Methyl tert-butyl ether	< 1.0		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0						
Methylene chloride	< 2.0		μg/l	2.0						
Naphthalene	< 1.0		μg/l	1.0						
n-Propylbenzene	< 1.0		μg/l	1.0						
Styrene	< 1.0		μg/l	1.0						
1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0						
1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5						
Tetrachloroethene	< 1.0		μg/l	1.0						
Toluene	< 1.0		μg/l	1.0						
1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0						
1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0						
1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0						
1,1,1-Trichloroethane	< 1.0		μg/l	1.0						
1,1,2-Trichloroethane	< 1.0		μg/l	1.0						
Trichloroethene	< 1.0		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424525 - SW846 5030 Water MS										
Blank (1424525-BLK1)					Pre	epared & Ar	nalyzed: 17-	Oct-14		
1,2,3-Trichloropropane	< 1.0		μg/l	1.0						
1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0						
1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.0		μg/l	1.0						
m,p-Xylene	< 2.0		μg/l	2.0						
o-Xylene	< 1.0		μg/l	1.0						
Tetrahydrofuran	< 2.0		μg/l	2.0						
Ethyl ether	< 1.0		μg/l	1.0						
Tert-amyl methyl ether	< 1.0		μg/l	1.0						
Ethyl tert-butyl ether	< 1.0		μg/l	1.0						
Di-isopropyl ether	< 1.0		μg/l	1.0						
Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0						
1,4-Dioxane	< 20.0		μg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.0		μg/l	5.0						
Ethanol	< 400		μg/l	400						
Surrogate: 4-Bromofluorobenzene	50.2		μg/l		50.0		100	70-130		
Surrogate: Toluene-d8	49.1		μg/l		50.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.7		μg/l		50.0		109	70-130		
Surrogate: Dibromofluoromethane	43.6		μg/l		50.0		87	70-130		
LCS (1424525-BS1)					Pre	enared & Ar	nalyzed: 17-	Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.2		μg/l		20.0	Jparca a 7 ti	101	70-130		
Acetone	19.2		μg/l		20.0		96	70-130		
Acrylonitrile	20.6				20.0		103	70-130		
Benzene	19.9		µg/l		20.0		100	70-130		
Bromobenzene			µg/l		20.0		96	70-130		
	19.1		μg/l							
Bromochloromethane	19.6		μg/l		20.0		98	70-130		
Bromodichloromethane	19.1		μg/l		20.0		96	70-130		
Bromoform	18.9		μg/l		20.0		94	70-130		
Bromomethane	22.6		μg/l 		20.0		113	70-130		
2-Butanone (MEK)	19.8		μg/l		20.0		99	70-130		
n-Butylbenzene	21.3		μg/l		20.0		106	70-130		
sec-Butylbenzene	21.0		μg/l		20.0		105	70-130		
tert-Butylbenzene	21.7		μg/l		20.0		109	70-130		
Carbon disulfide	21.6		μg/l		20.0		108	70-130		
Carbon tetrachloride	19.0		μg/l		20.0		95	70-130		
Chlorobenzene	18.6		μg/l		20.0		93	70-130		
Chloroethane	22.3		μg/l		20.0		111	70-130		
Chloroform	16.9		μg/l		20.0		85	70-130		
Chloromethane	22.0		μg/l		20.0		110	70-130		
2-Chlorotoluene	19.5		μg/l		20.0		97	70-130		
4-Chlorotoluene	20.4		μg/l		20.0		102	70-130		
1,2-Dibromo-3-chloropropane	18.7		μg/l		20.0		94	70-130		
Dibromochloromethane	19.6		μg/l		20.0		98	70-130		
1,2-Dibromoethane (EDB)	20.2		μg/l		20.0		101	70-130		
Dibromomethane	20.0		μg/l		20.0		100	70-130		
1,2-Dichlorobenzene	19.2		μg/l		20.0		96	70-130		
1,3-Dichlorobenzene	19.6		μg/l		20.0		98	70-130		
1,4-Dichlorobenzene	18.0		μg/l		20.0		90	70-130		
Dichlorodifluoromethane (Freon12)	21.9		μg/l		20.0		110	70-130		
1,1-Dichloroethane	20.1		μg/l		20.0		101	70-130		
1,2-Dichloroethane	19.1		μg/l		20.0		96	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch 1424525 - SW846 5030 Water MS										
LCS (1424525-BS1)					<u>Pre</u>	epared & Ar	nalyzed: 17-	Oct-14		
1,1-Dichloroethene	20.3		μg/l		20.0		101	70-130		
cis-1,2-Dichloroethene	20.6		μg/l		20.0		103	70-130		
trans-1,2-Dichloroethene	19.7		μg/l		20.0		99	70-130		
1,2-Dichloropropane	19.0		μg/l		20.0		95	70-130		
1,3-Dichloropropane	19.3		μg/l		20.0		97	70-130		
2,2-Dichloropropane	19.7		μg/l		20.0		98	70-130		
1,1-Dichloropropene	20.6		μg/l		20.0		103	70-130		
cis-1,3-Dichloropropene	17.6		μg/l		20.0		88	70-130		
trans-1,3-Dichloropropene	17.5		μg/l		20.0		88	70-130		
Ethylbenzene	20.0		μg/l		20.0		100	70-130		
Hexachlorobutadiene	19.4		μg/l		20.0		97	70-130		
2-Hexanone (MBK)	18.9		μg/l		20.0		94	70-130		
Isopropylbenzene	19.4		μg/l		20.0		97	70-130		
4-Isopropyltoluene	20.7		μg/l		20.0		104	70-130		
Methyl tert-butyl ether	15.5		μg/l		20.0		78	70-130		
4-Methyl-2-pentanone (MIBK)	20.2		μg/l		20.0		101	70-130		
Methylene chloride	19.2		μg/l		20.0		96	70-130		
Naphthalene	19.5		μg/l		20.0		98	70-130		
n-Propylbenzene	21.0		μg/l		20.0		105	70-130		
Styrene	21.0		μg/l		20.0		105	70-130		
1,1,1,2-Tetrachloroethane	20.8		μg/l		20.0		104	70-130		
1,1,2,2-Tetrachloroethane	19.9		μg/l		20.0		100	70-130		
Tetrachloroethene	19.4		μg/l		20.0		97	70-130		
Toluene	19.1		μg/l		20.0		95	70-130		
1,2,3-Trichlorobenzene	21.4		μg/l		20.0		107	70-130		
1,2,4-Trichlorobenzene	21.4		μg/l		20.0		106	70-130		
1,3,5-Trichlorobenzene	20.2		μg/l		20.0		101	70-130		
1,1,1-Trichloroethane	17.9				20.0		90	70-130		
1,1,2-Trichloroethane	17.5		μg/l		20.0		98	70-130		
Trichloroethene			μg/l		20.0		94	70-130		
	18.7		μg/l							
Trichlorofluoromethane (Freon 11)	20.6		μg/l		20.0 20.0		103	70-130 70-130		
1,2,3-Trichloropropane	19.0		μg/l				95			
1,2,4-Trimethylbenzene	21.1		μg/l		20.0		106	70-130		
1,3,5-Trimethylbenzene	21.6		μg/l "		20.0		108	70-130		
Vinyl chloride	21.7		μg/l		20.0		108	70-130		
m,p-Xylene	20.0		μg/l		20.0		100	70-130		
o-Xylene	20.6		μg/l		20.0		103	70-130		
Tetrahydrofuran	21.2		μg/l "		20.0		106	70-130		
Ethyl ether	19.5		μg/l		20.0		98	70-130		
Tert-amyl methyl ether	18.5		μg/l 		20.0		93	70-130		
Ethyl tert-butyl ether	14.3		μg/l 		20.0		72	70-130		
Di-isopropyl ether	15.9		μg/l		20.0		80	70-130		
Tert-Butanol / butyl alcohol	171		μg/l		200		86	70-130		
1,4-Dioxane	149		μg/l		200		74	70-130		
trans-1,4-Dichloro-2-butene	15.7		μg/l		20.0		78	70-130		
Ethanol	446		μg/l		400		111	70-130		
Surrogate: 4-Bromofluorobenzene	50.8		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	50.1		μg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.6		μg/l		50.0		103	70-130		
Surrogate: Dibromofluoromethane	45.4		μg/l		50.0		91	70-130		
LCS Dup (1424525-BSD1)					Pre	epared & Ar	nalyzed: 17-	Oct-14		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch 1424525 - SW846 5030 Water MS										
LCS Dup (1424525-BSD1)					Pre	epared & Ar	nalyzed: 17-	-Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	19.6		μg/l		20.0		98	70-130	3	20
Acetone	20.4		μg/l		20.0		102	70-130	6	20
Acrylonitrile	22.4		μg/l		20.0		112	70-130	8	20
Benzene	20.2		μg/l		20.0		101	70-130	1	20
Bromobenzene	20.1		μg/l		20.0		100	70-130	5	20
Bromochloromethane	23.2		μg/l		20.0		116	70-130	17	20
Bromodichloromethane	20.4		μg/l		20.0		102	70-130	6	20
Bromoform	20.3		μg/l		20.0		101	70-130	7	20
Bromomethane	22.6		μg/l		20.0		113	70-130	0	20
2-Butanone (MEK)	15.6		μg/l		20.0		78	70-130	24	20
n-Butylbenzene	21.6		μg/l		20.0		108	70-130	2	20
sec-Butylbenzene	21.0		μg/l		20.0		105	70-130	0.4	20
tert-Butylbenzene	21.6		μg/l		20.0		108	70-130	0.8	20
Carbon disulfide	21.1		μg/l		20.0		106	70-130	2	20
Carbon tetrachloride	19.2		μg/l		20.0		96	70-130	0.9	20
Chlorobenzene	19.2				20.0		95	70-130	3	20
Chloroethane	21.6		μg/l		20.0		108	70-130	3	20
			μg/l					70-130		
Chloroform	20.1		μg/l		20.0		100		17	20
Chloromethane	21.7		μg/l		20.0		109	70-130	1	20
2-Chlorotoluene	20.3		μg/l "		20.0		101	70-130	4	20
4-Chlorotoluene	20.7		μg/l 		20.0		103	70-130	2	20
1,2-Dibromo-3-chloropropane	20.4		μg/l		20.0		102	70-130	8	20
Dibromochloromethane	20.6		μg/l		20.0		103	70-130	5	20
1,2-Dibromoethane (EDB)	21.7		μg/l		20.0		108	70-130	7	20
Dibromomethane	21.4		μg/l		20.0		107	70-130	7	20
1,2-Dichlorobenzene	20.3		μg/l		20.0		101	70-130	5	20
1,3-Dichlorobenzene	19.9		μg/l		20.0		99	70-130	2	20
1,4-Dichlorobenzene	18.8		μg/l		20.0		94	70-130	5	20
Dichlorodifluoromethane (Freon12)	20.9		μg/l		20.0		105	70-130	5	20
1,1-Dichloroethane	20.4		μg/l		20.0		102	70-130	1	20
1,2-Dichloroethane	20.3		μg/l		20.0		102	70-130	6	20
1,1-Dichloroethene	19.8		μg/l		20.0		99	70-130	2	20
cis-1,2-Dichloroethene	22.1		μg/l		20.0		111	70-130	7	20
trans-1,2-Dichloroethene	20.1		μg/l		20.0		100	70-130	2	20
1,2-Dichloropropane	20.1		μg/l		20.0		100	70-130	5	20
1,3-Dichloropropane	20.8		μg/l		20.0		104	70-130	7	20
2,2-Dichloropropane	21.7		μg/l		20.0		109	70-130	10	20
1,1-Dichloropropene	20.8		μg/l		20.0		104	70-130	0.9	20
cis-1,3-Dichloropropene	18.4		μg/l		20.0		92	70-130	5	20
trans-1,3-Dichloropropene	18.5		μg/l		20.0		93	70-130	5	20
Ethylbenzene	20.3		μg/l		20.0		102	70-130	1	20
Hexachlorobutadiene	20.6		μg/l		20.0		103	70-130	6	20
2-Hexanone (MBK)	20.9		μg/l		20.0		104	70-130	10	20
Isopropylbenzene	19.7		μg/l		20.0		99	70-130	1	20
4-Isopropyltoluene	21.0		μg/l		20.0		105	70-130	1	20
Methyl tert-butyl ether	17.5		μg/l		20.0		88	70-130	12	20
4-Methyl-2-pentanone (MIBK)	21.3		μg/l		20.0		107	70-130	5	20
Methylene chloride	19.2		μg/l		20.0		96	70-130	0.2	20
Naphthalene	20.9		μg/l		20.0		105	70-130	7	20
n-Propylbenzene	21.0		μg/l		20.0		105	70-130	0.4	20
Styrene	21.8		μg/l		20.0		109	70-130	4	20
1,1,1,2-Tetrachloroethane	21.6		μg/l		20.0		109	70-130	4	20

Anglyte(c)	Dagult	Floo	Unita	*RDL	Spike	Source	%REC	%REC	RPD	RPD Limit
Analyte(s)	Result	Flag	Units	·KDL	Level	Result	70KEC	Limits	KPD	Limit
Batch 1424525 - SW846 5030 Water MS					_					
LCS Dup (1424525-BSD1)						epared & A	nalyzed: 17-			
1,1,2,2-Tetrachloroethane	21.2		μg/l		20.0		106	70-130	6	20
Tetrachloroethene	19.6		μg/l		20.0		98	70-130	1	20
Toluene	19.3		μg/l		20.0		96	70-130	0.9	20
1,2,3-Trichlorobenzene	22.2		μg/l		20.0		111	70-130	4	20
1,2,4-Trichlorobenzene	22.0		μg/l		20.0		110	70-130	4	20
1,3,5-Trichlorobenzene	21.1		μg/l		20.0		105	70-130	4	20
1,1,1-Trichloroethane	18.9		μg/l		20.0		95	70-130	5	20
1,1,2-Trichloroethane	20.9		μg/l		20.0		105	70-130	6	20
Trichloroethene	18.9		μg/l		20.0		95	70-130	1	20
Trichlorofluoromethane (Freon 11)	20.0		μg/l		20.0		100	70-130	3	20
1,2,3-Trichloropropane	20.6		μg/l		20.0		103	70-130	8	20
1,2,4-Trimethylbenzene	21.3		μg/l		20.0		106	70-130	0.9	20
1,3,5-Trimethylbenzene	21.6		μg/l		20.0		108	70-130	0.1	20
Vinyl chloride	21.7		μg/l		20.0		109	70-130	0.3	20
m,p-Xylene	20.4		μg/l		20.0		102	70-130	2	20
o-Xylene	21.0		μg/l		20.0		105	70-130	2	20
Tetrahydrofuran	19.3		μg/l		20.0		96	70-130	9	20
Ethyl ether	20.2		μg/l		20.0		101	70-130	4	20
Tert-amyl methyl ether	19.6		μg/l		20.0		98	70-130	6	20
Ethyl tert-butyl ether	19.3	QR5	μg/l		20.0		97	70-130	30	20
Di-isopropyl ether	19.5		μg/l		20.0		97	70-130	20	20
Tert-Butanol / butyl alcohol	184		μg/l		200		92	70-130	7	20
1,4-Dioxane	195	QR5	μg/l		200		98	70-130	27	20
trans-1,4-Dichloro-2-butene	17.2		μg/l		20.0		86	70-130	9	20
Ethanol	526	QM9	μg/l		400		131	70-130	16	20
Surrogate: 4-Bromofluorobenzene	50.1		μg/l		50.0		100	70-130		
Surrogate: Toluene-d8	51.2		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.0		μg/l		50.0		102	70-130		
Surrogate: Dibromofluoromethane	54.4		μg/l		50.0		109	70-130		
Batch 1424541 - SW846 5030 Water MS										
Blank (1424541-BLK1)					Pro	epared & A	nalyzed: 17-	Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.0		μg/l	1.0						
Acetone	< 10.0		μg/l	10.0						
Acrylonitrile	< 0.5		μg/l	0.5						
Benzene	< 1.0		μg/l	1.0						
Bromobenzene	< 1.0		μg/l	1.0						
Bromochloromethane	< 1.0		μg/l	1.0						
Bromodichloromethane	< 0.5		μg/l	0.5						
Bromoform	< 1.0		μg/l	1.0						
Bromomethane	< 2.0		μg/l	2.0						
2-Butanone (MEK)	< 10.0		μg/l	10.0						
n-Butylbenzene	< 1.0		μg/l	1.0						
sec-Butylbenzene	< 1.0		μg/l	1.0						
tert-Butylbenzene	< 1.0		μg/l	1.0						
Carbon disulfide	< 2.0		μg/l	2.0						
Carbon tetrachloride	< 1.0		μg/l	1.0						
Chlorobenzene	< 1.0		μg/l	1.0						
Chloroethane	< 2.0		μg/l	2.0						
Chloroform	< 1.0		μg/l	1.0						
Chloromethane	< 2.0		μg/l	2.0						
2-Chlorotoluene	< 1.0		μg/l	1.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424541 - SW846 5030 Water MS										
Blank (1424541-BLK1)					Pre	epared & Ai	nalyzed: 17-	Oct-14		
4-Chlorotoluene	< 1.0		μg/l	1.0						
1,2-Dibromo-3-chloropropane	< 2.0		μg/l	2.0						
Dibromochloromethane	< 0.5		μg/l	0.5						
1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5						
Dibromomethane	< 1.0		μg/l	1.0						
1,2-Dichlorobenzene	< 1.0		μg/l	1.0						
1,3-Dichlorobenzene	< 1.0		μg/l	1.0						
1,4-Dichlorobenzene	< 1.0		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0						
1,1-Dichloroethane	< 1.0		μg/l	1.0						
1,2-Dichloroethane	< 1.0		μg/l	1.0						
1,1-Dichloroethene	< 1.0		μg/l	1.0						
cis-1,2-Dichloroethene	< 1.0		μg/l	1.0						
trans-1,2-Dichloroethene	< 1.0		μg/l	1.0						
1,2-Dichloropropane	< 1.0		μg/l	1.0						
1,3-Dichloropropane	< 1.0		μg/l	1.0						
2,2-Dichloropropane	< 1.0		μg/l	1.0						
1,1-Dichloropropene	< 1.0		μg/l	1.0						
cis-1,3-Dichloropropene	< 0.5		μg/l	0.5						
trans-1,3-Dichloropropene	< 0.5		μg/l	0.5						
Ethylbenzene	< 1.0		μg/l	1.0						
Hexachlorobutadiene	< 0.5		μg/l	0.5						
2-Hexanone (MBK)	< 10.0		μg/l	10.0						
Isopropylbenzene	< 1.0		μg/l	1.0						
4-Isopropyltoluene	< 1.0		μg/l	1.0						
Methyl tert-butyl ether	< 1.0		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0						
Methylene chloride	< 2.0		μg/l	2.0						
Naphthalene	< 1.0		μg/l	1.0						
n-Propylbenzene	< 1.0		μg/l	1.0						
Styrene	< 1.0		μg/l	1.0						
1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0						
1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5						
Tetrachloroethene	< 1.0		μg/l	1.0						
Toluene	< 1.0		μg/l 	1.0						
1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0						
1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0						
1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0						
1,1,1-Trichloroethane	< 1.0		μg/l	1.0						
1,1,2-Trichloroethane	< 1.0		μg/l	1.0						
Trichloroethene	< 1.0		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0						
1,2,3-Trichloropropane	< 1.0		μg/l	1.0						
1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0						
1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.0		μg/l	1.0						
m,p-Xylene	< 2.0		μg/l	2.0						
o-Xylene	< 1.0		μg/l	1.0						
Tetrahydrofuran	< 2.0		μg/l	2.0						
Ethyl ether	< 1.0		μg/l	1.0						
Tert-amyl methyl ether Ethyl tert-butyl ether	< 1.0 < 1.0		μg/l μg/l	1.0 1.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
3 (7	Result	1 lag	Omis	KDL	LCVCI	Result	/UNEC	Limits	Мυ	LIIIII
Batch 1424541 - SW846 5030 Water MS					_					
Blank (1424541-BLK1)					Pre	epared & Ar	nalyzed: 17-	Oct-14		
Di-isopropyl ether	< 1.0		μg/l	1.0						
Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0						
1,4-Dioxane	< 20.0		μg/l 	20.0						
trans-1,4-Dichloro-2-butene	< 5.0		μg/l 	5.0						
Ethanol	< 400		μg/l	400						
Surrogate: 4-Bromofluorobenzene	48.4		μg/l		50.0		97	70-130		
Surrogate: Toluene-d8	50.6		μg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.5		μg/l		50.0		109	70-130		
Surrogate: Dibromofluoromethane	55.7		μg/l		50.0		111	70-130		
LCS (1424541-BS1)					Pre	epared & Ar	nalyzed: 17-	Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	21.4		μg/l		20.0		107	70-130		
Acetone	18.9		μg/l		20.0		95	70-130		
Acrylonitrile	17.9		μg/l		20.0		89	70-130		
Benzene	20.3		μg/l		20.0		101	70-130		
Bromobenzene	21.4		μg/l		20.0		107	70-130		
Bromochloromethane	20.6		μg/l		20.0		103	70-130		
Bromodichloromethane	24.0		μg/l		20.0		120	70-130		
Bromoform	22.8		μg/l		20.0		114	70-130		
Bromomethane	17.2		μg/l		20.0		86	70-130		
2-Butanone (MEK)	19.8		μg/l		20.0		99	70-130		
n-Butylbenzene	21.2		μg/l		20.0		106	70-130		
sec-Butylbenzene	21.4		μg/l		20.0		107	70-130		
tert-Butylbenzene	21.7		μg/l		20.0		108	70-130		
Carbon disulfide	21.4		μg/l		20.0		107	70-130		
Carbon tetrachloride	24.6		μg/l		20.0		123	70-130		
Chlorobenzene	21.0		μg/l		20.0		105	70-130		
Chloroethane	18.3		μg/l		20.0		91	70-130		
Chloroform	20.2		μg/l		20.0		101	70-130		
Chloromethane	16.3		μg/l		20.0		82	70-130		
2-Chlorotoluene	20.5		μg/l		20.0		103	70-130		
4-Chlorotoluene	20.9		μg/l		20.0		104	70-130		
1,2-Dibromo-3-chloropropane	23.2		μg/l		20.0		116	70-130		
Dibromochloromethane	25.5		μg/l		20.0		128	70-130		
1,2-Dibromoethane (EDB)	21.4		μg/l		20.0		107	70-130		
Dibromomethane	20.5		μg/l		20.0		103	70-130		
1,2-Dichlorobenzene	20.6		μg/l		20.0		103	70-130		
1,3-Dichlorobenzene	21.0		μg/l		20.0		105	70-130		
1,4-Dichlorobenzene	20.0		μg/l		20.0		100	70-130		
Dichlorodifluoromethane (Freon12)	19.4		μg/l		20.0		97	70-130		
1,1-Dichloroethane	20.5		μg/l		20.0		102	70-130		
1,2-Dichloroethane	21.5		μg/l		20.0		108	70-130		
1,1-Dichloroethene	19.0		μg/l		20.0		95	70-130		
cis-1,2-Dichloroethene	20.2		μg/l		20.0		101	70-130		
trans-1,2-Dichloroethene	20.6		μg/l		20.0		103	70-130		
1,2-Dichloropropane	20.5		μg/l		20.0		102	70-130		
1,3-Dichloropropane	20.3		μg/l		20.0		102	70-130		
2,2-Dichloropropane	27.3	QC2	μg/l		20.0		136	70-130		
1,1-Dichloropropene	21.7		μg/l		20.0		109	70-130		
cis-1,3-Dichloropropene	25.4		μg/l		20.0		127	70-130		
trans-1,3-Dichloropropene	25.9		μg/l		20.0		129	70-130		
Ethylbenzene	21.4		μg/l		20.0		107	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424541 - SW846 5030 Water MS										
LCS (1424541-BS1)					Pre	epared & Ar	nalyzed: 17-	Oct-14		
Hexachlorobutadiene	21.5		μg/l		20.0		108	70-130		
2-Hexanone (MBK)	20.2		μg/l		20.0		101	70-130		
Isopropylbenzene	21.0		μg/l		20.0		105	70-130		
4-Isopropyltoluene	21.2		μg/l		20.0		106	70-130		
Methyl tert-butyl ether	21.7		μg/l		20.0		108	70-130		
4-Methyl-2-pentanone (MIBK)	20.6		μg/l		20.0		103	70-130		
Methylene chloride	18.7		μg/l		20.0		93	70-130		
Naphthalene	20.6		μg/l		20.0		103	70-130		
n-Propylbenzene	21.3		μg/l		20.0		106	70-130		
Styrene	21.5		μg/l		20.0		108	70-130		
1,1,1,2-Tetrachloroethane	23.5		μg/l		20.0		117	70-130		
1,1,2,2-Tetrachloroethane	21.3		μg/l		20.0		107	70-130		
Tetrachloroethene	22.0		μg/l		20.0		110	70-130		
Toluene	20.5		μg/l		20.0		102	70-130		
1,2,3-Trichlorobenzene	20.0		μg/l		20.0		100	70-130		
1,2,4-Trichlorobenzene	20.4		μg/l		20.0		102	70-130		
1,3,5-Trichlorobenzene	20.4		μg/l		20.0		104	70-130		
1,1,1-Trichloroethane	23.4				20.0		117	70-130		
1,1,2-Trichloroethane			μg/l		20.0		100	70-130		
	20.0		μg/l							
Trichloroethene	20.2		μg/l		20.0		101	70-130		
Trichlorofluoromethane (Freon 11)	22.2		μg/l "		20.0		111	70-130		
1,2,3-Trichloropropane	20.0		μg/l		20.0		100	70-130		
1,2,4-Trimethylbenzene	22.0		μg/l		20.0		110	70-130		
1,3,5-Trimethylbenzene	21.7		μg/l		20.0		108	70-130		
Vinyl chloride	18.9		μg/l		20.0		94	70-130		
m,p-Xylene	21.1		μg/l		20.0		105	70-130		
o-Xylene	21.0		μg/l		20.0		105	70-130		
Tetrahydrofuran	19.4		μg/l		20.0		97	70-130		
Ethyl ether	19.1		μg/l		20.0		96	70-130		
Tert-amyl methyl ether	21.8		μg/l		20.0		109	70-130		
Ethyl tert-butyl ether	22.4		μg/l		20.0		112	70-130		
Di-isopropyl ether	20.0		μg/l		20.0		100	70-130		
Tert-Butanol / butyl alcohol	197		μg/l		200		99	70-130		
1,4-Dioxane	189		μg/l		200		94	70-130		
trans-1,4-Dichloro-2-butene	22.5		μg/l		20.0		113	70-130		
Ethanol	337		μg/l		400		84	70-130		
Surrogate: 4-Bromofluorobenzene	51.4		μg/l		50.0		103	70-130		
Surrogate: Toluene-d8	50.4		μg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.2		μg/l		50.0		104	70-130		
Surrogate: Dibromofluoromethane	52.9		μg/l		50.0		106	70-130		
LCS Dup (1424541-BSD1)					Pre	epared & Ar	nalyzed: 17-	-Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	21.1		μg/l		20.0		106	70-130	1	20
Acetone	17.4		μg/l		20.0		87	70-130	8	20
Acrylonitrile	18.4		μg/l		20.0		92	70-130	3	20
Benzene	20.5		μg/l		20.0		102	70-130	1	20
Bromobenzene	21.2		μg/l		20.0		106	70-130	1	20
Bromochloromethane	20.5		μg/l		20.0		102	70-130	0.5	20
Bromodichloromethane	25.2		μg/l		20.0		126	70-130	5	20
Bromoform	22.8		μg/l		20.0		114	70-130	0.04	20
Bromomethane	16.1				20.0		80	70-130	6	20
2-Butanone (MEK)	19.8		μg/l μg/l		20.0		99	70-130	0.2	20

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424541 - SW846 5030 Water MS										
LCS Dup (1424541-BSD1)					Pre	epared & Ai	nalyzed: 17-	Oct-14		
n-Butylbenzene	21.3		μg/l		20.0		107	70-130	0.4	20
sec-Butylbenzene	21.1		μg/l		20.0		105	70-130	1	20
tert-Butylbenzene	21.4		μg/l		20.0		107	70-130	1	20
Carbon disulfide	22.0		μg/l		20.0		110	70-130	3	20
Carbon tetrachloride	24.6		μg/l		20.0		123	70-130	0.3	20
Chlorobenzene	20.8		μg/l		20.0		104	70-130	1	20
Chloroethane	17.8		μg/l		20.0		89	70-130	3	20
Chloroform	20.4		μg/l		20.0		102	70-130	1	20
Chloromethane	15.9		μg/l		20.0		80	70-130	2	20
2-Chlorotoluene	20.4		μg/l		20.0		102	70-130	0.9	20
4-Chlorotoluene	20.8		μg/l		20.0		104	70-130	0.4	20
1,2-Dibromo-3-chloropropane	22.0		μg/l		20.0		110	70-130	5	20
Dibromochloromethane	26.0		μg/l		20.0		130	70-130	2	20
1,2-Dibromoethane (EDB)	21.9		μg/l		20.0		110	70-130	2	20
Dibromomethane	21.1		μg/l		20.0		106	70-130	3	20
1,2-Dichlorobenzene	20.7		μg/l		20.0		103	70-130	0.4	20
1,3-Dichlorobenzene	20.9		μg/l		20.0		105	70-130	0.7	20
1,4-Dichlorobenzene	20.0		μg/l		20.0		100	70-130	0.3	20
Dichlorodifluoromethane (Freon12)	18.9		μg/l		20.0		94	70-130	3	20
1,1-Dichloroethane	20.4		μg/l		20.0		102	70-130	0.2	20
1,2-Dichloroethane	21.5		μg/l		20.0		108	70-130	0.09	20
1,1-Dichloroethene	19.8		μg/l		20.0		99	70-130	4	20
cis-1,2-Dichloroethene	20.4		μg/l		20.0		102	70-130	1	20
trans-1,2-Dichloroethene	21.1		μg/l		20.0		105	70-130	2	20
1,2-Dichloropropane	21.2		μg/l		20.0		106	70-130	4	20
1,3-Dichloropropane	20.5		μg/l		20.0		102	70-130	0.8	20
2,2-Dichloropropane	26.7	QC2	μg/l		20.0		134	70-130	2	20
1,1-Dichloropropene	22.0		μg/l		20.0		110	70-130	2	20
cis-1,3-Dichloropropene	25.8		μg/l		20.0		129	70-130	1	20
trans-1,3-Dichloropropene	26.4	QM9	μg/l		20.0		132	70-130	2	20
Ethylbenzene	21.2		μg/l		20.0		106	70-130	0.8	20
Hexachlorobutadiene	21.4		μg/l		20.0		107	70-130	0.7	20
2-Hexanone (MBK)	21.1		μg/l		20.0		105	70-130	4	20
Isopropylbenzene	21.1		μg/l		20.0		105	70-130	0.2	20
4-Isopropyltoluene	21.4		μg/l		20.0		107	70-130	0.6	20
Methyl tert-butyl ether	22.3		μg/l		20.0		112	70-130	3	20
4-Methyl-2-pentanone (MIBK)	21.1		μg/l		20.0		106	70-130	2	20
Methylene chloride	18.8		μg/l		20.0		94	70-130	0.6	20
Naphthalene	20.5		μg/l		20.0		103	70-130	0.3	20
n-Propylbenzene	21.2		μg/l		20.0		106	70-130	0.05	20
Styrene	21.5		μg/l		20.0		108	70-130	0.03	20
1,1,1,2-Tetrachloroethane	23.6		μg/l		20.0		118	70-130	0.4	20
1,1,2,2-Tetrachloroethane	21.6		μg/l		20.0		108	70-130	1	20
Tetrachloroethene	22.4		μg/l		20.0		112	70-130	2	20
Toluene	20.9				20.0		104	70-130	2	20
			μg/l				98		2	20
1,2,3-Trichlorobenzene	19.6		μg/l		20.0			70-130 70-130		20
1,2,4-Trichlorobenzene	20.2		μg/l		20.0		101	70-130	0.8	
1,3,5-Trichlorobenzene	20.2		μg/l		20.0		101	70-130 70-130	3	20
1,1,1-Trichloroethane	23.3		μg/l		20.0		117	70-130	0.5	20
1,1,2-Trichloroethane	20.9		μg/l		20.0		104	70-130	4	20
Trichloroethene	20.3		μg/l		20.0		102	70-130	0.4	20 20

A :: - ld(-)	D 1	E	T.T''	*DD1	Spike	Source	0/DEC	%REC	DDD	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1424541 - SW846 5030 Water MS										
LCS Dup (1424541-BSD1)					Pro	epared & Ai	nalyzed: 17-	-Oct-14		
1,2,3-Trichloropropane	20.2		μg/l		20.0		101	70-130	0.7	20
1,2,4-Trimethylbenzene	21.8		μg/l		20.0		109	70-130	1	20
1,3,5-Trimethylbenzene	21.7		μg/l		20.0		109	70-130	0.05	20
Vinyl chloride	18.9		μg/l		20.0		95	70-130	0.05	20
m,p-Xylene	21.4		μg/l		20.0		107	70-130	2	20
o-Xylene	21.4		μg/l		20.0		107	70-130	2	20
Tetrahydrofuran	19.8		μg/l		20.0		99	70-130	2	20
Ethyl ether	19.2		μg/l		20.0		96	70-130	0.6	20
Tert-amyl methyl ether	22.0		μg/l		20.0		110	70-130	0.8	20
Ethyl tert-butyl ether	22.6		μg/l		20.0		113	70-130	0.9	20
Di-isopropyl ether	20.2		μg/l		20.0		101	70-130	1	20
Tert-Butanol / butyl alcohol	198		μg/l		200		99	70-130	0.3	20
1,4-Dioxane	205		μg/l		200		103	70-130	8	20
trans-1,4-Dichloro-2-butene	22.6		μg/l		20.0		113	70-130	0.4	20
Ethanol	336		μg/l		400		84	70-130	0.1	20
Surrogate: 4-Bromofluorobenzene	50.2		μg/l		50.0		100	70-130		
Surrogate: Toluene-d8	51.2		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.9		μg/l		50.0		104	70-130		
Surrogate: Dibromofluoromethane	54.1		μg/l		50.0		108	70-130		
Matrix Spike (1424541-MS1)			Source: SB	98147-18	Pro	epared & Aı	nalyzed: 17-	Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.6	D	μg/l		20.0	BRL	103	70-130		
Acetone	18.0	D	μg/l		20.0	BRL	90	70-130		
Acrylonitrile	18.9	D	μg/l		20.0	BRL	94	70-130		
Benzene	20.7	D	μg/l		20.0	BRL	103	70-130		
Bromobenzene	20.2	D	μg/l		20.0	BRL	101	70-130		
Bromochloromethane	21.0	D	μg/l		20.0	BRL	105	70-130		
Bromodichloromethane	24.6	D	μg/l		20.0	BRL	123	70-130		
Bromoform	20.4	D	μg/l		20.0	BRL	102	70-130		
Bromomethane	16.6	D	μg/l		20.0	BRL	83	70-130		
2-Butanone (MEK)	19.2	D	μg/l		20.0	BRL	96	70-130		
n-Butvlbenzene	19.2	D	μg/l		20.0	BRL	96	70-130		
sec-Butylbenzene	19.9	D	μg/l		20.0	BRL	100	70-130		
tert-Butylbenzene	20.2	D	μg/l		20.0	BRL	101	70-130		
Carbon disulfide	16.5	D	μg/l		20.0	BRL	82	70-130		
Carbon tetrachloride	23.4	D	μg/l		20.0	BRL	117	70-130		
Chlorobenzene	19.6	D			20.0	BRL	98	70-130		
		D	μg/l							
Chloroform	17.4		μg/l		20.0	BRL	87	70-130		
Chloroform	21.4	D	μg/l		20.0	BRL	107	70-130		
Chloromethane	14.3	D	μg/l		20.0	BRL	71	70-130		
2-Chlorotoluene	19.5	D	μg/l		20.0	BRL	98	70-130		
4-Chlorotoluene	19.9	D	μg/l		20.0	BRL	99	70-130		
1,2-Dibromo-3-chloropropane	19.6	D	μg/l		20.0	BRL	98	70-130		
Dibromochloromethane	26.0	D	μg/l		20.0	BRL	130	70-130		
1,2-Dibromoethane (EDB)	22.2	D	μg/l "		20.0	BRL	111	70-130		
Dibromomethane	21.9	D	μg/l		20.0	BRL	110	70-130		
1,2-Dichlorobenzene	19.4	D	μg/l		20.0	BRL	97	70-130		
1,3-Dichlorobenzene	19.8	D	μg/l		20.0	BRL	99	70-130		
1,4-Dichlorobenzene	18.7	D	μg/l		20.0	BRL	93	70-130		
Dichlorodifluoromethane (Freon12)	17.0	D	μg/l		20.0	BRL	85	70-130		
1,1-Dichloroethane	20.6	D	μg/l		20.0	BRL	103	70-130		
1,2-Dichloroethane	22.6	D	μg/l		20.0	BRL	113	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1424541 - SW846 5030 Water MS										
Matrix Spike (1424541-MS1)			Source: SE	398147-18	Pro	epared & Ai	nalyzed: 17-	Oct-14		
1,1-Dichloroethene	18.9	D	μg/l		20.0	BRL	94	70-130		
cis-1,2-Dichloroethene	20.6	D	μg/l		20.0	BRL	103	70-130		
trans-1,2-Dichloroethene	19.9	D	μg/l		20.0	BRL	100	70-130		
1,2-Dichloropropane	21.7	D	μg/l		20.0	BRL	109	70-130		
1,3-Dichloropropane	21.1	D	μg/l		20.0	BRL	106	70-130		
2,2-Dichloropropane	22.6	D	μg/l		20.0	BRL	113	70-130		
1,1-Dichloropropene	21.5	D	μg/l		20.0	BRL	107	70-130		
cis-1,3-Dichloropropene	24.6	D	μg/l		20.0	BRL	123	70-130		
trans-1,3-Dichloropropene	24.5	D	μg/l		20.0	BRL	122	70-130		
Ethylbenzene	19.9	D	μg/l		20.0	BRL	99	70-130		
Hexachlorobutadiene	18.8	D	μg/l		20.0	BRL	94	70-130		
2-Hexanone (MBK)	20.1	D	μg/l		20.0	BRL	101	70-130		
Isopropylbenzene	19.8	D	μg/l		20.0	BRL	99	70-130		
4-Isopropyltoluene	19.7	D	μg/l		20.0	BRL	98	70-130		
Methyl tert-butyl ether	21.3	D	μg/l		20.0	BRL	107	70-130		
4-Methyl-2-pentanone (MIBK)	20.6	D	μg/l		20.0	BRL	103	70-130		
Methylene chloride	18.7	D	μg/l		20.0	BRL	94	70-130		
Naphthalene	17.2	D	μg/l		20.0	BRL	86	70-130		
n-Propylbenzene	19.8	D	μg/l		20.0	BRL	99	70-130		
Styrene	20.0	D	μg/l		20.0	BRL	100	70-130		
1,1,1,2-Tetrachloroethane	21.7	D	μg/l		20.0	BRL	109	70-130		
1,1,2,2-Tetrachloroethane	20.1	D	μg/l		20.0	BRL	100	70-130		
Tetrachloroethene	22.5	D	μg/l		20.0	BRL	113	70-130		
Toluene	21.2	D	μg/l		20.0	BRL	106	70-130		
1,2,3-Trichlorobenzene	17.7	D	μg/l		20.0	BRL	89	70-130		
1,2,4-Trichlorobenzene	17.9	D	μg/l		20.0	BRL	90	70-130		
1,3,5-Trichlorobenzene	18.6	D	μg/l		20.0	BRL	93	70-130		
1,1,1-Trichloroethane	23.2	D	μg/l		20.0	BRL	116	70-130		
1,1,2-Trichloroethane	21.2	D	μg/l		20.0	BRL	106	70-130		
Trichloroethene	21.5	D	μg/l		20.0	0.09	107	70-130		
Trichlorofluoromethane (Freon 11)	20.9	D	μg/l		20.0	BRL	104	70-130		
1,2,3-Trichloropropane	19.1	D	μg/l		20.0	BRL	96	70-130		
1,2,4-Trimethylbenzene	20.8	D	μg/l		20.0	BRL	104	70-130		
1,3,5-Trimethylbenzene	20.8	D	μg/l		20.0	BRL	104	70-130		
Vinyl chloride	16.9	D	μg/l		20.0	BRL	85	70-130		
m,p-Xylene	19.8	D	μg/l		20.0	BRL	99	70-130		
o-Xylene	20.1	D	μg/l		20.0	BRL	101	70-130		
Tetrahydrofuran	19.2	D	μg/l		20.0	BRL	96	70-130		
Ethyl ether	18.8	D	μg/l		20.0	BRL	94	70-130		
Tert-amyl methyl ether	21.2	D	μg/l		20.0	BRL	106	70-130		
Ethyl tert-butyl ether	21.9	D	μg/l		20.0	BRL	110	70-130		
Di-isopropyl ether	20.9	D	μg/l		20.0	BRL	104	70-130		
Tert-Butanol / butyl alcohol	197	D	μg/l		200	BRL	98	70-130		
1,4-Dioxane	187	D	μg/l		200	BRL	93	70-130		
trans-1,4-Dichloro-2-butene	17.6	D	μg/l		20.0	BRL	88	70-130		
Ethanol	326	D	μg/l		400	BRL	82	70-130		
Surrogate: 4-Bromofluorobenzene	50.4		μg/l		50.0		101	70-130		
Surrogate: Toluene-d8	53.6		μg/l		50.0		107	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.3		μg/l		50.0		109	70-130		
Surrogate: Dibromofluoromethane	54.2		μg/l		50.0		108	70-130		
Matrix Spike Dup (1424541-MSD1)			Source: SE			epared & Aı				

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
3 17	Result	1 145	Cints	RDL	Level	Result	70KLC	Liiiii	МЪ	
Batch 1424541 - SW846 5030 Water MS					D			0-1-44		
Matrix Spike Dup (1424541-MSD1)		Б	Source: SE	<u>398147-18</u>			nalyzed: 17-		•	
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.0	D	μg/l		20.0	BRL	100	70-130	3	20
Acetone	20.6	D	μg/l		20.0	BRL	103	70-130	13	20
Acrylonitrile	18.6	D	μg/l		20.0	BRL	93	70-130	1	20
Benzene	20.0	D	μg/l		20.0	BRL	100	70-130	3	20
Bromobenzene	20.4	D	μg/l		20.0	BRL	102	70-130	0.8	20
Bromochloromethane	20.6	D	μg/l		20.0	BRL	103	70-130	2	20
Bromodichloromethane	25.6	D	μg/l		20.0	BRL	128	70-130	4	20
Bromoform	20.6	D	μg/l		20.0	BRL	103	70-130	1	20
Bromomethane	15.4	D	μg/l		20.0	BRL	77	70-130	8	20
2-Butanone (MEK)	20.1	D	μg/l		20.0	BRL	100	70-130	4	20
n-Butylbenzene	19.0	D	μg/l 		20.0	BRL	95	70-130	1	20
sec-Butylbenzene	19.6	D	μg/l		20.0	BRL	98	70-130	2	20
tert-Butylbenzene	20.1	D	μg/l		20.0	BRL	101	70-130	0.4	20
Carbon disulfide	15.7	D	μg/l		20.0	BRL	79	70-130	5	20
Carbon tetrachloride	21.8	D	μg/l 		20.0	BRL	109	70-130	7	20
Chlorobenzene	19.6	D	μg/l		20.0	BRL	98	70-130	0	20
Chloroethane	16.8	D	μg/l		20.0	BRL	84	70-130	4	20
Chloroform	20.8	D	μg/l		20.0	BRL	104	70-130	3	20
Chloromethane	14.0	D	μg/l		20.0	BRL	70	70-130	2	20
2-Chlorotoluene	19.4	D	μg/l		20.0	BRL	97	70-130	0.4	20
4-Chlorotoluene	19.8	D	μg/l		20.0	BRL	99	70-130	0.2	20
1,2-Dibromo-3-chloropropane	20.0	D	μg/l		20.0	BRL	100	70-130	2	20
Dibromochloromethane	26.1	D	μg/l		20.0	BRL	130	70-130	0.5	20
1,2-Dibromoethane (EDB)	21.9	D	μg/l		20.0	BRL	109	70-130	1	20
Dibromomethane	21.5	D	μg/l		20.0	BRL	108	70-130	2	20
1,2-Dichlorobenzene	19.4	D	μg/l		20.0	BRL	97	70-130	0.2	20
1,3-Dichlorobenzene	19.9	D	μg/l		20.0	BRL	100	70-130	0.9	20
1,4-Dichlorobenzene	18.6	D	μg/l		20.0	BRL	93	70-130	0.2	20
Dichlorodifluoromethane (Freon12)	16.1	D	μg/l		20.0	BRL	80	70-130	6	20
1,1-Dichloroethane	19.9	D	μg/l		20.0	BRL	100	70-130	3	20
1,2-Dichloroethane	22.4	D	μg/l		20.0	BRL	112	70-130	1	20
1,1-Dichloroethene	18.8	D	μg/l		20.0	BRL	94	70-130	0.5	20
cis-1,2-Dichloroethene	20.5	D	μg/l		20.0	BRL	103	70-130	0.4	20
trans-1,2-Dichloroethene	19.4	D	μg/l		20.0	BRL	97	70-130	2	20
1,2-Dichloropropane	21.3	D	μg/l		20.0	BRL	107	70-130	2	20
1,3-Dichloropropane	21.4	D	μg/l		20.0	BRL	107	70-130	1	20
2,2-Dichloropropane	21.6	D	μg/l		20.0	BRL	108	70-130	5	20
1,1-Dichloropropene	20.4	D	μg/l		20.0	BRL	102	70-130	5	20
cis-1,3-Dichloropropene	24.7	D	μg/l		20.0	BRL	124	70-130	0.2	20
trans-1,3-Dichloropropene	24.9	D	μg/l		20.0	BRL	124	70-130	2	20
Ethylbenzene	19.9	D	μg/l		20.0	BRL	100	70-130	0.2	20
Hexachlorobutadiene	18.3	D	μg/l		20.0	BRL	92	70-130	3	20
2-Hexanone (MBK)	20.9	D	μg/l		20.0	BRL	104	70-130	4	20
Isopropylbenzene	20.0	D	μg/l		20.0	BRL	100	70-130	1	20
4-Isopropyltoluene	19.2	D	μg/l		20.0	BRL	96	70-130	3	20
Methyl tert-butyl ether	21.3	D	μg/l		20.0	BRL	106	70-130	0.2	20
4-Methyl-2-pentanone (MIBK)	21.0	D	μg/l		20.0	BRL	105	70-130	2	20
Methylene chloride	18.3	D	μg/l		20.0	BRL	91	70-130	2	20
Naphthalene	18.0	D	μg/l		20.0	BRL	90	70-130	4	20
n-Propylbenzene	20.0	D	μg/l		20.0	BRL	100	70-130	1	20
Styrene	20.2	D	μg/l		20.0	BRL	101	70-130	0.7	20
1,1,1,2-Tetrachloroethane	21.6	D	μg/l		20.0	BRL	108	70-130	0.5	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424541 - SW846 5030 Water MS										
Matrix Spike Dup (1424541-MSD1)			Source: SB	98147-18	Pre	epared & Ai	nalyzed: 17-	Oct-14		
1,1,2,2-Tetrachloroethane	20.0	D	μg/l		20.0	BRL	100	70-130	0.2	20
Tetrachloroethene	21.1	D	μg/l		20.0	BRL	106	70-130	6	20
Toluene	20.5	D	μg/l		20.0	BRL	102	70-130	4	20
1,2,3-Trichlorobenzene	18.0	D	μg/l		20.0	BRL	90	70-130	2	20
1,2,4-Trichlorobenzene	18.4	D	μg/l		20.0	BRL	92	70-130	2	20
1,3,5-Trichlorobenzene	18.4	D	μg/l		20.0	BRL	92	70-130	1	20
1,1,1-Trichloroethane	22.2	D	μg/l		20.0	BRL	111	70-130	5	20
1,1,2-Trichloroethane	21.6	D	μg/l		20.0	BRL	108	70-130	2	20
Trichloroethene	20.5	D	μg/l		20.0	0.09	102	70-130	5	20
Trichlorofluoromethane (Freon 11)	19.5	D	μg/l		20.0	BRL	98	70-130	7	20
1,2,3-Trichloropropane	19.9	D	μg/l		20.0	BRL	100	70-130	4	20
1,2,4-Trimethylbenzene	20.8	D	μg/l		20.0	BRL	104	70-130	0.3	20
1,3,5-Trimethylbenzene	20.4	D	μg/l		20.0	BRL	102	70-130	2	20
Vinyl chloride	16.4	D	μg/l		20.0	BRL	82	70-130	3	20
m,p-Xylene	19.6	D	μg/l		20.0	BRL	98	70-130	1	20
o-Xylene	20.2	D	μg/l		20.0	BRL	101	70-130	0.4	20
Tetrahydrofuran	18.7	D	μg/l		20.0	BRL	93	70-130	3	20
Ethyl ether	18.8	D	μg/l		20.0	BRL	94	70-130	0.2	20
Tert-amyl methyl ether	21.0	D	μg/l		20.0	BRL	105	70-130	0.9	20
Ethyl tert-butyl ether	21.6	D			20.0	BRL	108	70-130	1	20
Di-isopropyl ether	20.4	D	μg/l		20.0	BRL	102	70-130	2	20
	20. 4 196	D	μg/l			BRL	98	70-130		20
Tert-Butanol / butyl alcohol 1,4-Dioxane		D	µg/l		200 200	BRL	96 98	70-130 70-130	0.5	20
•	196	D	µg/l						5	
trans-1,4-Dichloro-2-butene	18.0	D	µg/l		20.0	BRL	90	70-130	2	20
Ethanol	355		μg/l		400	BRL	89	70-130	9	20
Surrogate: 4-Bromofluorobenzene	51.2		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	52.8		μg/l		50.0		106	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.0		μg/l		50.0		108	70-130		
Surrogate: Dibromofluoromethane	54.0		μg/l		50.0		108	70-130		
Batch 1424671 - SW846 5035A Soil (low level)										
Blank (1424671-BLK1)					Pre	epared & Ai	nalyzed: 20-	Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 5.0		μg/kg wet	5.0						
Acetone	< 50.0		μg/kg wet	50.0						
Acrylonitrile	< 5.0		μg/kg wet	5.0						
Benzene	< 5.0		μg/kg wet	5.0						
Bromobenzene	< 5.0		μg/kg wet	5.0						
Bromochloromethane	< 5.0		μg/kg wet	5.0						
Bromodichloromethane	< 5.0		μg/kg wet	5.0						
Bromoform	< 5.0		μg/kg wet	5.0						
Bromomethane	< 10.0		μg/kg wet	10.0						
2-Butanone (MEK)	< 50.0		μg/kg wet	50.0						
n-Butylbenzene	< 5.0		μg/kg wet	5.0						
sec-Butylbenzene	< 5.0		μg/kg wet	5.0						
tert-Butylbenzene	< 5.0		μg/kg wet	5.0						
Carbon disulfide	< 10.0		μg/kg wet	10.0						
Carbon tetrachloride	< 5.0		μg/kg wet	5.0						
Chlorobenzene	< 5.0		μg/kg wet	5.0						
Chloroethane	< 10.0		μg/kg wet	10.0						
Chloroform	< 5.0		μg/kg wet	5.0						
Chloromethane	< 10.0		μg/kg wet μg/kg wet	10.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424671 - SW846 5035A Soil (low level)										
Blank (1424671-BLK1)					Pre	epared & Ar	nalyzed: 20-	Oct-14		
4-Chlorotoluene	< 5.0		μg/kg wet	5.0						
1,2-Dibromo-3-chloropropane	< 10.0		μg/kg wet	10.0						
Dibromochloromethane	< 5.0		μg/kg wet	5.0						
1,2-Dibromoethane (EDB)	< 5.0		μg/kg wet	5.0						
Dibromomethane	< 5.0		μg/kg wet	5.0						
1,2-Dichlorobenzene	< 5.0		μg/kg wet	5.0						
1,3-Dichlorobenzene	< 5.0		μg/kg wet	5.0						
1,4-Dichlorobenzene	< 5.0		μg/kg wet	5.0						
Dichlorodifluoromethane (Freon12)	< 10.0		μg/kg wet	10.0						
1,1-Dichloroethane	< 5.0		μg/kg wet	5.0						
1,2-Dichloroethane	< 5.0		μg/kg wet	5.0						
1,1-Dichloroethene	< 5.0		μg/kg wet	5.0						
cis-1,2-Dichloroethene	< 5.0		μg/kg wet	5.0						
trans-1,2-Dichloroethene	< 5.0		μg/kg wet	5.0						
1,2-Dichloropropane	< 5.0		μg/kg wet	5.0						
1,3-Dichloropropane	< 5.0		μg/kg wet	5.0						
2,2-Dichloropropane	< 5.0		μg/kg wet	5.0						
1,1-Dichloropropene	< 5.0		μg/kg wet	5.0						
cis-1,3-Dichloropropene	< 5.0		μg/kg wet	5.0						
trans-1,3-Dichloropropene	< 5.0		μg/kg wet	5.0						
Ethylbenzene	< 5.0		μg/kg wet	5.0						
Hexachlorobutadiene	< 5.0		μg/kg wet	5.0						
2-Hexanone (MBK)	< 50.0		μg/kg wet	50.0						
Isopropylbenzene	< 5.0		μg/kg wet	5.0						
4-Isopropyltoluene	< 5.0		μg/kg wet	5.0						
Methyl tert-butyl ether	< 5.0		μg/kg wet	5.0						
4-Methyl-2-pentanone (MIBK)	< 50.0		μg/kg wet	50.0						
Methylene chloride	< 10.0		μg/kg wet	10.0						
Naphthalene	< 5.0		μg/kg wet	5.0						
n-Propylbenzene	< 5.0		μg/kg wet	5.0						
Styrene	< 5.0		μg/kg wet	5.0						
1,1,1,2-Tetrachloroethane	< 5.0		μg/kg wet	5.0						
1,1,2,2-Tetrachloroethane	< 5.0		μg/kg wet	5.0						
Tetrachloroethene	< 5.0		μg/kg wet	5.0						
Toluene	< 5.0		μg/kg wet	5.0						
1,2,3-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,2,4-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,3,5-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,1,1-Trichloroethane	< 5.0		μg/kg wet	5.0						
1,1,2-Trichloroethane	< 5.0		μg/kg wet	5.0						
Trichloroethene	< 5.0		μg/kg wet	5.0						
Trichlorofluoromethane (Freon 11)	< 5.0		μg/kg wet	5.0						
1,2,3-Trichloropropane	< 5.0		μg/kg wet	5.0						
1,2,4-Trimethylbenzene	< 5.0		μg/kg wet	5.0						
1,3,5-Trimethylbenzene	< 5.0		μg/kg wet	5.0						
Vinyl chloride	< 5.0		μg/kg wet	5.0						
m,p-Xylene	< 10.0		μg/kg wet	10.0						
o-Xylene	< 5.0		μg/kg wet	5.0						
Tetrahydrofuran	< 10.0		μg/kg wet	10.0						
Ethyl ether	< 5.0		μg/kg wet	5.0						
Tert-amyl methyl ether	< 5.0		μg/kg wet	5.0						
Ethyl tert-butyl ether	< 5.0		μg/kg wet	5.0						

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Satch 1424671 - SW846 5035A Soil (low level)										_
Blank (1424671-BLK1)					Pre	epared & Ai	nalyzed: 20-	-Oct-14		
Di-isopropyl ether	< 5.0		μg/kg wet	5.0						
Tert-Butanol / butyl alcohol	< 50.0		μg/kg wet	50.0						
1,4-Dioxane	< 100		μg/kg wet	100						
trans-1,4-Dichloro-2-butene	< 25.0		μg/kg wet	25.0						
Ethanol	< 2000		μg/kg wet	2000						
Surrogate: 4-Bromofluorobenzene	49.0		μg/kg wet		50.0		98	70-130		
Surrogate: Toluene-d8	49.5		μg/kg wet		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	56.5		μg/kg wet		50.0		113	70-130		
Surrogate: Dibromofluoromethane	51.6		μg/kg wet		50.0		103	70-130		
LCS (1424671-BS1)			10 0			epared & Ai	nalyzed: 20-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	16.8		μg/kg wet		20.0		84	70-130		
Acetone	17.7		μg/kg wet		20.0		89	70-130		
Acrylonitrile	18.2		μg/kg wet		20.0		91	70-130		
Benzene	17.5		μg/kg wet		20.0		87	70-130		
Bromobenzene	18.4		μg/kg wet		20.0		92	70-130		
Bromochloromethane	17.5		μg/kg wet μg/kg wet		20.0		88	70-130		
Bromodichloromethane	17.6		μg/kg wet		20.0		88	70-130		
Bromoform	19.2		μg/kg wet		20.0		96	70-130		
Bromomethane	21.2		μg/kg wet		20.0		106	70-130		
2-Butanone (MEK)	21.2		μg/kg wet		20.0		106	70-130		
n-Butylbenzene	17.7		μg/kg wet		20.0		89	70-130		
sec-Butylbenzene	18.5		μg/kg wet		20.0		93	70-130		
tert-Butylbenzene	18.7		μg/kg wet μg/kg wet		20.0		94	70-130		
Carbon disulfide	18.4		μg/kg wet		20.0		92	70-130		
Carbon tetrachloride	17.5		μg/kg wet μg/kg wet		20.0		87	70-130		
Chlorobenzene	17.3		μg/kg wet μg/kg wet		20.0		88	70-130		
Chloroethane	17.7		μg/kg wet μg/kg wet		20.0		89	70-130		
Chloroform	16.7		μg/kg wet μg/kg wet		20.0		83	70-130		
Chloromethane	18.3		μg/kg wet μg/kg wet		20.0		91	70-130		
2-Chlorotoluene	18.6		μg/kg wet μg/kg wet		20.0		93	70-130		
4-Chlorotoluene	18.8				20.0		93	70-130		
			μg/kg wet							
1,2-Dibromo-3-chloropropane Dibromochloromethane	16.6 18.2		µg/kg wet		20.0 20.0		83 91	70-130 70-130		
1,2-Dibromoethane (EDB)			μg/kg wet							
1,2-Dibromoethane (EDB) Dibromomethane	18.5		µg/kg wet		20.0 20.0		92 87	70-130 70-130		
	17.4		μg/kg wet							
1,2-Dichlorobenzene	17.9		μg/kg wet		20.0		90	70-130		
1,3-Dichlorobenzene	18.7		µg/kg wet		20.0		93 86	70-130 70-130		
1,4-Dichlorobenzene	17.1		μg/kg wet		20.0		86	70-130		
Dichlorodifluoromethane (Freon12)	18.3		μg/kg wet		20.0		91 95	70-130		
1,1-Dichloroethane	17.1		μg/kg wet		20.0		85 85	70-130		
1,2-Dichloroethane	16.9		μg/kg wet		20.0		85 87	70-130		
1,1-Dichloroethene	17.4		μg/kg wet		20.0		87	70-130		
cis-1,2-Dichloroethene	17.6		μg/kg wet		20.0		88	70-130		
trans-1,2-Dichloroethene	17.3		μg/kg wet		20.0		86	70-130		
1,2-Dichloropropane	16.8		μg/kg wet		20.0		84	70-130		
1,3-Dichloropropane	17.4		μg/kg wet		20.0		87	70-130		
2,2-Dichloropropane	17.3		μg/kg wet		20.0		86	70-130		
1,1-Dichloropropene	17.9		μg/kg wet		20.0		89	70-130		
cis-1,3-Dichloropropene	17.2		μg/kg wet		20.0		86	70-130		
trans-1,3-Dichloropropene	16.9		μg/kg wet		20.0		84	70-130		
Ethylbenzene	18.4		μg/kg wet		20.0		92	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424671 - SW846 5035A Soil (low level)										
LCS (1424671-BS1)					Pre	epared & Ar	nalyzed: 20-	Oct-14		
Hexachlorobutadiene	17.4		μg/kg wet		20.0		87	70-130		
2-Hexanone (MBK)	15.5		μg/kg wet		20.0		78	70-130		
Isopropylbenzene	18.3		μg/kg wet		20.0		91	70-130		
4-Isopropyltoluene	18.1		μg/kg wet		20.0		91	70-130		
Methyl tert-butyl ether	17.6		μg/kg wet		20.0		88	70-130		
4-Methyl-2-pentanone (MIBK)	17.2		μg/kg wet		20.0		86	70-130		
Methylene chloride	16.8		μg/kg wet		20.0		84	70-130		
Naphthalene	14.9		μg/kg wet		20.0		74	70-130		
n-Propylbenzene	19.0		μg/kg wet		20.0		95	70-130		
Styrene	19.0		μg/kg wet		20.0		95	70-130		
1,1,1,2-Tetrachloroethane	18.0		μg/kg wet		20.0		90	70-130		
1,1,2,2-Tetrachloroethane	18.4		μg/kg wet		20.0		92	70-130		
Tetrachloroethene	17.7		μg/kg wet		20.0		89	70-130		
Toluene	17.6		μg/kg wet		20.0		88	70-130		
1,2,3-Trichlorobenzene	15.8		μg/kg wet		20.0		79	70-130		
1,2,4-Trichlorobenzene	15.5		μg/kg wet		20.0		78	70-130		
1,3,5-Trichlorobenzene	18.9		μg/kg wet		20.0		95	70-130		
1,1,1-Trichloroethane	17.8		μg/kg wet		20.0		89	70-130		
1,1,2-Trichloroethane	17.0		μg/kg wet μg/kg wet		20.0		85	70-130		
Trichloroethene	17.5				20.0		88	70-130		
Trichlorofluoromethane (Freon 11)			μg/kg wet		20.0		86	70-130		
	17.2		μg/kg wet				92			
1,2,3-Trichloropropane	18.4		μg/kg wet		20.0		92 95	70-130		
1,2,4-Trimethylbenzene	19.1		μg/kg wet		20.0			70-130		
1,3,5-Trimethylbenzene	19.1		μg/kg wet		20.0		95	70-130		
Vinyl chloride	17.8		μg/kg wet		20.0		89	70-130		
m,p-Xylene	18.8		μg/kg wet		20.0		94	70-130		
o-Xylene	18.5		μg/kg wet		20.0		93	70-130		
Tetrahydrofuran	17.0		μg/kg wet		20.0		85	70-130		
Ethyl ether	20.4		μg/kg wet		20.0		102	70-130		
Tert-amyl methyl ether	16.6		μg/kg wet		20.0		83	70-130		
Ethyl tert-butyl ether	17.5		μg/kg wet		20.0		87	70-130		
Di-isopropyl ether	17.2		μg/kg wet		20.0		86	70-130		
Tert-Butanol / butyl alcohol	186		μg/kg wet		200		93	70-130		
1,4-Dioxane	173		μg/kg wet		200		86	70-130		
trans-1,4-Dichloro-2-butene	17.4		μg/kg wet		20.0		87	70-130		
Ethanol	396		μg/kg wet		400		99	70-130		
Surrogate: 4-Bromofluorobenzene	53.2		μg/kg wet		50.0		106	70-130		
Surrogate: Toluene-d8	50.3		μg/kg wet		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.0		μg/kg wet		50.0		98	70-130		
Surrogate: Dibromofluoromethane	50.2		μg/kg wet		50.0		100	70-130		
LCS Dup (1424671-BSD1)					Pre	epared & Ar	nalyzed: 20-	-Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	17.5		μg/kg wet		20.0		87	70-130	4	30
Acetone	18.2		μg/kg wet		20.0		91	70-130	2	30
Acrylonitrile	18.7		μg/kg wet		20.0		93	70-130	3	30
Benzene	18.4		μg/kg wet		20.0		92	70-130	5	30
Bromobenzene	19.0		μg/kg wet		20.0		95	70-130	3	30
Bromochloromethane	18.7		μg/kg wet		20.0		93	70-130	6	30
Bromodichloromethane	18.6		μg/kg wet μg/kg wet		20.0		93	70-130	5	30
Bromoform	19.4				20.0		93 97	70-130	1	30
Bromomethane			µg/kg wet		20.0		97 106	70-130 70-130	0.5	30
	21.3		μg/kg wet							30
2-Butanone (MEK)	16.6		μg/kg wet		20.0		83	70-130	24	3

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424671 - SW846 5035A Soil (low level)										
LCS Dup (1424671-BSD1)					<u>Pre</u>	epared & Ar	nalyzed: 20-	Oct-14		
n-Butylbenzene	18.3		μg/kg wet		20.0		92	70-130	3	30
sec-Butylbenzene	19.3		μg/kg wet		20.0		97	70-130	4	30
tert-Butylbenzene	19.2		μg/kg wet		20.0		96	70-130	3	30
Carbon disulfide	19.0		μg/kg wet		20.0		95	70-130	3	30
Carbon tetrachloride	18.4		μg/kg wet		20.0		92	70-130	5	30
Chlorobenzene	18.5		μg/kg wet		20.0		93	70-130	5	30
Chloroethane	18.4		μg/kg wet		20.0		92	70-130	3	30
Chloroform	17.6		μg/kg wet		20.0		88	70-130	6	30
Chloromethane	18.8		μg/kg wet		20.0		94	70-130	3	30
2-Chlorotoluene	19.2		μg/kg wet		20.0		96	70-130	3	30
4-Chlorotoluene	19.8		μg/kg wet		20.0		99	70-130	5	30
1,2-Dibromo-3-chloropropane	17.3		μg/kg wet		20.0		87	70-130	4	30
Dibromochloromethane	19.4		μg/kg wet		20.0		97	70-130	7	30
1,2-Dibromoethane (EDB)	19.4		μg/kg wet μg/kg wet		20.0		97	70-130	5	30
Dibromomethane	18.1		μg/kg wet		20.0		90	70-130	4	30
1,2-Dichlorobenzene	18.5				20.0		93	70-130	3	30
			μg/kg wet		20.0		99	70-130	5	30
1,3-Dichlorobenzene	19.7		μg/kg wet					70-130 70-130		
1,4-Dichlorobenzene	17.9		μg/kg wet		20.0		89		4	30
Dichlorodifluoromethane (Freon12)	18.6		μg/kg wet		20.0		93	70-130	2	30
1,1-Dichloroethane	17.8		μg/kg wet		20.0		89	70-130	4	30
1,2-Dichloroethane	17.8		μg/kg wet		20.0		89	70-130	5	30
1,1-Dichloroethene	18.1		μg/kg wet		20.0		90	70-130	4	30
cis-1,2-Dichloroethene	18.4		μg/kg wet		20.0		92	70-130	4	30
trans-1,2-Dichloroethene	18.3		μg/kg wet		20.0		92	70-130	6	30
1,2-Dichloropropane	18.2		μg/kg wet		20.0		91	70-130	8	30
1,3-Dichloropropane	18.5		μg/kg wet		20.0		93	70-130	6	30
2,2-Dichloropropane	17.7		μg/kg wet		20.0		89	70-130	2	30
1,1-Dichloropropene	18.4		μg/kg wet		20.0		92	70-130	3	30
cis-1,3-Dichloropropene	18.5		μg/kg wet		20.0		93	70-130	7	30
trans-1,3-Dichloropropene	17.8		μg/kg wet		20.0		89	70-130	5	30
Ethylbenzene	19.3		μg/kg wet		20.0		97	70-130	5	30
Hexachlorobutadiene	17.8		μg/kg wet		20.0		89	70-130	2	30
2-Hexanone (MBK)	16.0		μg/kg wet		20.0		80	70-130	3	30
Isopropylbenzene	19.1		μg/kg wet		20.0		96	70-130	5	30
4-Isopropyltoluene	18.9		μg/kg wet		20.0		94	70-130	4	30
Methyl tert-butyl ether	18.9		μg/kg wet		20.0		94	70-130	7	30
4-Methyl-2-pentanone (MIBK)	18.7		μg/kg wet		20.0		94	70-130	8	30
Methylene chloride	17.7		μg/kg wet		20.0		89	70-130	6	30
Naphthalene	15.0		μg/kg wet		20.0		75	70-130	1	30
n-Propylbenzene	19.8		μg/kg wet		20.0		99	70-130	5	30
Styrene	19.6		μg/kg wet		20.0		98	70-130	3	30
1,1,1,2-Tetrachloroethane	18.5		μg/kg wet		20.0		93	70-130	3	30
1,1,2,2-Tetrachloroethane	18.6		μg/kg wet		20.0		93	70-130	1	30
Tetrachloroethene	18.6				20.0		93	70-130	5	30
Toluene	18.2		μg/kg wet μg/kg wet		20.0		93	70-130	3	30
										30
1,2,3-Trichlorobenzene	16.6		μg/kg wet		20.0		83	70-130	5	
1,2,4-Trichlorobenzene	16.5		μg/kg wet		20.0		82	70-130	6	30
1,3,5-Trichlorobenzene	19.8		μg/kg wet		20.0		99	70-130	5	30
1,1,1-Trichloroethane	18.5		μg/kg wet		20.0		92	70-130	4	30
1,1,2-Trichloroethane	18.1		μg/kg wet		20.0		91	70-130	6	30
Trichloroethene	17.8		μg/kg wet		20.0		89	70-130	2	30
Trichlorofluoromethane (Freon 11)	17.8		μg/kg wet		20.0		89	70-130	4	30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424671 - SW846 5035A Soil (low level)										
LCS Dup (1424671-BSD1)					Pre	anared & Ar	nalyzed: 20-	Oct-14		
<u> </u>	18.8		ua/ka wot		20.0	spareu & Ai	94	70-130	2	30
1,2,3-Trichloropropane	19.8		µg/kg wet		20.0		99	70-130	4	30
1,2,4-Trimethylbenzene	19.6		μg/kg wet				98	70-130		30
1,3,5-Trimethylbenzene			μg/kg wet		20.0				3	
Vinyl chloride	18.5		μg/kg wet		20.0		93	70-130	4	30
m,p-Xylene	19.2		μg/kg wet		20.0		96	70-130	3	30
o-Xylene	19.2		μg/kg wet		20.0		96	70-130	3	30
Tetrahydrofuran	18.2		μg/kg wet		20.0		91	70-130	7	30
Ethyl ether	20.5		μg/kg wet		20.0		103	70-130	0.8	30
Tert-amyl methyl ether	17.7		μg/kg wet		20.0		89	70-130	6	30
Ethyl tert-butyl ether	18.7		μg/kg wet		20.0		93	70-130	7	30
Di-isopropyl ether	18.3		μg/kg wet		20.0		92	70-130	6	30
Tert-Butanol / butyl alcohol	194		μg/kg wet		200		97	70-130	5	30
1,4-Dioxane	187		μg/kg wet		200		94	70-130	8	30
trans-1,4-Dichloro-2-butene	18.1		μg/kg wet		20.0		90	70-130	3	30
Ethanol	357		μg/kg wet		400		89	70-130	10	30
Surrogate: 4-Bromofluorobenzene	52.4		μg/kg wet		50.0		105	70-130		
Surrogate: Toluene-d8	50.4		μg/kg wet		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.8		μg/kg wet		50.0		100	70-130		
Surrogate: Dibromofluoromethane	50.4		μg/kg wet		50.0		101	70-130		
Matrix Spike (1424671-MS1)			Source: SB	98147-14RE	<u> Pre</u>	epared & Ar	nalyzed: 20-	Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.0		μg/kg dry		20.0	BRL	100	70-130		
Acetone	64.2	QM7	μg/kg dry		20.0	35.1	146	70-130		
Acrylonitrile	26.4	QM7	μg/kg dry		20.0	BRL	132	70-130		
Benzene	20.5		μg/kg dry		20.0	BRL	102	70-130		
Bromobenzene	21.6		μg/kg dry		20.0	BRL	108	70-130		
Bromochloromethane	22.3		μg/kg dry		20.0	BRL	112	70-130		
Bromodichloromethane	21.9		μg/kg dry		20.0	BRL	109	70-130		
Bromoform	24.8		μg/kg dry		20.0	BRL	124	70-130		
Bromomethane	18.9		μg/kg dry		20.0	0.2	93	70-130		
2-Butanone (MEK)	46.6	QM7	μg/kg dry		20.0	BRL	233	70-130		
n-Butylbenzene	20.9		μg/kg dry		20.0	BRL	104	70-130		
sec-Butylbenzene	21.7		μg/kg dry		20.0	BRL	108	70-130		
tert-Butylbenzene	21.7		μg/kg dry		20.0	BRL	109	70-130		
Carbon disulfide	13.9		μg/kg dry		20.0	BRL	70	70-130		
Carbon tetrachloride	20.6		μg/kg dry		20.0	BRL	103	70-130		
Chlorobenzene	21.1				20.0	BRL	106	70-130		
Chloroethane	19.5		µg/kg dry		20.0	BRL	98	70-130		
			μg/kg dry							
Chloroform	20.5		μg/kg dry		20.0	BRL	102	70-130		
Chloromethane	16.8		μg/kg dry		20.0	BRL	84 107	70-130		
2-Chlorotoluene	21.4		μg/kg dry		20.0	BRL	107	70-130		
4-Chlorotoluene	22.0		μg/kg dry		20.0	BRL	110	70-130		
1,2-Dibromo-3-chloropropane	21.1		μg/kg dry		20.0	BRL	105	70-130		
Dibromochloromethane	23.5		μg/kg dry		20.0	BRL	117	70-130		
1,2-Dibromoethane (EDB)	24.2		μg/kg dry		20.0	BRL	121	70-130		
Dibromomethane	22.1		μg/kg dry		20.0	BRL	110	70-130		
1,2-Dichlorobenzene	20.7		μg/kg dry		20.0	BRL	104	70-130		
1,3-Dichlorobenzene	21.4		μg/kg dry		20.0	BRL	107	70-130		
1,4-Dichlorobenzene	19.6		μg/kg dry		20.0	BRL	98	70-130		
Dichlorodifluoromethane (Freon12)	18.5		μg/kg dry		20.0	BRL	93	70-130		
1,1-Dichloroethane	20.4		μg/kg dry		20.0	BRL	102	70-130		
1,2-Dichloroethane	21.7		μg/kg dry		20.0	BRL	108	70-130		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
satch 1424671 - SW846 5035A Soil (low level)										
Matrix Spike (1424671-MS1)			Source: SB	98147-14RE	<u>1 Pre</u>	epared & Ar	nalyzed: 20-	Oct-14		
1,1-Dichloroethene	19.6		μg/kg dry		20.0	BRL	98	70-130		
cis-1,2-Dichloroethene	21.4		μg/kg dry		20.0	BRL	107	70-130		
trans-1,2-Dichloroethene	19.4		μg/kg dry		20.0	BRL	97	70-130		
1,2-Dichloropropane	21.8		μg/kg dry		20.0	BRL	109	70-130		
1,3-Dichloropropane	23.2		μg/kg dry		20.0	BRL	116	70-130		
2,2-Dichloropropane	22.1		μg/kg dry		20.0	BRL	110	70-130		
1,1-Dichloropropene	20.5		μg/kg dry		20.0	BRL	102	70-130		
cis-1,3-Dichloropropene	22.0		μg/kg dry		20.0	BRL	110	70-130		
trans-1,3-Dichloropropene	21.8		μg/kg dry		20.0	BRL	109	70-130		
Ethylbenzene	21.8		μg/kg dry		20.0	BRL	109	70-130		
Hexachlorobutadiene	17.5		μg/kg dry		20.0	BRL	88	70-130		
2-Hexanone (MBK)	33.0	QM7	μg/kg dry		20.0	BRL	165	70-130		
Isopropylbenzene	21.6		μg/kg dry		20.0	BRL	108	70-130		
4-Isopropyltoluene	21.0		μg/kg dry		20.0	BRL	105	70-130		
Methyl tert-butyl ether	23.6		μg/kg dry		20.0	BRL	118	70-130		
4-Methyl-2-pentanone (MIBK)	26.2	QM7	μg/kg dry		20.0	BRL	131	70-130		
Methylene chloride	19.9		μg/kg dry		20.0	BRL	99	70-130		
Naphthalene	14.9		μg/kg dry		20.0	BRL	75	70-130		
n-Propylbenzene	22.0		μg/kg dry		20.0	BRL	110	70-130		
Styrene	22.4		μg/kg dry		20.0	BRL	112	70-130		
1,1,1,2-Tetrachloroethane	21.7		μg/kg dry		20.0	BRL	108	70-130		
1,1,2,2-Tetrachloroethane	24.2		μg/kg dry		20.0	BRL	121	70-130		
Tetrachloroethene	21.0		μg/kg dry		20.0	BRL	105	70-130		
Toluene	20.8		μg/kg dry		20.0	BRL	104	70-130		
1,2,3-Trichlorobenzene	15.8		μg/kg dry		20.0	BRL	79	70-130		
1,2,4-Trichlorobenzene	16.0		μg/kg dry		20.0	BRL	80	70-130		
1,3,5-Trichlorobenzene	20.6		μg/kg dry		20.0	BRL	103	70-130		
1,1,1-Trichloroethane	21.0		μg/kg dry		20.0	BRL	105	70-130		
1,1,2-Trichloroethane	23.3		μg/kg dry		20.0	BRL	117	70-130		
Trichloroethene	20.3		μg/kg dry		20.0	0.3	100	70-130		
Trichlorofluoromethane (Freon 11)	18.9		μg/kg dry		20.0	BRL	95	70-130		
1,2,3-Trichloropropane	24.5		μg/kg dry		20.0	BRL	123	70-130		
1,2,4-Trimethylbenzene	22.2		μg/kg dry		20.0	BRL	111	70-130		
1,3,5-Trimethylbenzene	21.9		μg/kg dry		20.0	BRL	109	70-130		
Vinyl chloride	18.1		μg/kg dry		20.0	BRL	91	70-130		
m,p-Xylene	21.9		μg/kg dry μg/kg dry		20.0	BRL	109	70-130		
o-Xylene	21.9		μg/kg dry		20.0	BRL	109	70-130		
Tetrahydrofuran	25.7		μg/kg dry		20.0	BRL	128	70-130		
Ethyl ether	22.4		μg/kg dry		20.0	BRL	112	70-130		
Tert-amyl methyl ether	21.7		μg/kg dry		20.0	BRL	108	70-130		
Ethyl tert-butyl ether	21.7		μg/kg dry μg/kg dry		20.0	BRL	113	70-130		
Di-isopropyl ether	22.0		μg/kg dry μg/kg dry		20.0	BRL	110	70-130 70-130		
Tert-Butanol / butyl alcohol	22.0 270	QM7	μg/kg dry μg/kg dry		20.0	BRL	135	70-130		
1,4-Dioxane	270	QM7	μg/kg dry μg/kg dry		200	BRL	142	70-130 70-130		
trans-1,4-Dichloro-2-butene		QIVI1			20.0	BRL	117	70-130 70-130		
	23.3		µg/kg dry							
Ethanol	535		μg/kg dry		400	35.1	125	70-130		
Surrogate: 4-Bromofluorobenzene	53.7		μg/kg dry		50.0		107	70-130		
Surrogate: Toluene-d8	50.7		μg/kg dry		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	53.1		μg/kg dry		50.0		106	70-130		
Surrogate: Dibromofluoromethane	51.8		μg/kg dry		50.0		104	70-130		
Matrix Spike Dup (1424671-MSD1)			Source: SB	98147-14RE ⁻	<u>1</u> Pre	epared & Ar	nalyzed: 20-	Oct-14		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Satch 1424671 - SW846 5035A Soil (low level)										
Matrix Spike Dup (1424671-MSD1)			Source: SB	98147-14RE ²	ı <u>Pr</u> e	epared & Ar	nalyzed: 20-	-Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.2		μg/kg dry		20.0	BRL	101	70-130	0.5	30
Acetone	118	QM7, QR5	μg/kg dry		20.0	27.0	457	70-130	103	30
Acrylonitrile	29.0	QM7	μg/kg dry		20.0	BRL	145	70-130	9	30
Benzene	20.6		μg/kg dry		20.0	BRL	103	70-130	0.3	30
Bromobenzene	20.4		μg/kg dry		20.0	BRL	102	70-130	6	30
Bromochloromethane	22.8		μg/kg dry		20.0	BRL	114	70-130	2	30
Bromodichloromethane	22.2		μg/kg dry		20.0	BRL	111	70-130	2	30
Bromoform	25.2		μg/kg dry		20.0	BRL	126	70-130	2	30
Bromomethane	19.6		μg/kg dry		20.0	0.2	97	70-130	4	30
2-Butanone (MEK)	45.5	QM7	μg/kg dry		20.0	BRL	228	70-130	2	30
n-Butylbenzene	17.6		μg/kg dry		20.0	BRL	88	70-130	17	30
sec-Butylbenzene	19.3		μg/kg dry		20.0	BRL	96	70-130	12	30
tert-Butylbenzene	20.1		μg/kg dry		20.0	BRL	100	70-130	8	30
Carbon disulfide	14.6		μg/kg dry		20.0	BRL	73	70-130	5	30
Carbon tetrachloride	20.4		μg/kg dry		20.0	BRL	102	70-130	1	30
Chlorobenzene	20.7		μg/kg dry		20.0	BRL	104	70-130	2	30
Chloroethane	20.0		μg/kg dry		20.0	BRL	100	70-130	2	30
Chloroform	20.7		μg/kg dry		20.0	BRL	103	70-130	8.0	30
Chloromethane	17.6		μg/kg dry		20.0	BRL	88	70-130	5	30
2-Chlorotoluene	20.2		μg/kg dry		20.0	BRL	101	70-130	5	30
4-Chlorotoluene	19.9		μg/kg dry		20.0	BRL	100	70-130	10	30
1,2-Dibromo-3-chloropropane	22.6		μg/kg dry		20.0	BRL	113	70-130	7	30
Dibromochloromethane	23.8		μg/kg dry		20.0	BRL	119	70-130	1	30
1,2-Dibromoethane (EDB)	25.7		μg/kg dry		20.0	BRL	129	70-130	6	30
Dibromomethane	22.9		μg/kg dry		20.0	BRL	114	70-130	4	30
1,2-Dichlorobenzene	18.9		μg/kg dry		20.0	BRL	94	70-130	9	30
1,3-Dichlorobenzene	19.7		μg/kg dry		20.0	BRL	98	70-130	9	30
1,4-Dichlorobenzene	17.9		μg/kg dry		20.0	BRL	89	70-130	9	30
Dichlorodifluoromethane (Freon12)	18.5		μg/kg dry		20.0	BRL	92	70-130	0.2	30
1,1-Dichloroethane	20.5		μg/kg dry		20.0	BRL	103	70-130	0.6	30
1,2-Dichloroethane	21.8		μg/kg dry		20.0	BRL	109	70-130	0.4	30
1,1-Dichloroethene	19.7		μg/kg dry		20.0	BRL	99	70-130	0.4	30
cis-1,2-Dichloroethene	21.8		μg/kg dry		20.0	BRL	109	70-130	2	30
trans-1,2-Dichloroethene	19.2		μg/kg dry		20.0	BRL	96	70-130	0.9	30
1,2-Dichloropropane	21.8		μg/kg dry		20.0	BRL	109	70-130	0.4	30
1,3-Dichloropropane	23.9		μg/kg dry		20.0	BRL	119	70-130	3	30
2,2-Dichloropropane	22.8		μg/kg dry		20.0	BRL	114	70-130	3	30
1,1-Dichloropropene	20.3		μg/kg dry		20.0	BRL	101	70-130	1	30
cis-1,3-Dichloropropene	21.7		μg/kg dry		20.0	BRL	109	70-130	1	30
trans-1,3-Dichloropropene	21.9		μg/kg dry		20.0	BRL	110	70-130	0.4	30
Ethylbenzene	20.7		μg/kg dry		20.0	BRL	104	70-130	5	30
Hexachlorobutadiene	14.5		μg/kg dry		20.0	BRL	73	70-130	19	30
2-Hexanone (MBK)	30.3	QM7	μg/kg dry		20.0	BRL	152	70-130	8	30
Isopropylbenzene	20.6		μg/kg dry		20.0	BRL	103	70-130	5	30
4-Isopropyltoluene	18.5		μg/kg dry μg/kg dry		20.0	BRL	92	70-130	13	30
Methyl tert-butyl ether	24.9		μg/kg dry μg/kg dry		20.0	BRL	124	70-130	5	30
4-Methyl-2-pentanone (MIBK)	27.8	QM7	μg/kg dry μg/kg dry		20.0	BRL	139	70-130	6	30
Methylene chloride	20.6	~.···	μg/kg dry μg/kg dry		20.0	BRL	103	70-130	4	30
Naphthalene	14.3		μg/kg dry μg/kg dry		20.0	BRL	71	70-130	4	30
n-Propylbenzene	14.3 20.2				20.0	BRL	101	70-130 70-130	9	30
11-1 TOPYINGHZGHG	20.2		μg/kg dry		∠∪.∪	DKL	101	10-130	9	30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424671 - SW846 5035A Soil (low level)										
Matrix Spike Dup (1424671-MSD1)			Source: SB	98147-14RE	<u> Pre</u>	epared & Aı	nalyzed: 20-	-Oct-14		
1,1,1,2-Tetrachloroethane	21.7		μg/kg dry		20.0	BRL	109	70-130	0.3	30
1,1,2,2-Tetrachloroethane	25.3		μg/kg dry		20.0	BRL	126	70-130	4	30
Tetrachloroethene	20.5		μg/kg dry		20.0	BRL	102	70-130	2	30
Toluene	20.5		μg/kg dry		20.0	BRL	103	70-130	1	30
1,2,3-Trichlorobenzene	13.5	QM7	μg/kg dry		20.0	BRL	67	70-130	16	30
1,2,4-Trichlorobenzene	13.6	QM7	μg/kg dry		20.0	BRL	68	70-130	16	30
1,3,5-Trichlorobenzene	16.8		μg/kg dry		20.0	BRL	84	70-130	21	30
1,1,1-Trichloroethane	20.9		μg/kg dry		20.0	BRL	104	70-130	0.8	30
1,1,2-Trichloroethane	24.1		μg/kg dry		20.0	BRL	121	70-130	3	30
Trichloroethene	20.2		μg/kg dry		20.0	0.2	100	70-130	0.4	30
Trichlorofluoromethane (Freon 11)	19.4		μg/kg dry		20.0	BRL	97	70-130	3	30
1,2,3-Trichloropropane	25.6		μg/kg dry		20.0	BRL	128	70-130	4	30
1,2,4-Trimethylbenzene	20.1		μg/kg dry		20.0	BRL	100	70-130	10	30
1,3,5-Trimethylbenzene	19.9		μg/kg dry		20.0	BRL	100	70-130	9	30
Vinyl chloride	18.8		μg/kg dry		20.0	BRL	94	70-130	4	30
m,p-Xylene	20.6		μg/kg dry		20.0	BRL	103	70-130	6	30
o-Xylene	20.8		μg/kg dry		20.0	BRL	104	70-130	5	30
Tetrahydrofuran	27.5	QM7	μg/kg dry		20.0	BRL	137	70-130	7	30
Ethyl ether	24.0		μg/kg dry		20.0	BRL	120	70-130	7	30
Tert-amyl methyl ether	22.4		μg/kg dry		20.0	BRL	112	70-130	3	30
Ethyl tert-butyl ether	23.4		μg/kg dry		20.0	BRL	117	70-130	3	30
Di-isopropyl ether	22.4		μg/kg dry		20.0	BRL	112	70-130	2	30
Tert-Butanol / butyl alcohol	295	QM7	μg/kg dry		200	BRL	148	70-130	9	30
1,4-Dioxane	320	QM7	μg/kg dry		200	BRL	160	70-130	12	30
trans-1,4-Dichloro-2-butene	24.7		μg/kg dry		20.0	BRL	123	70-130	6	30
Ethanol	641	QM7	μg/kg dry		400	27.0	154	70-130	21	30
Surrogate: 4-Bromofluorobenzene	53.9		μg/kg dry		50.0		108	70-130		
Surrogate: Toluene-d8	51.3		μg/kg dry		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	53.5		μg/kg dry		50.0		107	70-130		
Surrogate: Dibromofluoromethane	53.0		μg/kg dry		50.0		106	70-130		
Batch 1424672 - SW846 5035A Soil (low level)										
Blank (1424672-BLK1)					Pre	enared & Ai	nalyzed: 20-	-Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 5.0		μg/kg wet	5.0		opa.oa 	10.7200.20	<u> </u>		
Acetone	< 50.0		μg/kg wet	50.0						
Acrylonitrile	< 5.0		μg/kg wet	5.0						
Benzene	< 5.0		μg/kg wet	5.0						
Bromobenzene	< 5.0		μg/kg wet	5.0						
Bromochloromethane	< 5.0		μg/kg wet	5.0						
Bromodichloromethane	< 5.0		μg/kg wet	5.0						
Bromoform	< 5.0		μg/kg wet	5.0						
Bromomethane	< 10.0		μg/kg wet	10.0						
2-Butanone (MEK)	< 50.0		μg/kg wet	50.0						
n-Butylbenzene	< 5.0		μg/kg wet μg/kg wet	5.0						
sec-Butylbenzene	< 5.0		μg/kg wet μg/kg wet	5.0						
tert-Butylbenzene	< 5.0		μg/kg wet μg/kg wet	5.0						
Carbon disulfide	< 10.0		μg/kg wet μg/kg wet	10.0						
Carbon tetrachloride	< 5.0		μg/kg wet μg/kg wet	5.0						
Chlorobenzene	< 5.0		μg/kg wet μg/kg wet	5.0						
Chloroethane	< 10.0		μg/kg wet	10.0						
Chloroform	< 5.0		μg/kg wet μg/kg wet	5.0						
Omoroionii	\ J.U		pg/kg Wel	5.0						

alyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
tch 1424672 - SW846 5035A Soil (low level)										
Blank (1424672-BLK1)					Pre	epared & Ai	nalyzed: 20-	-Oct-14		
2-Chlorotoluene	< 5.0		μg/kg wet	5.0						
4-Chlorotoluene	< 5.0		μg/kg wet	5.0						
1,2-Dibromo-3-chloropropane	< 10.0		μg/kg wet	10.0						
Dibromochloromethane	< 5.0		μg/kg wet	5.0						
1,2-Dibromoethane (EDB)	< 5.0		μg/kg wet	5.0						
Dibromomethane	< 5.0		μg/kg wet	5.0						
1,2-Dichlorobenzene	< 5.0		μg/kg wet	5.0						
1,3-Dichlorobenzene	< 5.0		μg/kg wet	5.0						
1,4-Dichlorobenzene	< 5.0		μg/kg wet	5.0						
Dichlorodifluoromethane (Freon12)	< 10.0		μg/kg wet	10.0						
1,1-Dichloroethane	< 5.0		μg/kg wet	5.0						
1,2-Dichloroethane	< 5.0		μg/kg wet	5.0						
1,1-Dichloroethene	< 5.0		μg/kg wet	5.0						
cis-1,2-Dichloroethene	< 5.0		μg/kg wet	5.0						
trans-1,2-Dichloroethene	< 5.0		μg/kg wet	5.0						
1,2-Dichloropropane	< 5.0		μg/kg wet	5.0						
1,3-Dichloropropane	< 5.0		μg/kg wet	5.0						
2,2-Dichloropropane	< 5.0		μg/kg wet	5.0						
1,1-Dichloropropene	< 5.0		μg/kg wet	5.0						
cis-1,3-Dichloropropene	< 5.0		μg/kg wet	5.0						
trans-1,3-Dichloropropene	< 5.0		μg/kg wet	5.0						
Ethylbenzene	< 5.0		μg/kg wet	5.0						
Hexachlorobutadiene	< 5.0		μg/kg wet	5.0						
2-Hexanone (MBK)	< 50.0		μg/kg wet	50.0						
Isopropylbenzene	< 5.0		μg/kg wet	5.0						
4-Isopropyltoluene	< 5.0		μg/kg wet	5.0						
Methyl tert-butyl ether	< 5.0		μg/kg wet	5.0						
4-Methyl-2-pentanone (MIBK)	< 50.0		μg/kg wet	50.0						
Methylene chloride	< 10.0		μg/kg wet	10.0						
Naphthalene	< 5.0		μg/kg wet	5.0						
n-Propylbenzene	< 5.0		μg/kg wet	5.0						
Styrene	< 5.0		μg/kg wet	5.0						
1,1,1,2-Tetrachloroethane	< 5.0		μg/kg wet	5.0						
1,1,2,2-Tetrachloroethane	< 5.0		μg/kg wet	5.0						
Tetrachloroethene	< 5.0		μg/kg wet	5.0						
Toluene	< 5.0		μg/kg wet	5.0						
1,2,3-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,2,4-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,3,5-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,1,1-Trichloroethane	< 5.0		μg/kg wet	5.0						
1,1,2-Trichloroethane	< 5.0		μg/kg wet	5.0						
Trichloroethene	< 5.0		μg/kg wet	5.0						
Trichlorofluoromethane (Freon 11)	< 5.0		μg/kg wet	5.0						
1,2,3-Trichloropropane	< 5.0		μg/kg wet	5.0						
1,2,4-Trimethylbenzene	< 5.0		μg/kg wet	5.0						
1,3,5-Trimethylbenzene	< 5.0		μg/kg wet	5.0						
Vinyl chloride	< 5.0 < 5.0		μg/kg wet μg/kg wet	5.0						
m,p-Xylene	< 10.0		μg/kg wet μg/kg wet	10.0						
o-Xylene	< 5.0		μg/kg wet μg/kg wet	5.0						
o-xylene Tetrahydrofuran	< 10.0			10.0						
Tetranydrofuran Ethyl ether	< 10.0 < 5.0		µg/kg wet	10.0 5.0						
Luiyi culci	< 5.0 < 5.0		μg/kg wet	5.0						

					Spike	Source		%REC		RPD
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
atch 1424672 - SW846 5035A Soil (low level)										
Blank (1424672-BLK1)					Pre	epared & Ar	nalyzed: 20-	Oct-14		
Ethyl tert-butyl ether	< 5.0		μg/kg wet	5.0						
Di-isopropyl ether	< 5.0		μg/kg wet	5.0						
Tert-Butanol / butyl alcohol	< 50.0		μg/kg wet	50.0						
1,4-Dioxane	< 100		μg/kg wet	100						
trans-1,4-Dichloro-2-butene	< 25.0		μg/kg wet	25.0						
Ethanol	< 2000		μg/kg wet	2000						
Surrogate: 4-Bromofluorobenzene	49.3		μg/kg wet		50.0		99	70-130		
Surrogate: Toluene-d8	51.4		μg/kg wet		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	58.4		μg/kg wet		50.0		117	70-130		
Surrogate: Dibromofluoromethane	51.4		μg/kg wet		50.0		103	70-130		
LCS (1424672-BS1)					Pre	epared & Ar	nalyzed: 20-	Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	19.0		μg/kg wet		20.0		95	70-130		
Acetone	22.3		μg/kg wet		20.0		112	70-130		
Acrylonitrile	22.1		μg/kg wet		20.0		110	70-130		
Benzene	20.6		μg/kg wet		20.0		103	70-130		
Bromobenzene	20.6		μg/kg wet		20.0		103	70-130		
Bromochloromethane	21.7		μg/kg wet		20.0		109	70-130		
Bromodichloromethane	21.4		μg/kg wet		20.0		107	70-130		
Bromoform	22.5		μg/kg wet		20.0		113	70-130		
Bromomethane	22.6		μg/kg wet		20.0		113	70-130		
2-Butanone (MEK)	19.8		μg/kg wet		20.0		99	70-130		
n-Butylbenzene	19.6		μg/kg wet		20.0		98	70-130		
sec-Butylbenzene	20.9		μg/kg wet		20.0		104	70-130		
tert-Butylbenzene	20.9		μg/kg wet		20.0		104	70-130		
Carbon disulfide	19.9		μg/kg wet		20.0		100	70-130		
Carbon tetrachloride	20.2		μg/kg wet		20.0		101	70-130		
Chlorobenzene	20.4		μg/kg wet		20.0		102	70-130		
Chloroethane	20.7		μg/kg wet		20.0		103	70-130		
Chloroform	20.3		μg/kg wet		20.0		102	70-130		
Chloromethane	20.7		μg/kg wet		20.0		104	70-130		
2-Chlorotoluene	21.0		μg/kg wet		20.0		105	70-130		
4-Chlorotoluene	21.3		μg/kg wet		20.0		106	70-130		
1,2-Dibromo-3-chloropropane	19.8		μg/kg wet		20.0		99	70-130		
Dibromochloromethane	22.3		μg/kg wet		20.0		111	70-130		
1,2-Dibromoethane (EDB)	22.8		μg/kg wet		20.0		114	70-130		
Dibromomethane	21.6		μg/kg wet		20.0		108	70-130		
1,2-Dichlorobenzene	20.4		μg/kg wet		20.0		102	70-130		
1,3-Dichlorobenzene	21.4		μg/kg wet		20.0		107	70-130		
1,4-Dichlorobenzene	19.5		μg/kg wet		20.0		97	70-130		
Dichlorodifluoromethane (Freon12)	20.3		μg/kg wet		20.0		101	70-130		
1,1-Dichloroethane	20.0		μg/kg wet		20.0		100	70-130		
1,2-Dichloroethane	21.0		μg/kg wet		20.0		105	70-130		
1,1-Dichloroethene	19.4		μg/kg wet		20.0		97	70-130		
cis-1,2-Dichloroethene	20.6		μg/kg wet		20.0		103	70-130		
trans-1,2-Dichloroethene	20.2		μg/kg wet		20.0		101	70-130		
1,2-Dichloropropane	20.6		μg/kg wet μg/kg wet		20.0		103	70-130		
1,3-Dichloropropane	21.8		μg/kg wet μg/kg wet		20.0		109	70-130		
2,2-Dichloropropane	18.6		μg/kg wet μg/kg wet		20.0		93	70-130		
1,1-Dichloropropene	19.8		μg/kg wet μg/kg wet		20.0		99	70-130		
cis-1,3-Dichloropropene	20.4		μg/kg wet μg/kg wet		20.0		102	70-130		
trans-1,3-Dichloropropene	19.9		μg/kg wet μg/kg wet		20.0		102	70-130		

20.8 18.6 19.4 20.7 20.0 21.9 20.6 20.0 16.7 20.9 21.7 20.9 22.0 20.7	ha ha ha ha ha ha	g/kg wet g/kg wet g/kg wet g/kg wet g/kg wet g/kg wet g/kg wet g/kg wet		20.0 20.0 20.0 20.0 20.0 20.0 20.0	pared & Ar	104 93 97 103 100	70-130 70-130 70-130 70-130 70-130 70-130		
18.6 19.4 20.7 20.0 21.9 20.6 20.0 16.7 20.9 21.7 20.9 22.0	ha ha ha ha ha ha	g/kg wet g/kg wet g/kg wet g/kg wet g/kg wet g/kg wet		20.0 20.0 20.0 20.0 20.0 20.0 20.0	pared & Ar	104 93 97 103 100	70-130 70-130 70-130 70-130		
18.6 19.4 20.7 20.0 21.9 20.6 20.0 16.7 20.9 21.7 20.9 22.0	ha ha ha ha ha ha	g/kg wet g/kg wet g/kg wet g/kg wet g/kg wet g/kg wet		20.0 20.0 20.0 20.0 20.0		93 97 103 100	70-130 70-130 70-130		
19.4 20.7 20.0 21.9 20.6 20.0 16.7 20.9 21.7 20.9 22.0	ha ha ha ha ha ha	g/kg wet g/kg wet g/kg wet g/kg wet g/kg wet		20.0 20.0 20.0 20.0		97 103 100	70-130 70-130		
20.7 20.0 21.9 20.6 20.0 16.7 20.9 21.7 20.9 22.0	ha ha ha ha ha	g/kg wet g/kg wet g/kg wet g/kg wet g/kg wet		20.0 20.0 20.0		103 100	70-130		
20.0 21.9 20.6 20.0 16.7 20.9 21.7 20.9 22.0	ha ha ha ha ha	g/kg wet g/kg wet g/kg wet g/kg wet		20.0 20.0		100			
21.9 20.6 20.0 16.7 20.9 21.7 20.9 22.0	hā hā hā hā	g/kg wet g/kg wet g/kg wet		20.0			70-130		
20.6 20.0 16.7 20.9 21.7 20.9 22.0	ha ha ha ha	g/kg wet g/kg wet							
20.0 16.7 20.9 21.7 20.9 22.0	ha ha ha	g/kg wet		60.6		110	70-130		
16.7 20.9 21.7 20.9 22.0	ha ha ha	-		20.0		103	70-130		
20.9 21.7 20.9 22.0	hã	g/kg wet		20.0		100	70-130		
21.7 20.9 22.0	hã			20.0		83	70-130		
21.7 20.9 22.0	μg	g/kg wet		20.0		105	70-130		
20.9 22.0		/kg wet		20.0		109	70-130		
22.0	LIC LIC	g/kg wet		20.0		104	70-130		
		/kg wet		20.0		110	70-130		
		g/kg wet		20.0		103	70-130		
20.4		g/kg wet		20.0		102	70-130		
18.2		g/kg wet		20.0		91	70-130		
17.1		g/kg wet		20.0		86	70-130		
20.8		, ,		20.0		104	70-130		
		g/kg wet		20.0		104	70-130 70-130		
20.1		g/kg wet							
21.3		-		20.0		106	70-130		
		-							
		-							
20.6	μg	g/kg wet		20.0		103	70-130		
21.0	μg	g/kg wet		20.0		105	70-130		
20.5	μg	g/kg wet		20.0		103	70-130		
21.9	μg	g/kg wet		20.0		109	70-130		
20.6	μg	g/kg wet		20.0		103	70-130		
21.8	μg	g/kg wet		20.0		109	70-130		
20.7	μg	g/kg wet		20.0		104	70-130		
226	μg	g/kg wet		200		113	70-130		
183	μg	g/kg wet		200		91	70-130		
17.9	μg	g/kg wet		20.0		90	70-130		
435	μg	g/kg wet		400		109	70-130		
53.6	μg	g/kg wet		50.0		107	70-130		
51.0	μg	g/kg wet		50.0		102	70-130		
50.0	μg	g/kg wet		50.0		100	70-130		
51.1				50.0		102	70-130		
				Pre	pared & Ar	alyzed: 20-	Oct-14		
16.9	ша	ı/ka wet						12	30
									30
									30
									30
									30
									30
				∠∪.∪		98	10-130	9	30
20.9 21.1	μg	g/kg wet		20.0		104	70-130	7	30
	19.5 19.6 21.6 21.7 21.1 20.5 20.6 21.0 20.5 21.9 20.6 21.8 20.7 226 183 17.9 435 53.6 51.0 50.0	19.5	19.5 µg/kg wet 19.6 µg/kg wet 21.6 µg/kg wet 21.7 µg/kg wet 21.1 µg/kg wet 20.5 µg/kg wet 21.0 µg/kg wet 20.5 µg/kg wet 21.0 µg/kg wet 21.9 µg/kg wet 21.8 µg/kg wet 21.1 µg/kg wet 21.8 µg/kg wet 22.6 µg/kg wet 23.6 µg/kg wet 24.5 µg/kg wet 25.6 µg/kg wet 25.1 µg/kg wet 25.1 µg/kg wet 26.5 µg/kg wet 27.4 µg/kg wet 28.6 µg/kg wet 29.6 µg/kg wet 29.7 µg/kg wet 29.7 µg/kg wet 29.8 µg/kg wet 29.9 µg/kg wet	19.5 µg/kg wet 19.6 µg/kg wet 21.6 µg/kg wet 21.7 µg/kg wet 21.1 µg/kg wet 20.5 µg/kg wet 20.6 µg/kg wet 21.0 µg/kg wet 20.5 µg/kg wet 21.9 µg/kg wet 20.6 µg/kg wet 21.9 µg/kg wet 21.8 µg/kg wet 21.8 µg/kg wet 21.8 µg/kg wet 25.6 µg/kg wet 26 µg/kg wet 27.7 µg/kg wet 28.3 µg/kg wet 29.6 µg/kg wet 29.7 µg/kg wet 20.7 µg/kg wet 20.7 µg/kg wet 21.8 µg/kg wet 21.8 µg/kg wet 21.8 µg/kg wet 22.6 µg/kg wet 23.6 µg/kg wet 24.5 µg/kg wet 25.6 µg/kg wet 25.6 µg/kg wet 25.7 µg/kg wet 25.8 µg/kg wet 25.9 µg/kg wet 25.9 µg/kg wet 26.9 µg/kg wet 26.9 µg/kg wet 27.9 µg/kg wet 28.6 µg/kg wet 29.5 µg/kg wet 29.6 µg/kg wet 29.6 µg/kg wet 29.7 µg/kg wet 29.8 µg/kg wet 29.8 µg/kg wet 29.9 µg/kg wet 29.9 µg/kg wet	19.5 µg/kg wet 20.0 19.6 µg/kg wet 20.0 21.6 µg/kg wet 20.0 21.7 µg/kg wet 20.0 21.1 µg/kg wet 20.0 20.5 µg/kg wet 20.0 20.6 µg/kg wet 20.0 20.5 µg/kg wet 20.0 20.5 µg/kg wet 20.0 20.5 µg/kg wet 20.0 21.9 µg/kg wet 20.0 21.8 µg/kg wet 20.0 25.6 µg/kg wet 20.0 26.6 µg/kg wet 20.0 27.0 µg/kg wet 20.0 28.6 µg/kg wet 20.0 29.7 µg/kg wet 20.0 20.6 µg/kg wet 20.0 20.7 µg/kg wet 20.0 20.6 µg/kg wet 20.0 20.0 µg/kg wet 20.0 20.1 µg/kg wet 20.0 20.2 µg/kg wet 20.0 20.0 µg/kg wet 20.0 20.1 µg/kg wet 20.0 20.1 µg/kg wet 20.0 20.2 µg/kg wet 20.0 20.0 µg/kg wet 20.0	19.5 µg/kg wet 20.0 19.6 µg/kg wet 20.0 21.6 µg/kg wet 20.0 21.7 µg/kg wet 20.0 21.1 µg/kg wet 20.0 20.5 µg/kg wet 20.0 21.0 µg/kg wet 20.0 20.5 µg/kg wet 20.0 21.9 µg/kg wet 20.0 21.8 µg/kg wet 20.0 21.8 µg/kg wet 20.0 21.8 µg/kg wet 20.0 21.9 µg/kg wet 20.0 21.8 µg/kg wet 20.0 21.8 µg/kg wet 20.0 25.1 µg/kg wet 20.0 26.6 µg/kg wet 20.0 27.1 µg/kg wet 20.0 28.6 µg/kg wet 20.0 29.7 µg/kg wet 20.0 29.6 µg/kg wet 20.0 20.7 µg/kg wet 20.0 20.7 µg/kg wet 20.0 20.7 µg/kg wet 20.0 20.6 µg/kg wet 20.0 20.0 µg/kg wet 20.0 20.1 µg/kg wet 20.0 20.2 µg/kg wet 20.0 20.1 µg/kg wet 20.0 20.2 µg/kg wet 20.0 20.1 µg/kg wet 20.0 20.2 µg/kg wet 20.0 20.2 µg/kg wet 20.0 20.2 µg/kg wet 20.0	19.5	19.5 µg/kg wet 20.0 98 70-130 19.6 µg/kg wet 20.0 98 70-130 21.6 µg/kg wet 20.0 108 70-130 21.7 µg/kg wet 20.0 109 70-130 21.1 µg/kg wet 20.0 105 70-130 20.5 µg/kg wet 20.0 103 70-130 20.6 µg/kg wet 20.0 103 70-130 20.6 µg/kg wet 20.0 105 70-130 20.5 µg/kg wet 20.0 109 70-130 21.9 µg/kg wet 20.0 109 70-130 21.8 µg/kg wet 20.0 109 70-130 20.6 µg/kg wet 20.0 109 70-130 21.8 µg/kg wet 20.0 109 70-130 21.8 µg/kg wet 20.0 104 70-130 22.6 µg/kg wet 20.0 104 70-130 183 µg/kg wet 200 91 70-130 183 µg/kg wet 200 91 70-130 17.9 µg/kg wet 20.0 90 70-130 435 µg/kg wet 20.0 90 70-130 53.6 µg/kg wet 50.0 107 70-130 53.6 µg/kg wet 50.0 102 70-130 53.6 µg/kg wet 50.0 100 70-130 51.1 µg/kg wet 50.0 100 70-130 51.1 µg/kg wet 50.0 102 70-130	19.5

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch 1424672 - SW846 5035A Soil (low level)										
LCS Dup (1424672-BSD1)					<u>Pre</u>	epared & Ar	nalyzed: 20-	Oct-14		
2-Butanone (MEK)	19.9		μg/kg wet		20.0		99	70-130	0.7	30
n-Butylbenzene	16.9		μg/kg wet		20.0		85	70-130	14	30
sec-Butylbenzene	18.0		μg/kg wet		20.0		90	70-130	15	30
tert-Butylbenzene	18.3		μg/kg wet		20.0		92	70-130	13	30
Carbon disulfide	17.5		μg/kg wet		20.0		88	70-130	13	30
Carbon tetrachloride	17.8		μg/kg wet		20.0		89	70-130	13	30
Chlorobenzene	18.3		μg/kg wet		20.0		91	70-130	11	30
Chloroethane	18.5		μg/kg wet		20.0		93	70-130	11	30
Chloroform	18.1		μg/kg wet		20.0		90	70-130	12	30
Chloromethane	18.1		μg/kg wet		20.0		91	70-130	13	30
2-Chlorotoluene	18.5		μg/kg wet		20.0		92	70-130	13	30
4-Chlorotoluene	18.8		μg/kg wet		20.0		94	70-130	12	30
1,2-Dibromo-3-chloropropane	19.4		μg/kg wet		20.0		97	70-130	2	30
Dibromochloromethane	20.5		μg/kg wet		20.0		103	70-130	8	30
1,2-Dibromoethane (EDB)	21.9		μg/kg wet		20.0		109	70-130	4	30
Dibromomethane	19.8		μg/kg wet		20.0		99	70-130	8	30
1,2-Dichlorobenzene	18.3		μg/kg wet		20.0		91	70-130	11	30
1,3-Dichlorobenzene	18.8		μg/kg wet		20.0		94	70-130	13	30
1,4-Dichlorobenzene	17.6		μg/kg wet		20.0		88	70-130	10	30
Dichlorodifluoromethane (Freon12)	17.4		μg/kg wet		20.0		87	70-130	15	30
1,1-Dichloroethane	18.0		μg/kg wet		20.0		90	70-130	10	30
1,2-Dichloroethane	19.7		μg/kg wet		20.0		98	70-130	6	30
1,1-Dichloroethene	17.1		μg/kg wet		20.0		86	70-130	12	30
cis-1,2-Dichloroethene	18.8		μg/kg wet		20.0		94	70-130	9	30
trans-1,2-Dichloroethene	18.0		μg/kg wet		20.0		90	70-130	11	30
1,2-Dichloropropane	18.7		μg/kg wet		20.0		93	70-130	10	30
1,3-Dichloropropane	20.1		μg/kg wet		20.0		101	70-130	8	30
2,2-Dichloropropane	15.9		μg/kg wet		20.0		80	70-130	15	30
1,1-Dichloropropene	17.4		μg/kg wet		20.0		87	70-130	13	30
cis-1,3-Dichloropropene	18.7		μg/kg wet		20.0		93	70-130	9	30
trans-1,3-Dichloropropene	18.3		μg/kg wet μg/kg wet		20.0		92	70-130	8	30
Ethylbenzene	18.2		μg/kg wet μg/kg wet		20.0		91	70-130	13	30
Hexachlorobutadiene	16.1				20.0		81	70-130	14	30
2-Hexanone (MBK)	19.1		μg/kg wet		20.0		95	70-130		30
Isopropylbenzene			μg/kg wet		20.0		90		2	30
1 17	18.1		μg/kg wet				90 87	70-130	13	30
4-Isopropyltoluene	17.5		μg/kg wet		20.0			70-130	13	
Methyl tert-butyl ether	20.7		μg/kg wet		20.0		104	70-130	6	30
4-Methyl-2-pentanone (MIBK)	18.5		μg/kg wet		20.0		92	70-130	11	30
Methylene chloride	18.4		μg/kg wet		20.0		92	70-130	8	30
Naphthalene	15.5		μg/kg wet		20.0		77	70-130	7	30
n-Propylbenzene	18.3		μg/kg wet		20.0		92	70-130	13	30
Styrene	19.4		μg/kg wet		20.0		97	70-130	11	30
1,1,1,2-Tetrachloroethane	18.7		μg/kg wet		20.0		94	70-130	11	30
1,1,2,2-Tetrachloroethane	20.7		μg/kg wet		20.0		104	70-130	6	30
Tetrachloroethene	17.9		μg/kg wet		20.0		90	70-130	14	30
Toluene	18.5		μg/kg wet		20.0		92	70-130	10	30
1,2,3-Trichlorobenzene	16.7		μg/kg wet		20.0		84	70-130	9	30
1,2,4-Trichlorobenzene	15.8		μg/kg wet		20.0		79	70-130	8	30
1,3,5-Trichlorobenzene	18.4		μg/kg wet		20.0		92	70-130	12	30
1,1,1-Trichloroethane	17.8		μg/kg wet		20.0		89	70-130	12	30
1,1,2-Trichloroethane	19.8		μg/kg wet		20.0		99	70-130	7	30
Trichloroethene	18.1		μg/kg wet		20.0		90	70-130	8	30

Batch 1424672 - SW846 5035A Soil (low level) LCS Dup (1424672-BSD1) Trichlorofluoromethane (Freon 11) 1 1,2,3-Trichloropropane 2 1,2,4-Trimethylbenzene 1 1,3,5-Trimethylbenzene 1 Vinyl chloride 1 m,p-Xylene 1 o-Xylene 1 Tetrahydrofuran 2 Ethyl ether 2 Tert-amyl methyl ether 1 Ethyl tert-butyl ether 2 Di-isopropyl ether 1 Tert-Butanol / butyl alcohol 2 1,4-Dioxane 2 trans-1,4-Dichloro-2-butene 1 Ethanol 4 Surrogate: 4-Bromofluorobenzene 5 Surrogate: Toluene-d8 5 Surrogate: Dibromofluoromethane 5 Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone < 5 Acrylonitrile Benzene <t< th=""><th>5.8 5.4 9.1 3.7 7.8 3.1 3.7 9.6 9.0 9.1 9.4 227 117 3.7 33 1.1</th><th>Units µg/kg wet µg/kg wet</th><th>*RDL</th><th>20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0</th><th>Result</th><th>%REC 84 102 95 93 89 90 94 103 103 95 101 97</th><th>70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130</th><th>RPD 16 6 13 12 14 13 12 0.1 6 8</th><th>30 30 30 30 30 30 30 30 30 30</th></t<>	5.8 5.4 9.1 3.7 7.8 3.1 3.7 9.6 9.0 9.1 9.4 227 117 3.7 33 1.1	Units µg/kg wet	*RDL	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	Result	%REC 84 102 95 93 89 90 94 103 103 95 101 97	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	RPD 16 6 13 12 14 13 12 0.1 6 8	30 30 30 30 30 30 30 30 30 30
LCS Dup (1424672-BSD1) Trichlorofluoromethane (Freon 11)	0.4 0.1 3.7 7.8 3.1 3.7 0.6 0.5 0.0 0.1 0.4 27 17 3.7 3.7 3.7 3.7	µg/kg wet		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	epared & Ar	84 102 95 93 89 90 94 103 103 95	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	6 13 12 14 13 12 0.1 6	30 30 30 30 30 30 30 30 30
Trichlorofluoromethane (Freon 11) 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride m,p-Xylene o-Xylene Tetrahydrofuran Ethyl ether Tert-amyl methyl ether Ethyl tert-butyl ether Di-isopropyl ether Tert-Butanol / butyl alcohol 1,4-Dioxane trans-1,4-Dichloro-2-butene Ethanol Surrogate: 4-Bromofluorobenzene Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone Acrylonitrile Benzene Bromochloromethane Bromoform Bromoform Bromomethane	0.4 0.1 3.7 7.8 3.1 3.7 0.6 0.5 0.0 0.1 0.4 27 17 3.7 3.7 3.7 3.7	µg/kg wet		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	epared & Ar	84 102 95 93 89 90 94 103 103 95	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	6 13 12 14 13 12 0.1 6	30 30 30 30 30 30 30 30 30
1,2,3-Trichloropropane 2 1,2,4-Trimethylbenzene 1 1,3,5-Trimethylbenzene 1 Vinyl chloride 1 m,p-Xylene 1 o-Xylene 1 Tetrahydrofuran 2 Ethyl ether 2 Tert-amyl methyl ether 1 Ethyl tert-butyl ether 2 Di-isopropyl ether 1 Tert-Butanol / butyl alcohol 2 1,4-Dioxane 2 trans-1,4-Dichloro-2-butene 1 Ethanol 4 Surrogate: 4-Bromofluorobenzene 5 Surrogate: Toluene-d8 5 Surrogate: 1,2-Dichloroethane-d4 5 Surrogate: Dibromofluoromethane 5 Back 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) <	0.4 0.1 3.7 7.8 3.1 3.7 0.6 0.5 0.0 0.1 0.4 27 17 3.7 3.7 3.7 3.7	µg/kg wet		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		102 95 93 89 90 94 103 103 95	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	6 13 12 14 13 12 0.1 6	30 30 30 30 30 30 30 30 30
1,2,4-Trimethylbenzene 1 1,3,5-Trimethylbenzene 1 Vinyl chloride 1 m,p-Xylene 1 o-Xylene 1 Tetrahydrofuran 2 Ethyl ether 2 Tert-amyl methyl ether 1 Ethyl tert-butyl ether 2 Di-isopropyl ether 1 Tert-Butanol / butyl alcohol 2 1,4-Dioxane 2 trans-1,4-Dichloro-2-butene 1 Ethanol 4 Surrogate: 4-Bromofluorobenzene 5 Surrogate: Toluene-d8 5 Surrogate: Dibromofluoromethane-d4 5 Surrogate: Dibromofluoromethane 5 Batch 1424777 - SW846 5035A Soil (low level) 8 Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone < 5	9.1 3.7 7.8 3.1 3.7 9.6 9.5 9.0 9.1 9.4 227 117 3.7 33	µg/kg wet µg/kg wet		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		95 93 89 90 94 103 103 95	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	13 12 14 13 12 0.1 6 8	30 30 30 30 30 30 30 30
1,3,5-Trimethylbenzene 1 Vinyl chloride 1 m,p-Xylene 1 o-Xylene 1 Tetrahydrofuran 2 Ethyl ether 2 Tert-amyl methyl ether 1 Ethyl tert-butyl ether 2 Di-isopropyl ether 1 Tert-Butanol / butyl alcohol 2 1,4-Dioxane 2 trans-1,4-Dichloro-2-butene 1 Ethanol 4 Surrogate: 4-Bromofluorobenzene 5 Surrogate: Toluene-d8 5 Surrogate: 1,2-Dichloroethane-d4 5 Surrogate: Dibromofluoromethane 5 Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone < 5	3.7 7.8 3.1 3.7 9.6 9.0 9.1 9.4 227 117 3.7 33	µg/kg wet µg/kg wet		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		93 89 90 94 103 103 95	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	12 14 13 12 0.1 6 8	30 30 30 30 30 30 30
Vinyl chloride 1 m,p-Xylene 1 o-Xylene 1 Tetrahydrofuran 2 Ethyl ether 2 Tert-amyl methyl ether 1 Ethyl tert-butyl ether 2 Di-isopropyl ether 1 Tert-Butanol / butyl alcohol 2 1,4-Dioxane 2 trans-1,4-Dichloro-2-butene 1 Ethanol 4 Surrogate: 4-Bromofluorobenzene 5 Surrogate: Toluene-d8 5 Surrogate: 1,2-Dichloroethane-d4 5 Surrogate: Dibromofluoromethane 5 Batch 1424777 - SW846 5035A Soil (low level) 8 Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone < 5	7.8 3.1 3.7 0.6 0.5 0.0 0.1 0.4 27 17 3.7 33	µg/kg wet µg/kg wet		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		89 90 94 103 103 95	70-130 70-130 70-130 70-130 70-130 70-130 70-130	14 13 12 0.1 6 8	30 30 30 30 30 30
m,p-Xylene 1 o-Xylene 1 Tetrahydrofuran 2 Ethyl ether 2 Tert-amyl methyl ether 1 Ethyl tert-butyl ether 2 Di-isopropyl ether 1 Tert-Butanol / butyl alcohol 2 1,4-Dioxane 2 trans-1,4-Dichloro-2-butene 1 Ethanol 4 Surrogate: 4-Bromofluorobenzene 5 Surrogate: Toluene-d8 5 Surrogate: 1,2-Dichloroethane-d4 5 Surrogate: Dibromofluoromethane 5 Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone < 5	3.1 3.7 0.6 0.5 0.0 0.1 0.4 27 17 3.7 33	µg/kg wet		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		90 94 103 103 95 101	70-130 70-130 70-130 70-130 70-130 70-130	13 12 0.1 6 8	30 30 30 30 30
o-Xylene 1 Tetrahydrofuran 2 Ethyl ether 2 Tert-amyl methyl ether 1 Ethyl tert-butyl ether 2 Di-isopropyl ether 1 Tert-Butanol / butyl alcohol 2 1,4-Dioxane 2 trans-1,4-Dichloro-2-butene 1 Ethanol 4 Surrogate: 4-Bromofluorobenzene 5 Surrogate: Toluene-d8 5 Surrogate: 1,2-Dichloroethane-d4 5 Surrogate: Dibromofluoromethane 5 Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone <	3.7 0.6 0.5 0.0 0.1 0.4 27 17 3.7 33	µg/kg wet		20.0 20.0 20.0 20.0 20.0 20.0 20.0		94 103 103 95 101	70-130 70-130 70-130 70-130 70-130	12 0.1 6 8	30 30 30 30
Tetrahydrofuran 2 Ethyl ether 2 Tert-amyl methyl ether 1 Ethyl tert-butyl ether 2 Di-isopropyl ether 1 Tert-Butanol / butyl alcohol 2 1,4-Dioxane 2 trans-1,4-Dichloro-2-butene 1 Ethanol 4 Surrogate: 4-Bromofluorobenzene 5 Surrogate: Toluene-d8 5 Surrogate: 1,2-Dichloroethane-d4 5 Surrogate: Dibromofluoromethane 5 Bacth 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) <	0.6 0.5 0.0 0.1 0.4 227 117 3.7 33	µg/kg wet		20.0 20.0 20.0 20.0 20.0 20.0		103 103 95 101	70-130 70-130 70-130 70-130	0.1 6 8	30 30 30
Ethyl ether 2 Tert-amyl methyl ether 1 Ethyl tert-butyl ether 2 Di-isopropyl ether 1 Tert-Butanol / butyl alcohol 2 1,4-Dioxane 2 trans-1,4-Dichloro-2-butene 1 Ethanol 4 Surrogate: 4-Bromofluorobenzene 5 Surrogate: Toluene-d8 5 Surrogate: 1,2-Dichloroethane-d4 5 Surrogate: Dibromofluoromethane 5 Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) <	0.5 0.0 0.1 0.4 227 117 3.7 33	µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet		20.0 20.0 20.0 20.0 20.0		103 95 101	70-130 70-130 70-130	6 8	30 30
Tert-amyl methyl ether Ethyl tert-butyl ether Di-isopropyl ether Tert-Butanol / butyl alcohol 1,4-Dioxane trans-1,4-Dichloro-2-butene Ethanol Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Sromomethane	9.0 9.4 9.7 17 3.7 3.3 1.3	µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet		20.0 20.0 20.0 200		95 101	70-130 70-130	8	30
Ethyl tert-butyl ether 2 Di-isopropyl ether 1 Tert-Butanol / butyl alcohol 2 1,4-Dioxane 2 trans-1,4-Dichloro-2-butene 1 Ethanol 4 Surrogate: 4-Bromofluorobenzene 5 Surrogate: Toluene-d8 5 Surrogate: 1,2-Dichloroethane-d4 5 Surrogate: Dibromofluoromethane 5 Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) <	0.1 0.4 27 17 3.7 33 1.3	µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet		20.0 20.0 200		101	70-130		
Di-isopropyl ether 1 Tert-Butanol / butyl alcohol 2 1,4-Dioxane 2 trans-1,4-Dichloro-2-butene 1 Ethanol 4 Surrogate: 4-Bromofluorobenzene 5 Surrogate: Toluene-d8 5 Surrogate: 1,2-Dichloroethane-d4 5 Surrogate: Dibromofluoromethane 5 Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) <	9.4 27 17 3.7 33 1.3	µg/kg wet µg/kg wet µg/kg wet µg/kg wet µg/kg wet		20.0 200				ρ	00
Tert-Butanol / butyl alcohol 2 1,4-Dioxane 2 trans-1,4-Dichloro-2-butene 1 Ethanol 4 Surrogate: 4-Bromofluorobenzene 5 Surrogate: Toluene-d8 5 Surrogate: 1,2-Dichloroethane-d4 5 Surrogate: Dibromofluoromethane 5 Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone <5	27 17 3.7 33 1.3	µg/kg wet µg/kg wet µg/kg wet µg/kg wet		200		97		U	30
1,4-Dioxane 2 trans-1,4-Dichloro-2-butene 1 Ethanol 4 Surrogate: 4-Bromofluorobenzene 5 Surrogate: Toluene-d8 5 Surrogate: 1,2-Dichloroethane-d4 5 Surrogate: Dibromofluoromethane 5 Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone <5	17 3.7 33 1.3	µg/kg wet µg/kg wet µg/kg wet µg/kg wet					70-130	7	30
1,4-Dioxane 2 trans-1,4-Dichloro-2-butene 1 Ethanol 4 Surrogate: 4-Bromofluorobenzene 5 Surrogate: Toluene-d8 5 Surrogate: 1,2-Dichloroethane-d4 5 Surrogate: Dibromofluoromethane 5 Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone < 5	3.7 33 1.3	μg/kg wet μg/kg wet μg/kg wet		200		114	70-130	0.5	30
trans-1,4-Dichloro-2-butene Ethanol Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Surrogate: John John John John John John John John	3.7 33 1.3	μg/kg wet μg/kg wet				108	70-130	17	30
Ethanol 4 Surrogate: 4-Bromofluorobenzene 5 Surrogate: Toluene-d8 5 Surrogate: 1,2-Dichloroethane-d4 5 Surrogate: Dibromofluoromethane 5 Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) <	1.3 1.1	μg/kg wet		20.0		93	70-130	4	30
Surrogate: Toluene-d8 5 Surrogate: 1,2-Dichloroethane-d4 5 Surrogate: Dibromofluoromethane 5 Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) <	1.1	μg/kg wet		400		108	70-130	0.5	30
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Sromomethane				50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane Satch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Script Surrogate: 1,2-Dichloroethane 4,5 Surrogate: 1,2-Dichloroethane 1,13 Surrogate: 1,2-Dichloroethane 1,2-Dichloroe		μg/kg wet		50.0		102	70-130		
Surrogate: Dibromofluoromethane Batch 1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Some state of the soil of		μg/kg wet		50.0		101	70-130		
Blank (1424777 - SW846 5035A Soil (low level) Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Sromomethane	1.3	μg/kg wet		50.0		103	70-130		
Blank (1424777-BLK1) 1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Sromomethane		10 0							
1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Sromomethane				Pre	epared & Ar	nalyzed: 21.	Oct-14		
Acetone < S Acrylonitrile < S Benzene < S Bromobenzene < S Bromochloromethane < S Bromoform < S Bromomethane < S	5.0	μg/kg wet	5.0	<u>1 10</u>	cparca a 7 ti	idiy2cu. 21	000 14		
Acrylonitrile < < Benzene < < Bromobenzene < < Bromochloromethane < < Bromodichloromethane < < Bromoform < < Bromomethane < <		μg/kg wet	50.0						
Benzene < Bromobenzene < Bromochloromethane < Bromodichloromethane < Bromoform < Bromomethane <<	5.0	μg/kg wet	5.0						
Bromobenzene < Bromochloromethane < Bromodichloromethane < Bromoform < Bromomethane <<	5.0	μg/kg wet	5.0						
Bromochloromethane < Bromodichloromethane < Bromoform < Bromomethane <		μg/kg wet	5.0						
Bromodichloromethane < Bromoform < Bromomethane <		μg/kg wet	5.0						
Bromoform < Street		μg/kg wet	5.0						
Bromomethane < 1		μg/kg wet	5.0						
		μg/kg wet μg/kg wet	10.0						
	60.0	μg/kg wet μg/kg wet	50.0						
• • •	5.0	μg/kg wet μg/kg wet	5.0						
-	5.0	μg/kg wet μg/kg wet	5.0						
•	5.0	μg/kg wet	5.0						
•	0.0		10.0						
	5.0	μg/kg wet	5.0						
	5.0	μg/kg wet	5.0						
	0.0	μg/kg wet	10.0						
	5.0	μg/kg wet							
		μg/kg wet	5.0						
	0.0	μg/kg wet	10.0						
	5.0	μg/kg wet	5.0						
	5.0	μg/kg wet	5.0						
• •	0.0	μg/kg wet	10.0						
	5.0	μg/kg wet	5.0						
· ·	5.0	μg/kg wet	5.0						
	5.0	μg/kg wet	5.0						
	5.0	μg/kg wet	5.0						
	5.0	μg/kg wet	5.0						
1,4-Dichlorobenzene < Dichlorodifluoromethane (Freon12) <		μg/kg wet μg/kg wet	5.0 10.0						

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
satch 1424777 - SW846 5035A Soil (low level)										
Blank (1424777-BLK1)					Pre	epared & Ai	nalyzed: 21-	Oct-14		
1,1-Dichloroethane	< 5.0		μg/kg wet	5.0						
1,2-Dichloroethane	< 5.0		μg/kg wet	5.0						
1,1-Dichloroethene	< 5.0		μg/kg wet	5.0						
cis-1,2-Dichloroethene	< 5.0		μg/kg wet	5.0						
trans-1,2-Dichloroethene	< 5.0		μg/kg wet	5.0						
1,2-Dichloropropane	< 5.0		μg/kg wet	5.0						
1,3-Dichloropropane	< 5.0		μg/kg wet	5.0						
2,2-Dichloropropane	< 5.0		μg/kg wet	5.0						
1,1-Dichloropropene	< 5.0		μg/kg wet	5.0						
cis-1,3-Dichloropropene	< 5.0		μg/kg wet	5.0						
trans-1,3-Dichloropropene	< 5.0		μg/kg wet	5.0						
Ethylbenzene	< 5.0		μg/kg wet	5.0						
Hexachlorobutadiene	< 5.0		μg/kg wet	5.0						
2-Hexanone (MBK)	< 50.0		μg/kg wet	50.0						
Isopropylbenzene	< 5.0		μg/kg wet	5.0						
4-Isopropyltoluene	< 5.0		μg/kg wet	5.0						
Methyl tert-butyl ether	< 5.0		μg/kg wet	5.0						
4-Methyl-2-pentanone (MIBK)	< 50.0		μg/kg wet	50.0						
Methylene chloride	< 10.0		μg/kg wet	10.0						
Naphthalene	< 5.0		μg/kg wet	5.0						
n-Propylbenzene	< 5.0		μg/kg wet	5.0						
Styrene	< 5.0		μg/kg wet	5.0						
1,1,1,2-Tetrachloroethane	< 5.0		μg/kg wet	5.0						
1,1,2,2-Tetrachloroethane	< 5.0		μg/kg wet	5.0						
Tetrachloroethene	< 5.0		μg/kg wet	5.0						
Toluene	< 5.0		μg/kg wet	5.0						
1,2,3-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,2,4-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,3,5-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,1,1-Trichloroethane	< 5.0		μg/kg wet	5.0						
1,1,2-Trichloroethane	< 5.0		μg/kg wet	5.0						
Trichloroethene	< 5.0		μg/kg wet	5.0						
Trichlorofluoromethane (Freon 11)	< 5.0		μg/kg wet	5.0						
1,2,3-Trichloropropane	< 5.0		μg/kg wet	5.0						
1,2,4-Trimethylbenzene	< 5.0		μg/kg wet	5.0						
1,3,5-Trimethylbenzene	< 5.0		μg/kg wet	5.0						
Vinyl chloride	< 5.0		μg/kg wet	5.0						
m,p-Xylene	< 10.0		μg/kg wet	10.0						
o-Xylene	< 5.0		μg/kg wet	5.0						
Tetrahydrofuran	< 10.0		μg/kg wet	10.0						
Ethyl ether	< 5.0		μg/kg wet	5.0						
Tert-amyl methyl ether	< 5.0		μg/kg wet	5.0						
Ethyl tert-butyl ether	< 5.0		μg/kg wet	5.0						
Di-isopropyl ether	< 5.0		μg/kg wet	5.0						
Tert-Butanol / butyl alcohol	< 50.0		μg/kg wet	50.0						
1,4-Dioxane	< 100		μg/kg wet	100						
trans-1,4-Dichloro-2-butene	< 25.0		μg/kg wet	25.0						
Ethanol	< 2000		μg/kg wet	2000						
Surrogate: 4-Bromofluorobenzene	49.7		μg/kg wet		50.0		99	70-130		
Surrogate: Toluene-d8	52.6		μg/kg wet		50.0		105	70-130		
Surrogate: 1,2-Dichloroethane-d4	60.3		μg/kg wet		50.0		121	70-130		

					Spike	Source		%REC		RPD
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
atch 1424777 - SW846 5035A Soil (low level)										
Blank (1424777-BLK1)					Pre	epared & Ar	nalyzed: 21-	Oct-14		
Surrogate: Dibromofluoromethane	52.2		μg/kg wet		50.0		104	70-130		
LCS (1424777-BS1)			10 0		Pre	epared & Ar	nalyzed: 21-	Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.6		μg/kg wet		20.0		103	70-130		
Acetone	36.2	QM9	μg/kg wet		20.0		181	70-130		
Acrylonitrile	24.8		μg/kg wet		20.0		124	70-130		
Benzene	20.9		μg/kg wet		20.0		104	70-130		
Bromobenzene	21.3		μg/kg wet		20.0		106	70-130		
Bromochloromethane	22.8		μg/kg wet		20.0		114	70-130		
Bromodichloromethane	21.7		μg/kg wet		20.0		108	70-130		
Bromoform	23.9		μg/kg wet		20.0		119	70-130		
Bromomethane	23.1		μg/kg wet		20.0		116	70-130		
2-Butanone (MEK)	27.4		μg/kg wet		20.0		137	70-130		
n-Butylbenzene	19.7		μg/kg wet		20.0		98	70-130		
sec-Butylbenzene	21.2		μg/kg wet		20.0		106	70-130		
tert-Butylbenzene	21.2		μg/kg wet		20.0		106	70-130		
Carbon disulfide	21.6		μg/kg wet		20.0		108	70-130		
Carbon tetrachloride	21.4		μg/kg wet		20.0		107	70-130		
Chlorobenzene	20.2		μg/kg wet		20.0		101	70-130		
Chloroethane	21.8		μg/kg wet		20.0		109	70-130		
Chloroform	20.6		μg/kg wet		20.0		103	70-130		
Chloromethane	21.7		μg/kg wet		20.0		108	70-130		
2-Chlorotoluene	21.2		μg/kg wet		20.0		106	70-130		
4-Chlorotoluene	21.9		μg/kg wet		20.0		110	70-130		
1,2-Dibromo-3-chloropropane	21.6		μg/kg wet		20.0		108	70-130		
Dibromochloromethane	23.4		μg/kg wet		20.0		117	70-130		
1,2-Dibromoethane (EDB)	24.4		μg/kg wet		20.0		122	70-130		
Dibromomethane	22.1		μg/kg wet		20.0		111	70-130		
1,2-Dichlorobenzene	20.8		μg/kg wet		20.0		104	70-130		
1,3-Dichlorobenzene	21.9		μg/kg wet		20.0		109	70-130		
1,4-Dichlorobenzene	19.9		μg/kg wet		20.0		100	70-130		
Dichlorodifluoromethane (Freon12)	22.1		μg/kg wet		20.0		111	70-130		
1,1-Dichloroethane	20.6		μg/kg wet		20.0		103	70-130		
1,2-Dichloroethane	22.3		μg/kg wet		20.0		112	70-130		
1,1-Dichloroethene	20.9		μg/kg wet		20.0		105	70-130		
cis-1,2-Dichloroethene	21.4		μg/kg wet		20.0		107	70-130		
trans-1,2-Dichloroethene	20.6		μg/kg wet		20.0		103	70-130		
1,2-Dichloropropane	20.9		μg/kg wet		20.0		105	70-130		
1,3-Dichloropropane	22.4		μg/kg wet		20.0		112	70-130		
2,2-Dichloropropane	20.1		μg/kg wet		20.0		100	70-130		
1,1-Dichloropropene	21.0		μg/kg wet		20.0 20.0		105	70-130		
cis-1,3-Dichloropropene	21.7		μg/kg wet				108	70-130		
trans-1,3-Dichloropropene	21.0		μg/kg wet		20.0		105	70-130		
Ethylbenzene	21.0		μg/kg wet		20.0		105 97	70-130		
Hexachlorobutadiene	19.3 24.4		µg/kg wet		20.0 20.0		97 122	70-130 70-130		
2-Hexanone (MBK) Isopropylbenzene	24.4 21.0		μg/kg wet μg/kg wet		20.0		105	70-130 70-130		
4-Isopropyltoluene	20.0		μg/kg wet μg/kg wet		20.0		100	70-130 70-130		
Methyl tert-butyl ether	23.0		μg/kg wet μg/kg wet		20.0		115	70-130 70-130		
4-Methyl-2-pentanone (MIBK)	23.0 23.2		μg/kg wet μg/kg wet		20.0		116	70-130 70-130		
Methylene chloride	23.2		μg/kg wet μg/kg wet		20.0		102	70-130 70-130		
Naphthalene	18.2		μg/kg wet μg/kg wet		20.0		91	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1424777 - SW846 5035A Soil (low level)										
LCS (1424777-BS1)					Pre	epared & A	nalyzed: 21-	-Oct-14		
n-Propylbenzene	21.6		μg/kg wet		20.0		108	70-130		
Styrene	22.2		μg/kg wet		20.0		111	70-130		
1,1,1,2-Tetrachloroethane	20.4		μg/kg wet		20.0		102	70-130		
1,1,2,2-Tetrachloroethane	22.7		μg/kg wet		20.0		113	70-130		
Tetrachloroethene	21.3		μg/kg wet		20.0		107	70-130		
Toluene	21.0		μg/kg wet		20.0		105	70-130		
1,2,3-Trichlorobenzene	19.3		μg/kg wet		20.0		96	70-130		
1,2,4-Trichlorobenzene	18.4		μg/kg wet		20.0		92	70-130		
1,3,5-Trichlorobenzene	21.3		μg/kg wet		20.0		107	70-130		
1,1,1-Trichloroethane	21.2		μg/kg wet		20.0		106	70-130		
1,1,2-Trichloroethane	22.1		μg/kg wet		20.0		110	70-130		
Trichloroethene	20.9		μg/kg wet		20.0		104	70-130		
Trichlorofluoromethane (Freon 11)	20.9		μg/kg wet		20.0		105	70-130		
1,2,3-Trichloropropane	23.1		μg/kg wet		20.0		115	70-130		
1,2,4-Trimethylbenzene	21.9		μg/kg wet		20.0		110	70-130		
1,3,5-Trimethylbenzene	21.6		μg/kg wet		20.0		108	70-130		
Vinyl chloride	21.8		μg/kg wet		20.0		109	70-130		
m,p-Xylene	21.1		μg/kg wet		20.0		105	70-130		
o-Xylene	21.4		μg/kg wet		20.0		107	70-130		
Tetrahydrofuran	23.8		μg/kg wet		20.0		119	70-130		
Ethyl ether	23.0		μg/kg wet		20.0		115	70-130		
Tert-amyl methyl ether	21.8		μg/kg wet		20.0		109	70-130		
Ethyl tert-butyl ether	21.6		μg/kg wet		20.0		108	70-130		
Di-isopropyl ether	21.0		μg/kg wet		20.0		105	70-130		
Tert-Butanol / butyl alcohol	264	QM9	μg/kg wet		200		132	70-130		
1,4-Dioxane	204		μg/kg wet		200		102	70-130		
trans-1,4-Dichloro-2-butene	22.3		μg/kg wet μg/kg wet		20.0		112	70-130		
Ethanol	505		μg/kg wet μg/kg wet		400		126	70-130		
Surrogate: 4-Bromofluorobenzene	53.6		μg/kg wet		50.0		107	70-130		
Surrogate: Toluene-d8	51.5		μg/kg wet		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.5		μg/kg wet		50.0		105	70-130		
Surrogate: Dibromofluoromethane	51.8		μg/kg wet		50.0		104	70-130		
LCS Dup (1424777-BSD1)	00		pg///g irot			enared & A	nalyzed: 21-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.2		μg/kg wet		20.0		101	70-130	2	30
Acetone	31.4		μg/kg wet μg/kg wet		20.0		157	70-130	14	30
Acrylonitrile	25.1		μg/kg wet		20.0		125	70-130	1	30
Benzene	21.2		μg/kg wet μg/kg wet		20.0		106	70-130	2	30
Bromobenzene	20.9		μg/kg wet		20.0		105	70-130	2	30
Bromochloromethane	22.6		μg/kg wet		20.0		113	70-130	1	30
Bromodichloromethane	21.7		μg/kg wet		20.0		108	70-130	0.09	30
Bromoform	23.2		μg/kg wet		20.0		116	70-130	3	30
Bromomethane	22.9		μg/kg wet		20.0		114	70-130	1	30
2-Butanone (MEK)	20.6		μg/kg wet μg/kg wet		20.0		103	70-130	28	30
n-Butylbenzene	19.3		μg/kg wet μg/kg wet		20.0		97	70-130	2	30
sec-Butylbenzene	21.3		μg/kg wet μg/kg wet		20.0		107	70-130	0.5	30
tert-Butylbenzene	21.6		μg/kg wet μg/kg wet		20.0		107	70-130	2	30
Carbon disulfide	21.6 21.5				20.0		108	70-130 70-130	0.4	30
Carbon distillide Carbon tetrachloride	21.5		μg/kg wet μg/kg wet		20.0		106	70-130 70-130	0.4	30
Chlorobenzene	21.2							70-130 70-130		30
Chloroethane	20.3 20.6		μg/kg wet μg/kg wet		20.0 20.0		102 103	70-130 70-130	0.7 6	30
										30

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1424777 - SW846 5035A Soil (low level)										
LCS Dup (1424777-BSD1)					Pre	epared & Ar	nalyzed: 21-	Oct-14		
Chloromethane	21.2		μg/kg wet		20.0		106	70-130	2	30
2-Chlorotoluene	21.1		μg/kg wet		20.0		106	70-130	0.3	30
4-Chlorotoluene	21.6		μg/kg wet		20.0		108	70-130	1	30
1,2-Dibromo-3-chloropropane	22.4		μg/kg wet		20.0		112	70-130	3	30
Dibromochloromethane	23.4		μg/kg wet		20.0		117	70-130	0.04	30
1,2-Dibromoethane (EDB)	23.9		μg/kg wet		20.0		119	70-130	2	30
Dibromomethane	22.4		μg/kg wet		20.0		112	70-130	1	30
1,2-Dichlorobenzene	20.6		μg/kg wet		20.0		103	70-130	1	30
1,3-Dichlorobenzene	21.4		μg/kg wet		20.0		107	70-130	2	30
1,4-Dichlorobenzene	19.3		μg/kg wet		20.0		96	70-130	3	30
Dichlorodifluoromethane (Freon12)	21.4		μg/kg wet		20.0		107	70-130	3	30
1,1-Dichloroethane	20.4		μg/kg wet		20.0		102	70-130	1	30
1,2-Dichloroethane	22.1		μg/kg wet		20.0		110	70-130	1	30
1.1-Dichloroethene	20.3		μg/kg wet		20.0		101	70-130	3	30
cis-1,2-Dichloroethene	21.0		μg/kg wet		20.0		105	70-130	2	30
trans-1,2-Dichloroethene	21.0				20.0		105	70-130	2	30
			μg/kg wet		20.0		106	70-130	1	30
1,2-Dichloropropane	21.2		μg/kg wet							
1,3-Dichloropropane	22.5		μg/kg wet		20.0		112	70-130	0.4	30
2,2-Dichloropropane	19.6		μg/kg wet		20.0		98	70-130	2	30
1,1-Dichloropropene	21.1		μg/kg wet		20.0		105	70-130	0.5	30
cis-1,3-Dichloropropene	21.5		μg/kg wet		20.0		107	70-130	1	30
trans-1,3-Dichloropropene	21.0		μg/kg wet		20.0		105	70-130	0.3	30
Ethylbenzene	20.8		μg/kg wet		20.0		104	70-130	8.0	30
Hexachlorobutadiene	19.2		μg/kg wet		20.0		96	70-130	0.5	30
2-Hexanone (MBK)	23.0		μg/kg wet		20.0		115	70-130	6	30
Isopropylbenzene	21.1		μg/kg wet		20.0		106	70-130	0.7	30
4-Isopropyltoluene	20.1		μg/kg wet		20.0		100	70-130	0.7	30
Methyl tert-butyl ether	23.3		μg/kg wet		20.0		117	70-130	2	30
4-Methyl-2-pentanone (MIBK)	26.4		μg/kg wet		20.0		132	70-130	13	30
Methylene chloride	20.6		μg/kg wet		20.0		103	70-130	8.0	30
Naphthalene	17.5		μg/kg wet		20.0		88	70-130	4	30
n-Propylbenzene	21.5		μg/kg wet		20.0		107	70-130	0.5	30
Styrene	21.6		μg/kg wet		20.0		108	70-130	3	30
1,1,1,2-Tetrachloroethane	21.0		μg/kg wet		20.0		105	70-130	3	30
1,1,2,2-Tetrachloroethane	22.8		μg/kg wet		20.0		114	70-130	0.7	30
Tetrachloroethene	21.4		μg/kg wet		20.0		107	70-130	0.4	30
Toluene	21.0		μg/kg wet		20.0		105	70-130	0	30
1,2,3-Trichlorobenzene	18.7		μg/kg wet		20.0		94	70-130	3	30
1,2,4-Trichlorobenzene	17.4		μg/kg wet		20.0		87	70-130	5	30
1,3,5-Trichlorobenzene	20.5		μg/kg wet		20.0		103	70-130	4	30
1,1,1-Trichloroethane	21.3		μg/kg wet		20.0		106	70-130	0.5	30
1,1,2-Trichloroethane	22.2		μg/kg wet		20.0		111	70-130	0.2	30
Trichloroethene	20.8		μg/kg wet		20.0		104	70-130	0.2	30
Trichlorofluoromethane (Freon 11)	20.9		μg/kg wet		20.0		104	70-130	0.2	30
1,2,3-Trichloropropane	22.7		μg/kg wet		20.0		113	70-130	2	30
1,2,4-Trimethylbenzene	21.6		μg/kg wet μg/kg wet		20.0		108	70-130	1	30
1,3,5-Trimethylbenzene	21.4		μg/kg wet μg/kg wet		20.0		107	70-130	0.7	30
•										
Vinyl chloride	21.5		μg/kg wet		20.0		108	70-130 70-130	1	30
m,p-Xylene	21.2		μg/kg wet		20.0		106	70-130	0.7	30
o-Xylene	21.6		μg/kg wet		20.0		108	70-130	1	30
Tetrahydrofuran	23.2 23.1		μg/kg wet		20.0		116 115	70-130 70-130	3 0.5	30 30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
· · · · ·										
Batch 1424777 - SW846 5035A Soil (low level)					D.,	0 A		0-1-14		
LCS Dup (1424777-BSD1)						epared & Ai	nalyzed: 21-			
Tert-amyl methyl ether	21.6		μg/kg wet		20.0		108	70-130	1	30
Ethyl tert-butyl ether	21.9		μg/kg wet		20.0		109	70-130	1	30
Di-isopropyl ether	21.1		μg/kg wet		20.0		105	70-130	0.4	30
Tert-Butanol / butyl alcohol	258		μg/kg wet		200		129	70-130	2	30
1,4-Dioxane	203		μg/kg wet		200		102	70-130	0.2	30
trans-1,4-Dichloro-2-butene Ethanol	21.8 538	QM9	μg/kg wet μg/kg wet		20.0 400		109 135	70-130 70-130	3 6	30 30
Surrogate: 4-Bromofluorobenzene	53.3		μg/kg wet		50.0		107	70-130		
Surrogate: Toluene-d8	51.5 50.7		μg/kg wet		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.7		μg/kg wet		50.0		105	70-130		
Surrogate: Dibromofluoromethane	52.3		μg/kg wet		50.0		105	70-130		
Batch 1424921 - SW846 5035A Soil (high level)										
Blank (1424921-BLK1)					Pro	epared & Aı	nalyzed: 22-	-Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 50.0	D	μg/kg wet	50.0						
Acetone	< 500	D	μg/kg wet	500						
Acrylonitrile	< 50.0	D	μg/kg wet	50.0						
Benzene	< 50.0	D	μg/kg wet	50.0						
Bromobenzene	< 50.0	D	μg/kg wet	50.0						
Bromochloromethane	< 50.0	D	μg/kg wet	50.0						
Bromodichloromethane	< 50.0	D	μg/kg wet	50.0						
Bromoform	< 50.0	D	μg/kg wet	50.0						
Bromomethane	< 100	D	μg/kg wet	100						
2-Butanone (MEK)	< 500	D	μg/kg wet	500						
n-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
sec-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
tert-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
Carbon disulfide	< 100	D	μg/kg wet	100						
Carbon tetrachloride	< 50.0	D	μg/kg wet	50.0						
Chlorobenzene	< 50.0	D	μg/kg wet	50.0						
Chloroethane	< 100	D	μg/kg wet	100						
Chloroform	< 50.0	D	μg/kg wet	50.0						
Chloromethane	< 100	D	μg/kg wet	100						
2-Chlorotoluene	< 50.0	D	μg/kg wet	50.0						
4-Chlorotoluene	< 50.0	D	μg/kg wet	50.0						
1,2-Dibromo-3-chloropropane	< 100	D	μg/kg wet	100						
Dibromochloromethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dibromoethane (EDB)	< 50.0	D	μg/kg wet	50.0						
Dibromomethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,3-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,4-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
Dichlorodifluoromethane (Freon12)	< 100	D	μg/kg wet	100						
1,1-Dichloroethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dichloroethane	< 50.0	D	μg/kg wet	50.0						
1,1-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
cis-1,2-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
trans-1,2-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
1,2-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
1,3-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
2,2-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
1,1-Dichloropropene	< 50.0	D	μg/kg wet	50.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1424921 - SW846 5035A Soil (high level)										
Blank (1424921-BLK1)					Pre	epared & Ai	nalyzed: 22-	-Oct-14		
cis-1,3-Dichloropropene	< 50.0	D	μg/kg wet	50.0			-	<u></u>		
trans-1,3-Dichloropropene	< 50.0	D	μg/kg wet	50.0						
Ethylbenzene	< 50.0	D	μg/kg wet	50.0						
Hexachlorobutadiene	< 50.0	D	μg/kg wet	50.0						
2-Hexanone (MBK)	< 500	D	μg/kg wet	500						
Isopropylbenzene	< 50.0	D	μg/kg wet	50.0						
4-Isopropyltoluene	< 50.0	D	μg/kg wet	50.0						
Methyl tert-butyl ether	< 50.0	D	μg/kg wet	50.0						
4-Methyl-2-pentanone (MIBK)	< 500	D	μg/kg wet	500						
Methylene chloride	< 100	D	μg/kg wet	100						
Naphthalene	< 50.0	D	μg/kg wet	50.0						
n-Propylbenzene	< 50.0	D	μg/kg wet	50.0						
Styrene	< 50.0	D	μg/kg wet	50.0						
1,1,1,2-Tetrachloroethane	< 50.0	D	μg/kg wet	50.0						
1,1,2,2-Tetrachloroethane	< 50.0	D	μg/kg wet	50.0						
Tetrachloroethene	< 50.0	D	μg/kg wet	50.0						
Toluene	< 50.0	D	μg/kg wet μg/kg wet	50.0						
1,2,3-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,2,4-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,3,5-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,1,1-Trichloroethane	< 50.0	D	μg/kg wet μg/kg wet	50.0						
1,1,2-Trichloroethane	< 50.0	D		50.0						
Trichloroethene	< 50.0	D	μg/kg wet	50.0						
Trichlorofluoromethane (Freon 11)	< 50.0	D	μg/kg wet	50.0						
· · ·	< 50.0	D	μg/kg wet	50.0						
1,2,3-Trichloropropane	< 50.0	D	μg/kg wet	50.0						
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	< 50.0	D	μg/kg wet	50.0						
•		D	μg/kg wet							
Vinyl chloride	< 50.0 < 100	D	μg/kg wet	50.0						
m,p-Xylene			μg/kg wet	100						
o-Xylene	< 50.0	D	μg/kg wet	50.0						
Tetrahydrofuran	< 100	D	μg/kg wet	100						
Ethyl ether	< 50.0	D	μg/kg wet	50.0						
Tert-amyl methyl ether	< 50.0	D	μg/kg wet	50.0						
Ethyl tert-butyl ether	< 50.0	D	μg/kg wet	50.0						
Di-isopropyl ether	< 50.0	D	μg/kg wet	50.0						
Tert-Butanol / butyl alcohol	< 500	D	μg/kg wet	500						
1,4-Dioxane	< 1000	D	μg/kg wet	1000						
trans-1,4-Dichloro-2-butene	< 250	D	μg/kg wet	250						
Ethanol	< 20000	D	μg/kg wet	20000						
Surrogate: 4-Bromofluorobenzene	30.5		μg/kg wet		30.0		102	70-130 70-130		
Surrogate: 1.2 Dichloroothono d4	29.5		μg/kg wet		30.0		98 100	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	30.0		μg/kg wet		30.0		100	70-130 70-130		
Surrogate: Dibromofluoromethane	30.6		μg/kg wet		30.0		102	70-130		
LCS (1424921-BS1)		_				epared & Ai	nalyzed: 22-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	15.7	D	μg/kg wet		20.0		78	70-130		
Acetone	19.7	D	μg/kg wet		20.0		99	70-130		
Acrylonitrile	17.9	D -	μg/kg wet		20.0		89	70-130		
Benzene	16.3	D -	μg/kg wet		20.0		82	70-130		
Bromobenzene	17.0	D	μg/kg wet		20.0		85	70-130		
Bromochloromethane	17.0	D	μg/kg wet		20.0		85	70-130		
Bromodichloromethane	17.4	D	μg/kg wet		20.0		87	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424921 - SW846 5035A Soil (high level)										
LCS (1424921-BS1)					Pre	epared & Ar	nalyzed: 22-	Oct-14		
Bromoform	18.9	D	μg/kg wet		20.0		95	70-130		
Bromomethane	16.5	D	μg/kg wet		20.0		82	70-130		
2-Butanone (MEK)	16.5	D	μg/kg wet		20.0		83	70-130		
n-Butylbenzene	16.3	D	μg/kg wet		20.0		82	70-130		
sec-Butylbenzene	16.7	D	μg/kg wet		20.0		84	70-130		
tert-Butylbenzene	16.9	D	μg/kg wet		20.0		85	70-130		
Carbon disulfide	15.8	D	μg/kg wet		20.0		79	70-130		
Carbon tetrachloride	16.4	D	μg/kg wet		20.0		82	70-130		
Chlorobenzene	17.4	D	μg/kg wet		20.0		87	70-130		
Chloroethane	15.1	D	μg/kg wet		20.0		75	70-130		
Chloroform	16.1	D	μg/kg wet		20.0		80	70-130		
Chloromethane	14.5	D	μg/kg wet		20.0		72	70-130		
2-Chlorotoluene	17.0	D	μg/kg wet		20.0		85	70-130		
4-Chlorotoluene	17.0	D	μg/kg wet		20.0		85	70-130		
1,2-Dibromo-3-chloropropane	18.3	D	μg/kg wet		20.0		91	70-130		
Dibromochloromethane	18.0	D	μg/kg wet		20.0		90	70-130		
1,2-Dibromoethane (EDB)	17.9	D	μg/kg wet		20.0		90	70-130		
Dibromomethane	17.9	D	μg/kg wet		20.0		90	70-130		
1,2-Dichlorobenzene	18.1	D	μg/kg wet		20.0		91	70-130		
1,3-Dichlorobenzene	17.7	D	μg/kg wet		20.0		89	70-130		
1,4-Dichlorobenzene	16.9	D	μg/kg wet		20.0		85	70-130		
Dichlorodifluoromethane (Freon12)	14.2	D	μg/kg wet		20.0		71	70-130		
1,1-Dichloroethane	15.9	D	μg/kg wet		20.0		79	70-130		
1,2-Dichloroethane	16.8	D	μg/kg wet		20.0		84	70-130		
1,1-Dichloroethene	14.8	D	μg/kg wet		20.0		74	70-130		
cis-1,2-Dichloroethene	16.7	D	μg/kg wet		20.0		83	70-130		
trans-1,2-Dichloroethene	16.2	D	μg/kg wet		20.0		81	70-130		
1,2-Dichloropropane	17.2	D	μg/kg wet		20.0		86	70-130		
1,3-Dichloropropane	17.6	D	μg/kg wet		20.0		88	70-130		
2,2-Dichloropropane	15.6	D	μg/kg wet		20.0		78	70-130		
1,1-Dichloropropene	14.9	D	μg/kg wet		20.0		74	70-130		
cis-1,3-Dichloropropene	17.5	D	μg/kg wet		20.0		88	70-130		
trans-1,3-Dichloropropene	18.2	D	μg/kg wet		20.0		91	70-130		
Ethylbenzene	16.9	D	μg/kg wet		20.0		84	70-130		
Hexachlorobutadiene	16.6	D	μg/kg wet		20.0		83	70-130		
2-Hexanone (MBK)	18.4	D	μg/kg wet		20.0		92	70-130		
Isopropylbenzene	16.6	D	μg/kg wet		20.0		83	70-130		
4-Isopropyltoluene	16.3	D	μg/kg wet		20.0		81	70-130		
Methyl tert-butyl ether	17.8	D	μg/kg wet		20.0		89	70-130		
4-Methyl-2-pentanone (MIBK)	19.0	D	μg/kg wet		20.0		95	70-130		
Methylene chloride	19.2	D	μg/kg wet		20.0		96	70-130		
Naphthalene	19.1	D	μg/kg wet		20.0		96	70-130		
n-Propylbenzene	16.7	D	μg/kg wet		20.0		84	70-130		
Styrene	18.6	D	μg/kg wet		20.0		93	70-130		
1,1,1,2-Tetrachloroethane	17.6	D	μg/kg wet		20.0		88	70-130		
1,1,2,2-Tetrachloroethane	18.2	D	μg/kg wet		20.0		91	70-130		
Tetrachloroethene	15.5	D	μg/kg wet		20.0		78	70-130		
Toluene	16.4	D	μg/kg wet		20.0		82	70-130		
1,2,3-Trichlorobenzene	18.1	D	μg/kg wet μg/kg wet		20.0		90	70-130		
1,2,4-Trichlorobenzene	18.0	D	μg/kg wet		20.0		90	70-130		
1,3,5-Trichlorobenzene	17.2	D	μg/kg wet μg/kg wet		20.0		86	70-130		
1,1,1-Trichloroethane	16.2	D	μg/kg wet μg/kg wet		20.0		81	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424921 - SW846 5035A Soil (high level)										
LCS (1424921-BS1)					Pre	epared & Ar	nalyzed: 22-	Oct-14		
1,1,2-Trichloroethane	18.4	D	μg/kg wet		20.0		92	70-130		
Trichloroethene	16.4	D	μg/kg wet		20.0		82	70-130		
Trichlorofluoromethane (Freon 11)	15.4	D	μg/kg wet		20.0		77	70-130		
1,2,3-Trichloropropane	17.4	D	μg/kg wet		20.0		87	70-130		
1,2,4-Trimethylbenzene	17.5	D	μg/kg wet		20.0		88	70-130		
1,3,5-Trimethylbenzene	17.1	D	μg/kg wet		20.0		86	70-130		
Vinyl chloride	15.1	D	μg/kg wet		20.0		75	70-130		
m,p-Xylene	16.8	D	μg/kg wet		20.0		84	70-130		
o-Xylene	17.3	D	μg/kg wet		20.0		86	70-130		
Tetrahydrofuran	17.7	D	μg/kg wet		20.0		88	70-130		
Ethyl ether	18.1	D	μg/kg wet		20.0		91	70-130		
Tert-amyl methyl ether	17.7	D	μg/kg wet		20.0		88	70-130		
Ethyl tert-butyl ether	17.8	D	μg/kg wet		20.0		89	70-130		
Di-isopropyl ether	17.2	D	μg/kg wet		20.0		86	70-130		
Tert-Butanol / butyl alcohol	164	D	μg/kg wet		200		82	70-130		
1,4-Dioxane	197	D	μg/kg wet		200		98	70-130		
trans-1,4-Dichloro-2-butene	17.3	D	μg/kg wet		20.0		86	70-130		
Ethanol	358	D	μg/kg wet		400		90	70-130		
Surrogate: 4-Bromofluorobenzene	30.9		μg/kg wet		30.0		103	70-130		
Surrogate: Toluene-d8	29.8		μg/kg wet		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.4		μg/kg wet		30.0		101	70-130		
Surrogate: Dibromofluoromethane	30.7		μg/kg wet		30.0		102	70-130		
LCS Dup (1424921-BSD1)					Pre	epared & Ar	nalyzed: 22-	-Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	15.6	D	μg/kg wet		20.0		78	70-130	0.3	30
Acetone	20.3	D	μg/kg wet		20.0		101	70-130	3	30
Acrylonitrile	21.3	D	μg/kg wet		20.0		106	70-130	17	30
Benzene	16.5	D	μg/kg wet		20.0		82	70-130	0.9	30
Bromobenzene	16.8	D	μg/kg wet		20.0		84	70-130	1	30
Bromochloromethane	17.4	D	μg/kg wet		20.0		87	70-130	2	30
Bromodichloromethane	17.4	D	μg/kg wet		20.0		87	70-130	0.2	30
Bromoform	19.1	D	μg/kg wet		20.0		95	70-130	0.7	30
Bromomethane	16.9	D	μg/kg wet		20.0		84	70-130	2	30
2-Butanone (MEK)	16.5	D	μg/kg wet		20.0		82	70-130	0.5	30
n-Butylbenzene	16.1	D	μg/kg wet		20.0		81	70-130	1	30
sec-Butylbenzene	16.6	D	μg/kg wet		20.0		83	70-130	0.8	30
tert-Butylbenzene	16.9	D	μg/kg wet		20.0		84	70-130	0.2	30
Carbon disulfide	15.7	D	μg/kg wet		20.0		79	70-130	0.3	30
Carbon tetrachloride	16.1	D	μg/kg wet		20.0		81	70-130	1	30
Chlorothono	17.2	D	μg/kg wet		20.0		86	70-130	1	30
Chloroform	14.7	D	μg/kg wet		20.0		74	70-130	2	30
Chloromothono	16.1	D	μg/kg wet		20.0		80	70-130	0.2	30
Chloromethane	14.2	D	μg/kg wet		20.0		71	70-130	2	30
2-Chlorotoluene	16.9	D	μg/kg wet		20.0		84	70-130 70-130	0.8	30
4-Chlorotoluene	16.8	D D	μg/kg wet		20.0		84	70-130	1	30
1,2-Dibromo-3-chloropropane	19.1		µg/kg wet		20.0		95 92	70-130 70-130	4	30
Dibromochloromethane	18.4	D D	µg/kg wet		20.0		92	70-130 70-130	2	30
1,2-Dibromoethane (EDB)	18.0	D	µg/kg wet		20.0		90	70-130 70-130	0.4	30
Dibromomethane	18.3	D	µg/kg wet		20.0		91	70-130 70-130	2	30 30
1,2-Dichlorobenzene	18.1		µg/kg wet		20.0		91 85	70-130 70-130	0.1	
1,3-Dichlorobenzene	17.0	D	μg/kg wet		20.0		85	70-130	4	30

nalvta(c)	Danilt	Elaa	Units	*RDL	Spike	Source	%REC	%REC	RPD	RPI
nalyte(s)	Result	Flag	Omts	· KDL	Level	Result	/0KEC	Limits	KLD	Lim
atch 1424921 - SW846 5035A Soil (high level)										
LCS Dup (1424921-BSD1)						epared & Ar	nalyzed: 22-			
Dichlorodifluoromethane (Freon12)	14.4	D	μg/kg wet		20.0		72	70-130	2	30
1,1-Dichloroethane	15.8	D	μg/kg wet		20.0		79	70-130	0.3	30
1,2-Dichloroethane	17.3	D	μg/kg wet		20.0		87	70-130	3	30
1,1-Dichloroethene	14.6	D	μg/kg wet		20.0		73	70-130	2	30
cis-1,2-Dichloroethene	16.6	D	μg/kg wet		20.0		83	70-130	8.0	30
trans-1,2-Dichloroethene	15.4	D	μg/kg wet		20.0		77	70-130	5	30
1,2-Dichloropropane	17.0	D	μg/kg wet		20.0		85	70-130	0.6	30
1,3-Dichloropropane	17.4	D	μg/kg wet		20.0		87	70-130	0.9	30
2,2-Dichloropropane	15.7	D	μg/kg wet		20.0		79	70-130	0.6	30
1,1-Dichloropropene	16.3	D	μg/kg wet		20.0		81	70-130	9	30
cis-1,3-Dichloropropene	17.4	D	μg/kg wet		20.0		87	70-130	1	30
trans-1,3-Dichloropropene	18.1	D	μg/kg wet		20.0		90	70-130	0.8	30
Ethylbenzene	16.6	D	μg/kg wet		20.0		83	70-130	2	30
Hexachlorobutadiene	16.8	D	μg/kg wet		20.0		84	70-130	1	30
2-Hexanone (MBK)	18.7	D	μg/kg wet		20.0		93	70-130	2	30
Isopropylbenzene	16.4	D	μg/kg wet		20.0		82	70-130	1	30
4-Isopropyltoluene	16.4	D	μg/kg wet		20.0		82	70-130	1	30
Methyl tert-butyl ether	17.9	D	μg/kg wet		20.0		90	70-130	1	30
4-Methyl-2-pentanone (MIBK)	18.5	D	μg/kg wet		20.0		92	70-130	3	30
Methylene chloride	18.6	D			20.0		93	70-130	3	30
•		D	μg/kg wet		20.0		93 98	70-130	2	30
Naphthalene	19.6		μg/kg wet							
n-Propylbenzene	16.4	D	μg/kg wet		20.0		82	70-130	2	30
Styrene	16.8	D	μg/kg wet		20.0		84	70-130	10	30
1,1,1,2-Tetrachloroethane	17.1	D	μg/kg wet		20.0		85	70-130	3	30
1,1,2,2-Tetrachloroethane	18.1	D	μg/kg wet		20.0		91	70-130	0.2	30
Tetrachloroethene	15.8	D	μg/kg wet		20.0		79	70-130	2	30
Toluene	16.2	D	μg/kg wet		20.0		81	70-130	0.9	30
1,2,3-Trichlorobenzene	18.4	D	μg/kg wet		20.0		92	70-130	2	30
1,2,4-Trichlorobenzene	18.5	D	μg/kg wet		20.0		93	70-130	3	30
1,3,5-Trichlorobenzene	17.5	D	μg/kg wet		20.0		88	70-130	2	30
1,1,1-Trichloroethane	16.0	D	μg/kg wet		20.0		80	70-130	1	30
1,1,2-Trichloroethane	18.1	D	μg/kg wet		20.0		90	70-130	2	30
Trichloroethene	15.4	D	μg/kg wet		20.0		77	70-130	6	30
Trichlorofluoromethane (Freon 11)	15.5	D	μg/kg wet		20.0		77	70-130	0.4	30
1,2,3-Trichloropropane	18.0	D	μg/kg wet		20.0		90	70-130	3	30
1,2,4-Trimethylbenzene	17.4	D	μg/kg wet		20.0		87	70-130	0.9	30
1,3,5-Trimethylbenzene	17.1	D	μg/kg wet		20.0		85	70-130	0.4	30
Vinyl chloride	14.5	D	μg/kg wet		20.0		72	70-130	4	30
m,p-Xylene	16.6	D	μg/kg wet		20.0		83	70-130	1	30
o-Xylene	17.1	D	μg/kg wet		20.0		86	70-130	0.7	30
Tetrahydrofuran	17.1	D	μg/kg wet		20.0		85	70-130	4	30
Ethyl ether	18.1	D	μg/kg wet μg/kg wet		20.0		91	70-130	0.06	30
Tert-amyl methyl ether	17.7	D	μg/kg wet μg/kg wet		20.0		89	70-130	0.3	30
Ethyl tert-butyl ether	17.7	D	μg/kg wet μg/kg wet		20.0		89	70-130	0.06	30
•		D								
Di-isopropyl ether	17.4		μg/kg wet		20.0		87	70-130	1	30
Tert-Butanol / butyl alcohol	169	D	μg/kg wet		200		84	70-130	3	30
1,4-Dioxane	183	D	μg/kg wet		200		91	70-130	8	30
trans-1,4-Dichloro-2-butene	16.8	D	μg/kg wet		20.0		84	70-130	3	30
Ethanol	360	D	μg/kg wet		400		90	70-130	0.4	30
Surrogate: 4-Bromofluorobenzene	30.3		μg/kg wet		30.0		101	70-130		
Surrogate: Toluene-d8	30.1		μg/kg wet		30.0		100	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
• ()	resuit	1 145	J11165		Level	resuit	, JILLE	Limb	5	Limit
Batch 1424921 - SW846 5035A Soil (high level)					Des	0 A	ld. 00	0-144		
LCS Dup (1424921-BSD1)					Pre	epared & Ar	nalyzed: 22-	- <u>Oct-14</u>		
Surrogate: 1,2-Dichloroethane-d4	30.6		μg/kg wet		30.0		102	70-130		
Surrogate: Dibromofluoromethane	30.4		μg/kg wet		30.0		101	70-130		
Batch 1425049 - SW846 5035A Soil (high level)										
Blank (1425049-BLK1)					Pre	epared & Ar	nalyzed: 23-	Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 50.0	D	μg/kg wet	50.0						
Acetone	< 500	D	μg/kg wet	500						
Acrylonitrile	< 50.0	D	μg/kg wet	50.0						
Benzene	< 50.0	D	μg/kg wet	50.0						
Bromobenzene	< 50.0	D	μg/kg wet	50.0						
Bromochloromethane	< 50.0	D	μg/kg wet	50.0						
Bromodichloromethane	< 50.0	D	μg/kg wet	50.0						
Bromoform	< 50.0	D	μg/kg wet	50.0						
Bromomethane	< 100	D	μg/kg wet	100						
2-Butanone (MEK)	< 500	D	μg/kg wet	500						
n-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
sec-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
tert-Butylbenzene	< 50.0	D	μg/kg wet	50.0						
Carbon disulfide	< 100	D	μg/kg wet	100						
Carbon tetrachloride	< 50.0	D	μg/kg wet	50.0						
Chlorobenzene	< 50.0	D	μg/kg wet	50.0						
Chloroethane	< 100	D	μg/kg wet	100						
Chloroform	< 50.0	D	μg/kg wet	50.0						
Chloromethane	< 100	D	μg/kg wet	100						
2-Chlorotoluene	< 50.0	D	μg/kg wet	50.0						
4-Chlorotoluene	< 50.0	D	μg/kg wet	50.0						
1,2-Dibromo-3-chloropropane	< 100	D	μg/kg wet	100						
Dibromochloromethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dibromoethane (EDB)	< 50.0	D	μg/kg wet	50.0						
Dibromomethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,3-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,4-Dichlorobenzene	< 50.0	D	μg/kg wet	50.0						
Dichlorodifluoromethane (Freon12)	< 100	D	μg/kg wet	100						
1,1-Dichloroethane	< 50.0	D	μg/kg wet	50.0						
1,2-Dichloroethane	< 50.0	D	μg/kg wet	50.0						
1,1-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
cis-1,2-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
trans-1,2-Dichloroethene	< 50.0	D	μg/kg wet	50.0						
1,2-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
1,3-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
2,2-Dichloropropane	< 50.0	D	μg/kg wet	50.0						
1,1-Dichloropropene	< 50.0	D	μg/kg wet	50.0						
cis-1,3-Dichloropropene	< 50.0	D	μg/kg wet μg/kg wet	50.0						
• •	< 50.0	D		50.0						
trans-1,3-Dichloropropene	< 50.0 < 50.0	D	µg/kg wet	50.0						
Ethylbenzene Heyachlorobutadiana			μg/kg wet							
Hexachlorobutadiene	< 50.0	D	μg/kg wet	50.0						
2-Hexanone (MBK)	< 500	D	μg/kg wet	500 50.0						
Isopropylbenzene	< 50.0	D	μg/kg wet	50.0						
4-Isopropyltoluene	< 50.0	D	μg/kg wet	50.0						
Methyl tert-butyl ether	< 50.0	D	μg/kg wet	50.0						
4-Methyl-2-pentanone (MIBK)	< 500	D	μg/kg wet	500						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1425049 - SW846 5035A Soil (high level)										
Blank (1425049-BLK1)					Pre	epared & Ar	nalyzed: 23-	Oct-14		
Methylene chloride	< 100	D	μg/kg wet	100						
Naphthalene	< 50.0	D	μg/kg wet	50.0						
n-Propylbenzene	< 50.0	D	μg/kg wet	50.0						
Styrene	< 50.0	D	μg/kg wet	50.0						
1,1,1,2-Tetrachloroethane	< 50.0	D	μg/kg wet	50.0						
1,1,2,2-Tetrachloroethane	< 50.0	D	μg/kg wet	50.0						
Tetrachloroethene	< 50.0	D	μg/kg wet	50.0						
Toluene	< 50.0	D	μg/kg wet	50.0						
1,2,3-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,2,4-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,3,5-Trichlorobenzene	< 50.0	D	μg/kg wet	50.0						
1,1,1-Trichloroethane	< 50.0	D	μg/kg wet	50.0						
1,1,2-Trichloroethane	< 50.0	D	μg/kg wet	50.0						
Trichloroethene	< 50.0	D	μg/kg wet	50.0						
Trichlorofluoromethane (Freon 11)	< 50.0	D	μg/kg wet	50.0						
1,2,3-Trichloropropane	< 50.0	D	μg/kg wet	50.0						
1,2,4-Trimethylbenzene	< 50.0	D	μg/kg wet	50.0						
1,3,5-Trimethylbenzene	< 50.0	D	μg/kg wet	50.0						
Vinyl chloride	< 50.0	D	μg/kg wet	50.0						
m,p-Xylene	< 100	D	μg/kg wet	100						
o-Xylene	< 50.0	D	μg/kg wet	50.0						
Tetrahydrofuran	< 100	D	μg/kg wet	100						
Ethyl ether	< 50.0	D	μg/kg wet	50.0						
Tert-amyl methyl ether	< 50.0	D	μg/kg wet	50.0						
Ethyl tert-butyl ether	< 50.0	D	μg/kg wet	50.0						
Di-isopropyl ether	< 50.0	D	μg/kg wet	50.0						
Tert-Butanol / butyl alcohol	< 500	D	μg/kg wet	500						
1,4-Dioxane	< 1000	D	μg/kg wet	1000						
trans-1,4-Dichloro-2-butene	< 250	D	μg/kg wet	250						
Ethanol	< 20000	D	μg/kg wet	20000						
Surrogate: 4-Bromofluorobenzene	31.0		μg/kg wet		30.0		103	70-130		
Surrogate: Toluene-d8	29.9		μg/kg wet		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.1		μg/kg wet		30.0		100	70-130		
Surrogate: Dibromofluoromethane	30.5		μg/kg wet		30.0		102	70-130		
LCS (1425049-BS1)					Pre	epared & Ar	nalyzed: 23-	Oct-14		
1,1,2-Trichlorotrifluoroethane (Freon 113)	17.7	D	μg/kg wet		20.0		89	70-130		
Acetone	20.3	D	μg/kg wet		20.0		102	70-130		
Acrylonitrile	19.6	D	μg/kg wet		20.0		98	70-130		
Benzene	19.3	D	μg/kg wet		20.0		97	70-130		
Bromobenzene	20.8	D	μg/kg wet		20.0		104	70-130		
Bromochloromethane	20.3	D	μg/kg wet		20.0		102	70-130		
Bromodichloromethane	20.8	D	μg/kg wet		20.0		104	70-130		
Bromoform	21.2	D	μg/kg wet		20.0		106	70-130		
Bromomethane	18.8	D	μg/kg wet		20.0		94	70-130		
2-Butanone (MEK)	20.7	D	μg/kg wet		20.0		104	70-130		
n-Butylbenzene	18.9	D	μg/kg wet		20.0		95	70-130		
sec-Butylbenzene	20.7	D	μg/kg wet		20.0		103	70-130		
tert-Butylbenzene	20.7	D	μg/kg wet		20.0		103	70-130		
Carbon disulfide	19.7	D	μg/kg wet		20.0		98	70-130		
Carbon tetrachloride	19.7	D	μg/kg wet		20.0		98	70-130		
Chlorobenzene	20.9	D	μg/kg wet		20.0		104	70-130		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Satch 1425049 - SW846 5035A Soil (high level)										
LCS (1425049-BS1)					Pre	epared & Ar	nalyzed: 23-	-Oct-14		
Chloroethane	18.8	D	μg/kg wet		20.0		94	70-130		
Chloroform	18.6	D	μg/kg wet		20.0		93	70-130		
Chloromethane	17.4	D	μg/kg wet		20.0		87	70-130		
2-Chlorotoluene	20.6	D	μg/kg wet		20.0		103	70-130		
4-Chlorotoluene	20.4	D	μg/kg wet		20.0		102	70-130		
1,2-Dibromo-3-chloropropane	23.7	D	μg/kg wet		20.0		119	70-130		
Dibromochloromethane	21.4	D	μg/kg wet		20.0		107	70-130		
1,2-Dibromoethane (EDB)	20.4	D	μg/kg wet		20.0		102	70-130		
Dibromomethane	21.6	D	μg/kg wet		20.0		108	70-130		
1,2-Dichlorobenzene	20.8	D	μg/kg wet		20.0		104	70-130		
1,3-Dichlorobenzene	20.7	D	μg/kg wet		20.0		104	70-130		
1,4-Dichlorobenzene	19.5	D	μg/kg wet		20.0		97	70-130		
Dichlorodifluoromethane (Freon12)	17.0	D	μg/kg wet		20.0		85	70-130		
1,1-Dichloroethane	18.6	D	μg/kg wet		20.0		93	70-130		
1,2-Dichloroethane	20.3	D	μg/kg wet		20.0		102	70-130		
1,1-Dichloroethene	17.2	D	μg/kg wet		20.0		86	70-130		
cis-1,2-Dichloroethene	18.6	D	μg/kg wet		20.0		93	70-130		
trans-1,2-Dichloroethene	18.8	D	μg/kg wet		20.0		94	70-130		
1,2-Dichloropropane	19.3	D	μg/kg wet		20.0		96	70-130		
1,3-Dichloropropane	19.8	D	μg/kg wet		20.0		99	70-130		
2,2-Dichloropropane	19.6	D	μg/kg wet		20.0		98	70-130		
1,1-Dichloropropene	17.8	D	μg/kg wet		20.0		89	70-130		
cis-1,3-Dichloropropene	20.3	D	μg/kg wet		20.0		102	70-130		
trans-1,3-Dichloropropene	20.2	D	μg/kg wet		20.0		101	70-130		
Ethylbenzene	20.3	D	μg/kg wet		20.0		102	70-130		
Hexachlorobutadiene	19.5	D	μg/kg wet		20.0		97	70-130		
2-Hexanone (MBK)	20.3	D	μg/kg wet		20.0		101	70-130		
Isopropylbenzene	19.8	D D	μg/kg wet		20.0		99	70-130		
4-Isopropyltoluene	19.1	D	μg/kg wet		20.0		95	70-130		
Methyl tert-butyl ether	20.3	D	μg/kg wet		20.0		102	70-130		
4-Methyl-2-pentanone (MIBK) Methylene chloride	20.8	D	μg/kg wet		20.0 20.0		104 100	70-130 70-130		
Naphthalene	20.0 21.3	D	µg/kg wet		20.0		100	70-130		
n-Propylbenzene	20.4	D	μg/kg wet μg/kg wet		20.0		107	70-130		
Styrene	21.9	D	μg/kg wet		20.0		102	70-130		
1,1,1,2-Tetrachloroethane	20.3	D	μg/kg wet μg/kg wet		20.0		101	70-130		
1,1,2,2-Tetrachloroethane	22.8	D	μg/kg wet		20.0		114	70-130		
Tetrachloroethene	18.3	D	μg/kg wet		20.0		91	70-130		
Toluene	19.0	D	μg/kg wet		20.0		95	70-130		
1,2,3-Trichlorobenzene	21.1	D	μg/kg wet		20.0		106	70-130		
1,2,4-Trichlorobenzene	21.1	D	μg/kg wet		20.0		105	70-130		
1,3,5-Trichlorobenzene	20.3	D	μg/kg wet		20.0		101	70-130		
1,1,1-Trichloroethane	18.7	D	μg/kg wet		20.0		94	70-130		
1,1,2-Trichloroethane	20.9	D	μg/kg wet		20.0		104	70-130		
Trichloroethene	18.1	D	μg/kg wet		20.0		90	70-130		
Trichlorofluoromethane (Freon 11)	18.5	D	μg/kg wet		20.0		92	70-130		
1,2,3-Trichloropropane	20.8	D	μg/kg wet		20.0		104	70-130		
1,2,4-Trimethylbenzene	21.3	D	μg/kg wet		20.0		106	70-130		
1,3,5-Trimethylbenzene	21.0	D	μg/kg wet		20.0		105	70-130		
Vinyl chloride	19.9	D	μg/kg wet		20.0		99	70-130		
m,p-Xylene	19.6	D	μg/kg wet		20.0		98	70-130		
o-Xylene	20.6	D	μg/kg wet		20.0		103	70-130		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Satch 1425049 - SW846 5035A Soil (high level)										
LCS (1425049-BS1)					Pre	epared & Ar	nalyzed: 23-	Oct-14		
Tetrahydrofuran	18.7	D	μg/kg wet		20.0		93	70-130		
Ethyl ether	20.2	D	μg/kg wet		20.0		101	70-130		
Tert-amyl methyl ether	20.1	D	μg/kg wet		20.0		100	70-130		
Ethyl tert-butyl ether	20.3	D	μg/kg wet		20.0		102	70-130		
Di-isopropyl ether	20.0	D	μg/kg wet		20.0		100	70-130		
Tert-Butanol / butyl alcohol	189	D	μg/kg wet		200		95	70-130		
1,4-Dioxane	206	D	μg/kg wet		200		103	70-130		
trans-1,4-Dichloro-2-butene	12.0	QC2, D	μg/kg wet		20.0		60	70-130		
Ethanol	381	D	μg/kg wet		400		95	70-130		
Surrogate: 4-Bromofluorobenzene	32.0		μg/kg wet		30.0		107	70-130		
Surrogate: Toluene-d8	29.5		μg/kg wet		30.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.8		μg/kg wet		30.0		103	70-130		
Surrogate: Dibromofluoromethane	31.1		μg/kg wet		30.0		104	70-130		
-	31.1		µg/kg wei							
LCS Dup (1425049-BSD1)	4= 4	-				epared & Ar	nalyzed: 23-		,	
1,1,2-Trichlorotrifluoroethane (Freon 113)	17.9	D	μg/kg wet		20.0		90	70-130	1	30
Acetone	22.9	D	μg/kg wet		20.0		115	70-130	12	30
Acrylonitrile	17.8	D	μg/kg wet		20.0		89	70-130	10	30
Benzene	19.2	D	μg/kg wet		20.0		96	70-130	8.0	30
Bromobenzene	20.7	D	μg/kg wet		20.0		104	70-130	0.2	30
Bromochloromethane	19.9	D	μg/kg wet		20.0		100	70-130	2	30
Bromodichloromethane	20.2	D	μg/kg wet		20.0		101	70-130	3	30
Bromoform	20.4	D	μg/kg wet		20.0		102	70-130	4	30
Bromomethane	18.5	D	μg/kg wet		20.0		93	70-130	1	30
2-Butanone (MEK)	15.9	D	μg/kg wet		20.0		80	70-130	26	30
n-Butylbenzene	18.4	D	μg/kg wet		20.0		92	70-130	3	30
sec-Butylbenzene	20.1	D	μg/kg wet		20.0		100	70-130	3	30
tert-Butylbenzene	20.2	D	μg/kg wet		20.0		101	70-130	2	30
Carbon disulfide	19.6	D	μg/kg wet		20.0		98	70-130	0.5	30
Carbon tetrachloride	19.6	D	μg/kg wet		20.0		98	70-130	0.5	30
Chlorobenzene	20.0	D	μg/kg wet		20.0		100	70-130	4	30
Chloroethane	17.9	D	μg/kg wet		20.0		89	70-130	5	30
Chloroform	18.8	D	μg/kg wet		20.0		94	70-130	1	30
Chloromethane	18.0	D	μg/kg wet		20.0		90	70-130	4	30
2-Chlorotoluene	19.4	D	μg/kg wet		20.0		97	70-130	6	30
4-Chlorotoluene	19.7	D	μg/kg wet		20.0		98	70-130	4	30
1,2-Dibromo-3-chloropropane	20.4	D	μg/kg wet		20.0		102	70-130	15	30
Dibromochloromethane	20.2	D	μg/kg wet		20.0		101	70-130	5	30
1,2-Dibromoethane (EDB)	19.9	D	μg/kg wet μg/kg wet		20.0		99	70-130	3	30
Dibromomethane	20.8	D			20.0		104	70-130		30
		D	μg/kg wet						4	
1,2-Dichlorobenzene	19.4		μg/kg wet		20.0		97	70-130	7	30
1,3-Dichlorobenzene	20.3	D	μg/kg wet		20.0		101	70-130	2	30
1,4-Dichlorobenzene	19.0	D	μg/kg wet		20.0		95	70-130	2	30
Dichlorodifluoromethane (Freon12)	18.6	D	μg/kg wet		20.0		93	70-130	9	30
1,1-Dichloroethane	18.5	D	μg/kg wet		20.0		92	70-130	0.3	30
1,2-Dichloroethane	19.0	D	μg/kg wet		20.0		95	70-130	7	30
1,1-Dichloroethene	18.1	D	μg/kg wet		20.0		90	70-130	5	30
cis-1,2-Dichloroethene	18.7	D	μg/kg wet		20.0		93	70-130	0.5	30
trans-1,2-Dichloroethene	18.5	D	μg/kg wet		20.0		92	70-130	2	30
1,2-Dichloropropane	18.9	D	μg/kg wet		20.0		94	70-130	2	30
1,3-Dichloropropane	19.7	D	μg/kg wet		20.0		98	70-130	0.7	30
2,2-Dichloropropane	19.2	D	μg/kg wet		20.0		96	70-130	2	30

1()			** .	400-	Spike	Source	0/75-~	%REC	D.F.=	RPI
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
atch 1425049 - SW846 5035A Soil (high level)										
LCS Dup (1425049-BSD1)					Pre	epared & Ar	nalyzed: 23-	Oct-14		
1,1-Dichloropropene	18.5	D	μg/kg wet		20.0		92	70-130	4	30
cis-1,3-Dichloropropene	18.8	D	μg/kg wet		20.0		94	70-130	8	30
trans-1,3-Dichloropropene	19.7	D	μg/kg wet		20.0		99	70-130	3	30
Ethylbenzene	19.8	D	μg/kg wet		20.0		99	70-130	3	30
Hexachlorobutadiene	19.6	D	μg/kg wet		20.0		98	70-130	0.5	30
2-Hexanone (MBK)	19.8	D	μg/kg wet		20.0		99	70-130	2	30
Isopropylbenzene	20.1	D	μg/kg wet		20.0		100	70-130	1	30
4-Isopropyltoluene	18.6	D	μg/kg wet		20.0		93	70-130	3	30
Methyl tert-butyl ether	19.9	D	μg/kg wet		20.0		99	70-130	2	30
4-Methyl-2-pentanone (MIBK)	20.2	D	μg/kg wet		20.0		101	70-130	3	30
Methylene chloride	17.8	D	μg/kg wet		20.0		89	70-130	11	30
Naphthalene	19.8	D	μg/kg wet		20.0		99	70-130	8	30
n-Propylbenzene	19.8	D	μg/kg wet		20.0		99	70-130	3	30
Styrene	21.4	D	μg/kg wet		20.0		107	70-130	2	30
1,1,1,2-Tetrachloroethane	20.7	D	μg/kg wet		20.0		104	70-130	2	30
1,1,2,2-Tetrachloroethane	21.9	D	μg/kg wet		20.0		109	70-130	4	30
Tetrachloroethene	18.1	D	μg/kg wet		20.0		90	70-130	0.9	30
Toluene	18.7	D	μg/kg wet		20.0		93	70-130	2	30
1,2,3-Trichlorobenzene	19.4	D	μg/kg wet		20.0		97	70-130	8	30
1,2,4-Trichlorobenzene	19.4	D	μg/kg wet		20.0		97	70-130	8	30
1,3,5-Trichlorobenzene	18.9	D	μg/kg wet		20.0		95	70-130	7	30
1,1,1-Trichloroethane	19.2	D	μg/kg wet		20.0		96	70-130	2	30
1,1,2-Trichloroethane	20.2	D	μg/kg wet		20.0		101	70-130	3	30
Trichloroethene	18.1	D	μg/kg wet		20.0		91	70-130	0.3	30
Trichlorofluoromethane (Freon 11)	19.1	D	μg/kg wet		20.0		95	70-130	3	30
1,2,3-Trichloropropane	19.7	D	μg/kg wet		20.0		98	70-130	5	30
1,2,4-Trimethylbenzene	20.9	D	μg/kg wet		20.0		104	70-130	2	30
1,3,5-Trimethylbenzene	20.5	D	μg/kg wet		20.0		102	70-130	2	30
Vinyl chloride	18.8	D	μg/kg wet		20.0		94	70-130	5	30
m,p-Xylene	19.9	D	μg/kg wet		20.0		100	70-130	2	30
o-Xylene	19.8	D	μg/kg wet		20.0		99	70-130	4	30
Tetrahydrofuran	18.3	D	μg/kg wet μg/kg wet		20.0		91	70-130	2	30
Ethyl ether	19.5	D	μg/kg wet		20.0		98	70-130	4	30
Tert-amyl methyl ether	19.7	D	μg/kg wet μg/kg wet		20.0		98	70-130	2	30
Ethyl tert-butyl ether	19.9	D	μg/kg wet μg/kg wet		20.0		100	70-130	2	30
Di-isopropyl ether	19.5	D	μg/kg wet μg/kg wet		20.0		98	70-130	3	30
Tert-Butanol / butyl alcohol	189	D	μg/kg wet μg/kg wet		200		94	70-130	0.2	30
1,4-Dioxane	201	D	μg/kg wet μg/kg wet		200		101	70-130	3	30
trans-1,4-Dichloro-2-butene	12.1	QC2, D	μg/kg wet μg/kg wet		20.0		60	70-130	0.2	30
Ethanol	387	D	μg/kg wet μg/kg wet		400		97	70-130	2	30
Surrogate: 4-Bromofluorobenzene	31.8		μg/kg wet		30.0		106	70-130		
Surrogate: Toluene-d8	30.4		μg/kg wet μg/kg wet		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.7		μg/kg wet μg/kg wet		30.0		102	70-130 70-130		
Surrogate: Dibromofluoromethane	31.4		μg/kg wet μg/kg wet		30.0		102	70-130 70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424869 - SW846 3050B										
Blank (1424869-BLK1)					<u>Pre</u>	epared: 22-	Oct-14 Ar	alyzed: 25-O	ct-14	
Manganese	< 0.966		mg/kg wet	0.966						
Zinc	< 0.966		mg/kg wet	0.966						
Lead	< 1.45		mg/kg wet	1.45						
Copper	< 0.966		mg/kg wet	0.966						
Chromium	< 0.966		mg/kg wet	0.966						
Cadmium	< 0.483		mg/kg wet	0.483						
Arsenic	< 1.45		mg/kg wet	1.45						
Nickel	< 0.966		mg/kg wet	0.966						
Duplicate (1424869-DUP1)			Source: SB	98147-13	Pre	epared: 22-	Oct-14 Ar	alyzed: 25-O	ct-14	
Manganese	230		mg/kg dry	1.06		201		14	20	
Lead	4.10	QM4	mg/kg dry	1.60		8.50			70	20
Nickel	7.17	QM4	mg/kg dry	1.06		9.42			27	20
Copper	13.8	QM4	mg/kg dry	1.06		24.7			57	20
Chromium	10.5	QM4	mg/kg dry	1.06		7.59			32	20
Cadmium	0.196	J,QM4	mg/kg dry	0.532		0.252			25	20
Arsenic	< 1.60		mg/kg dry	1.60		0.972				20
Zinc	42.6	QM4	mg/kg dry	1.06		54.8			25	20
Matrix Spike (1424869-MS1)			Source: SB		Pre	enared: 22-	Oct-14 Ar	alyzed: 25-O	ct-14	
Manganese	407	QM6	mg/kg dry	1.10	138	201	150	75-125	<u> </u>	
Copper	166		mg/kg dry	1.10	138	24.7	103	75-125		
Chromium	146		mg/kg dry	1.10	138	7.59	101	75-125		
Zinc	180		mg/kg dry	1.10	138	54.8	91	75-125 75-125		
Cadmium	135		mg/kg dry	0.551	138	0.252	98	75-125		
Lead	133		mg/kg dry	1.65	138	8.50	91	75-125 75-125		
Nickel	146		mg/kg dry	1.10	138	9.42	99	75-125 75-125		
Arsenic	123		mg/kg dry	1.65	138	0.972	88	75-125		
	125							nalyzed: 25-O	ot 11	
Matrix Spike Dup (1424869-MSD1)	240	OME	Source: SB				20			
Manganese	310	QM6 QM6	mg/kg dry	1.06	132	201	83	75-125	27	20
Zinc	129	QM6	mg/kg dry	1.06	132	54.8	56 71	75-125	33	20
Nickel	103	QM6	mg/kg dry	1.06	132	9.42	71	75-125	35	20
Copper	118		mg/kg dry	1.06	132	24.7	71	75-125	34	20
Arsenic	91.2	QM6	mg/kg dry	1.59	132	0.972	68	75-125 75-105	30	20
Chromium	105	QM6	mg/kg dry	1.06	132	7.59	74	75-125	33	20
Cadmium	100	QM6 QM6	mg/kg dry	0.529	132	0.252	76 70	75-125	30	20
Lead	101	QIVIO	mg/kg dry	1.59	132	8.50	70	75-125	28	20
Post Spike (1424869-PS1)			Source: SB					alyzed: 25-O	ct-14	
Manganese	331		mg/kg dry	1.06	133	201	98	80-120		
Zinc	175		mg/kg dry	1.06	133	54.8	90	80-120		
Lead	132		mg/kg dry	1.59	133	8.50	93	80-120		
Copper	161		mg/kg dry	1.06	133	24.7	103	80-120		
Nickel	135		mg/kg dry	1.06	133	9.42	95	80-120		
Arsenic	118		mg/kg dry	1.59	133	0.972	88	80-120		
Cadmium	130		mg/kg dry	0.531	133	0.252	98	80-120		
Chromium	135		mg/kg dry	1.06	133	7.59	96	80-120		
Reference (1424869-SRM1)					Pre	epared: 22-	Oct-14 Ar	nalyzed: 25-O	ct-14	
Manganese	271		mg/kg wet	1.00	285		95	81.34-118 .47		
Arsenic	65.1		mg/kg wet	1.50	76.4		85	80.79-119 .86		
Zinc	143		mg/kg wet	1.00	155		92	80.06-120 .26		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1424869 - SW846 3050B										
Reference (1424869-SRM1)					Pre	epared: 22-	Oct-14 An	alyzed: 25-O	ct-14	
Lead	114		mg/kg wet	1.50	129		89	81.49-118		
Nickel	145		mg/kg wet	1.00	159		91	.5 82.22-117		
Copper	34.9		mg/kg wet	1.00	34.7		101	.77 80.9-119. 24		
Chromium	55.4		mg/kg wet	1.00	59.2		94	79.4-120. 51		
Cadmium	70.8		mg/kg wet	0.500	76.9		92	81.57-117 .76		
Reference (1424869-SRM2)					Pre	epared: 22-	Oct-14 An	nalyzed: 25-O	ct-14	
Manganese	292		mg/kg wet	1.00	286	•	102	81.34-118 .47		
Copper	35.6		mg/kg wet	1.00	34.9		102	80.9-119. 24		
Chromium	57.4		mg/kg wet	1.00	59.5		96	79.4-120. 51		
Cadmium	73.6		mg/kg wet	0.500	77.3		95	81.57-117 .76		
Zinc	149		mg/kg wet	1.00	156		96	.26		
Lead	118		mg/kg wet	1.50	129		91	81.49-118 .5		
Nickel	149		mg/kg wet	1.00	160		93	.77		
Arsenic	67.0		mg/kg wet	1.50	76.8		87	80.79-119 .86		
atch 1424871 - SW846 3050B					D		0-1-14	-l d 07 0		
Blank (1424871-BLK1)	< 0.835		mg/kg wet	0.835	PIE	epareu. ZZ-	OCI-14 AI	nalyzed: 27-O	<u>Ul-14</u>	
Manganese Sodium	< 20.9		mg/kg wet	20.9						
Nickel	< 0.835		mg/kg wet	0.835						
Zinc	< 0.835		mg/kg wet	0.835						
Arsenic	< 1.25		mg/kg wet	1.25						
Cadmium	< 0.418		mg/kg wet	0.418						
Chromium	< 0.835		mg/kg wet	0.418						
Lead	< 1.25		mg/kg wet	1.25						
Copper	< 0.835		mg/kg wet	0.835						
Iron	< 3.34		mg/kg wet	3.34						
Barium	< 0.835		mg/kg wet	0.835						
	0.000		Source: SB		Dr	anarad: 22	Oct 14 An	nalyzed: 27-O	ot 14	
Duplicate (1424871-DUP1) Sodium	111			31.0	<u> </u>	118	OCI-14 AII	iaiyzeu. 21-0i	7	20
	111		mg/kg dry	1.24		143			0.3	20
Manganese Cadmium		1	mg/kg dry			0.155			10	20
	0.140	J	mg/kg dry	0.619						
Nickel	9.92		mg/kg dry	1.24		10.6			6	20
Iron	9270		mg/kg dry	4.95		9560			3	20
Copper	29.7		mg/kg dry	1.24		34.8			16	20
Chromium	15.0		mg/kg dry	1.24		14.8			1	20
Zinc	84.7		mg/kg dry	1.24		89.2			5	20
Lead	11.1		mg/kg dry	1.86		12.7			14	20
Arsenic	1.25	J	mg/kg dry	1.86		1.18			6	20
Barium	38.6		mg/kg dry	1.24		38.6			0.2	20
Matrix Spike (1424871-MS1)			Source: SB	<u>98147-52</u>	Pre	•		nalyzed: 27-O	ct-14	
Manganese	347		mg/kg dry	1.31	164	143	125	75-125		
Sodium	1180	QM8	mg/kg dry	32.7	818	118	129	75-125		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1424871 - SW846 3050B		8			20,01	Troourr	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Zimito		
Matrix Spike (1424871-MS1)			Source: SB	28147-52	Pre	enared: 22-	Oct-14 An	alyzed: 27-Od	-t_1⊿	
Arsenic	148		mg/kg dry	1.96	164	1.18	90	75-125	<u> </u>	
Nickel	157		mg/kg dry	1.31	164	10.6	89	75-125		
Lead	154		mg/kg dry	1.96	164	12.7	86	75-125		
Iron	11100	QM2	mg/kg dry	5.24	164	9560	950	75-125		
Copper	194	-	mg/kg dry	1.31	164	34.8	97	75-125		
Chromium	177		mg/kg dry	1.31	164	14.8	99	75-125		
Cadmium	146		mg/kg dry	0.655	164	0.155	89	75-125		
Zinc	233		mg/kg dry	1.31	164	89.2	88	75-125		
Barium	207		mg/kg dry	1.31	164	38.6	103	75-125		
Matrix Spike Dup (1424871-MSD1)			Source: SB					alyzed: 27-Od	·t_1⊿	
Sodium	1180	QM8	mg/kg dry	33.4	835	118	127	75-125	0.5	20
Manganese	329		mg/kg dry	1.34	167	143	112	75-125	5	20
Arsenic	150		mg/kg dry	2.00	167	1.18	89	75-125	1	20
Zinc	237		mg/kg dry	1.34	167	89.2	88	75-125 75-125	2	20
Cadmium	150		mg/kg dry	0.668	167	0.155	90	75-125 75-125	3	20
Chromium	179		mg/kg dry	1.34	167	14.8	98	75-125 75-125	1	20
Copper	199		mg/kg dry	1.34	167	34.8	98	75-125	3	20
Lead	157		mg/kg dry	2.00	167	12.7	86	75-125	2	20
Nickel	159		mg/kg dry	1.34	167	10.6	89	75-125	1	20
Iron	10900	QM2	mg/kg dry	5.35	167	9560	804	75-125	2	20
Barium	211		mg/kg dry	1.34	167	38.6	103	75-125	2	20
Post Spike (1424871-PS1)			Source: SB					alyzed: 27-Od		_0
Manganese	288		mg/kg dry	1.34	168	143	87	80-120	<u> </u>	
Sodium	896		mg/kg dry	33.6	840	118	93	80-120		
Nickel	163		mg/kg dry	1.34	168	10.6	91	80-120		
Iron	8780	QM2	mg/kg dry	5.37	168	9560	-464	80-120		
Lead	162	QWL	mg/kg dry	2.02	168	12.7	89	80-120		
Arsenic	154		mg/kg dry	2.02	168	1.18	91	80-120		
Copper	200		mg/kg dry	1.34	168	34.8	98	80-120		
Zinc	234		mg/kg dry	1.34	168	89.2	86	80-120		
Chromium	178		mg/kg dry	1.34	168	14.8	97	80-120		
Cadmium	154		mg/kg dry	0.672	168	0.155	91	80-120		
Barium	202		mg/kg dry	1.34	168	38.6	97	80-120		
	202		mg/ng ary	1.04				alyzed: 27-Od	st 1.1	
Reference (1424871-SRM1) Sodium	369		mg/kg wet	25.0	376	epareu. ZZ-	98	71.71-128	<u> 14 </u>	
Sodium	369		mg/kg wet	25.0	3/6		90	.28		
Manganese	260		mg/kg wet	1.00	284		92	81.34-118		
· ·								.47		
Arsenic	69.5		mg/kg wet	1.50	76.2		91	80.79-119		
7:	445			4.00	454		0.4	.86 80.06-120		
Zinc	145		mg/kg wet	1.00	154		94	.26		
Lead	115		mg/kg wet	1.50	128		90	81.49-118		
			0 0					.5		
Iron	5980		mg/kg wet	4.00	6200		96	40.24-160		
Copper	25.4		ma/ka wat	1.00	24.6		101	.16		
Copper	35.1		mg/kg wet	1.00	34.6		101	80.9-119. 24		
Chromium	60.6		mg/kg wet	1.00	59.0		103	79.4-120.		
-			J					51		
Cadmium	69.9		mg/kg wet	0.500	76.7		91	81.57-117		
					45-			.76		
Nickel	148		mg/kg wet	1.00	159		93	82.22-117 .77		

					Spike	Source		%REC		RPE
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1424871 - SW846 3050B										
Reference (1424871-SRM1)					Pre	enared: 22-	Oct-14 An	alyzed: 27-O	ct-14	
Barium	142		mg/kg wet	1.00	132	spareu. ZZ-	107	82.82-117	<u>Ct-14</u>	
Banam	172		mg/kg wet	1.00	102		107	.17		
Reference (1424871-SRM2)					Pre	epared: 22-	Oct-14 An	alyzed: 27-O	ct-14	
Manganese	253		mg/kg wet	1.00	286		88	81.34-118		
								.47		
Sodium	342		mg/kg wet	25.0	379		90	71.71-128 .28		
Iron	5550		mg/kg wet	4.00	6250		89	40.24-160		
	5555		mg/kg wot	1.00	0200		00	.16		
Arsenic	65.9		mg/kg wet	1.50	76.8		86	80.79-119		
								.86		
Cadmium	65.9		mg/kg wet	0.500	77.3		85	81.57-117 .76		
Chromium	56.6		mg/kg wet	1.00	59.5		95	79.4-120.		
								51		
Copper	33.1		mg/kg wet	1.00	34.9		95	80.9-119.		
Land				4.50	400		0.5	24		
Lead	110		mg/kg wet	1.50	129		85	81.49-118 .5		
Zinc	136		mg/kg wet	1.00	156		88	80.06-120		
			0 0					.26		
Nickel	140		mg/kg wet	1.00	160		87	82.22-117		
Darium	400			4.00	400		00	.77		
Barium	128		mg/kg wet	1.00	133		96	82.82-117 .17		
Sodium	< 24.1		mg/kg wet	24.1						
Iron	< 3.86		mg/kg wet	3.86						
Barium	< 0.966		mg/kg wet	0.966						
<u>Duplicate (1425332-DUP1)</u>			Source: SB	98147-13	Pre	epared: 22-	Oct-14 An	alyzed: 27-O	ct-14	
Sodium	57.2	QM4	mg/kg dry	26.6		74.9			27	20
Iron	6660	QM4	mg/kg dry	4.25		9070			31	20
Barium	22.7		mg/kg dry	1.06		24.7			8	20
Matrix Spike (1425332-MS1)			Source: SB	98147-13	Pre	epared: 22-	Oct-14 An	alyzed: 27-O	ct-14	
Sodium	827		mg/kg dry	27.5	689	74.9	109	75-125		
Iron	11800	QM2	mg/kg dry	4.41	138	9070	1950	75-125		
Barium	187		mg/kg dry	1.10	138	24.7	118	75-125		
Matrix Spike Dup (1425332-MSD1)			Source: SB	98147-13	Pre	epared: 22-	Oct-14 An	alyzed: 27-O	ct-14	
Sodium	648	QM4	mg/kg dry	26.5	661	74.9	87	75-125	24	20
Iron	5720	QM2	mg/kg dry	4.23	132	9070	-2530	75-125	69	20
Barium	122	QM6	mg/kg dry	1.06	132	24.7	74	75-125	42	20
Post Spike (1425332-PS1)			Source: SB	98147-13	Pre	epared: 22-	Oct-14 An	alyzed: 27-O	ct-14	
Sodium	733		mg/kg dry	26.6	664	74.9	99	80-120		
Iron	8240	QM2	mg/kg dry	4.25	133	9070	-628	80-120		
Barium	164		mg/kg dry	1.06	133	24.7	105	80-120		
Reference (1425332-SRM1)					<u>P</u> re	epared: 22-	Oct-14 An	alyzed: 27-O	ct-14	
Sodium	381		mg/kg wet	25.0	378		101	71.71-128		
			J J					.28		
Iron	6740		mg/kg wet	4.00	6230		108	40.24-160		
Rarium	447		ma/ka wat	1.00	122		111	.16 82.82-117		
Barium	147		mg/kg wet	1.00	133		111	.17		
Reference (1425332-SRM2)					Pre	epared: 22-	Oct-14 An	alyzed: 27-O	<u>ct-14</u>	
Sodium	369		mg/kg wet	25.0	379		97	71.71-128		
			5 5 -1	-	-			.28		

Analyte(s)	Result	Flag Units	*RDL	Spike Level	Source Result %	%REC	%REC Limits	RPD	RPD Limit			
Batch 1425332 - SW846 3050B												
Reference (1425332-SRM2)												
Iron	6460	mg/kg wet	4.00	6250		103	40.24-160 .16					
Barium	142	mg/kg wet	1.00	133		107	82.82-117 17					

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL		ource esult %REC	%REC Limits	RPD	RPD Limit
Batch 1424442 - General Preparation									
Duplicate (1424442-DUP1)			Source: SE	98147-17	Prepare	ed & Analyzed: 16-	Oct-14		
% Solids	82.1		%		8	2.8		0.8	5
Duplicate (1424442-DUP2)			Source: SE	98147-22	Prepare	ed & Analyzed: 16-	Oct-14		
% Solids	62.7		%		· · · · · · · · · · · · · · · · · · ·	2.8		0.08	5
Batch 1424443 - General Preparation									
Duplicate (1424443-DUP1)			Source: SE	98147-52	Prenare	ed & Analyzed: 16-	Oct-14		
% Solids	70.5		%			0.2		0.4	5
Duplicate (1424443-DUP2)			Source: SE	98147-55		ed & Analyzed: 16-	Oct-14		
% Solids	65.8		%	00147 00	•	5.1	000 11	1	5
	00.0		,,		· ·	• • • • • • • • • • • • • • • • • • • •			ŭ
Batch 1425146 - General Preparation					Dranara	od 8 Apolyzadi 22	Oot 14		
Blank (1425146-BLK1)	< 100		malka	100	Prepare	ed & Analyzed: 23-	<u>OCt-14</u>		
Total Organic Carbon	< 100		mg/kg	100	D	- d 0 4 d d - 00	0-1-14		
LCS (1425146-BS1)	202			400	· · · · · · · · · · · · · · · · · · ·	ed & Analyzed: 23-			
Total Organic Carbon	986		mg/kg	100	1000	99	75-125		
Calibration Blank (1425146-CCB1)					Prepare	ed & Analyzed: 23-	Oct-14		
Total Organic Carbon	36.4		mg/kg						
Calibration Blank (1425146-CCB2)					Prepare	ed & Analyzed: 23-	Oct-14		
Total Organic Carbon	-24.9		mg/kg						
Calibration Blank (1425146-CCB3)					Prepare	ed & Analyzed: 23-	Oct-14		
Total Organic Carbon	-12.9		mg/kg						
Calibration Blank (1425146-CCB4)					Prepare	Oct-14			
Total Organic Carbon	-0.113		mg/kg						
Calibration Blank (1425146-CCB5)					Prepare	ed & Analyzed: 23-	Oct-14		
Total Organic Carbon	-2.92		mg/kg						
Calibration Check (1425146-CCV1)					Prepare	ed & Analyzed: 23-	Oct-14		
Total Organic Carbon	951		mg/kg	100	1000	95	85-115		
Calibration Check (1425146-CCV2)					Prepare	ed & Analyzed: 23-	Oct-14		
Total Organic Carbon	975		mg/kg	100	1000	97	85-115		
Calibration Check (1425146-CCV3)					Prepare	ed & Analyzed: 23-	Oct-14		
Total Organic Carbon	1020		mg/kg	100	1000	102	85-115		
Calibration Check (1425146-CCV4)					Prepare	ed & Analyzed: 23-	Oct-14		
Total Organic Carbon	997		mg/kg	100	1000	100	85-115		
Calibration Check (1425146-CCV5)					Prepare	ed & Analyzed: 23-	Oct-14		
Total Organic Carbon	933		mg/kg	100	1000	93	85-115		
Reference (1425146-SRM1)					Prepare	ed & Analyzed: 23-	Oct-14		
Total Organic Carbon	3950		mg/kg	100	3470	114	49-151		
Batch 1425331 - General Preparation			0 0						
Blank (1425331-BLK1)					Prenare	ed & Analyzed: 24-	Oct-14		
Total Organic Carbon	< 100		mg/kg	100	<u>i Tepare</u>	d & Allalyzed. 24-	<u> </u>		
-	1 100		mg/kg	100	Proper	ed & Analyzed: 24-	Oot 14		
LCS (1425331-BS1) Total Organic Carbon	1190		ma/ka	100	1000	<u>tu & Analyzeu. 24-</u> 119	75-125		
•	1190		mg/kg	100					
Calibration Blank (1425331-CCB1)	54.0				Prepare	ed & Analyzed: 24-	Oct-14		
Total Organic Carbon	-51.3		mg/kg		_	104	0.1.1.		
Calibration Blank (1425331-CCB2)			n		Prepare	ed & Analyzed: 24-	Oct-14		
Total Organic Carbon	3.73		mg/kg						
Calibration Blank (1425331-CCB3)					Prepare	ed & Analyzed: 24-	Oct-14		
Total Organic Carbon	29.7		mg/kg						
Calibration Blank (1425331-CCB4)					Prepare	ed & Analyzed: 24-	Oct-14		
Total Organic Carbon	16.6		mg/kg						
Calibration Blank (1425331-CCB5)					Prepare	ed & Analyzed: 24-	Oct-14		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1425331 - General Preparation										
Calibration Blank (1425331-CCB5)					Pre	epared & Ar	nalyzed: 24	-Oct-14		
Total Organic Carbon	17.1		mg/kg							
Calibration Check (1425331-CCV1)					Pre	epared & Ar	nalyzed: 24	-Oct-14		
Total Organic Carbon	1100		mg/kg	100	1000		110	85-115		
Calibration Check (1425331-CCV2)					Pre	epared & Ar	nalyzed: 24	-Oct-14		
Total Organic Carbon	975		mg/kg	100	1000		97	85-115		
Calibration Check (1425331-CCV3)					Pre					
Total Organic Carbon	989		mg/kg	100	1000		99	85-115		
Calibration Check (1425331-CCV4)					Pre	epared & Ar	nalyzed: 24	-Oct-14		
Total Organic Carbon	936		mg/kg	100	1000		94	85-115		
Calibration Check (1425331-CCV5)					Pre	epared & Ar	nalyzed: 24	-Oct-14		
Total Organic Carbon	1020		mg/kg	100	1000		102	85-115		
<u>Duplicate (1425331-DUP1)</u>			Source: SE	98147-13	Pre	epared & Ar	nalyzed: 24	-Oct-14		
Total Organic Carbon	394		mg/kg	100		410			4	20
<u>Duplicate (1425331-DUP2)</u>			Source: SE	98147-55	Pre	epared & Ar	nalyzed: 24	-Oct-14		
Total Organic Carbon	6760		mg/kg	100		6960			3	20
Reference (1425331-SRM1)					Pre	epared & Ar	nalyzed: 24	-Oct-14		
Total Organic Carbon	4240		mg/kg	100	3470		122	49-151		

Toxicity Characteristics - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1424931 - General Preparation										
<u>Duplicate (1424931-DUP1)</u>			Source: SBS	8147-22	<u>Pre</u>	epared: 21-	Oct-14 Ana	alyzed: 22-O	ct-14	
Fractional % Sieve #4 (>4750µm)	0.200		% Retained			0.200			0	35
Fractional % Sieve #10 (4750-2000µm)	0.900	% Retained				0.700		25	35	
Fractional % Sieve #20 (2000-850µm)	5.50 % Retained					6.00		9	35	
Fractional % Sieve #40 (850-425µm)	32.3		% Retained			30.9			4	35
Fractional % Sieve #60 (425-250µm)	44.6		% Retained		45.6			2	35	
Fractional % Sieve #100 (250-150µm)	5.00	QR5	% Retained			0.400			170	35
Fractional % Sieve #200 (150-75µm)	10.8	QR5	% Retained			15.5			36	35
Fractional % Sieve #230 (less than 75µm)	0.600		% Retained			0.600			0	35
Batch 1425083 - General Preparation										
<u>Duplicate (1425083-DUP1)</u>			Source: SB9	<u>8147-46</u>	Pre	epared: 22-	Oct-14 Ana	alyzed: 23-O	ct-14	
Fractional % Sieve #4 (>4750µm)	1.83		% Retained			1.33			32	35
Fractional % Sieve #10 (4750-2000µm)	6.87		% Retained			5.03		31	35	
Fractional % Sieve #20 (2000-850µm)	22.5		% Retained			20.2		11	35	
Fractional % Sieve #40 (850-425µm)	27.0		% Retained			26.9			0.3	35
Fractional % Sieve #60 (425-250µm)	21.2		% Retained			21.7			3	35
Fractional % Sieve #100 (250-150µm)	0.550	QR5	% Retained			2.85			135	35
Fractional % Sieve #200 (150-75µm)	18.0		% Retained			18.8			4	35
Fractional % Sieve #230 (less than 75µm)	2.02	QR5	% Retained			3.13			43	35
Batch 1425210 - General Preparation										
<u>Duplicate (1425210-DUP1)</u>			Source: SB9	<u>8147-67</u>	Pre	epared & Ai	nalyzed: 24-	Oct-14		
Fractional % Sieve #4 (>4750µm)	0.100		% Retained			0.100			0	35
Fractional % Sieve #10 (4750-2000µm)	0.100		% Retained			0.100			0	35
Fractional % Sieve #20 (2000-850µm)	0.200	QR5	% Retained		0.100				67	35
Fractional % Sieve #40 (850-425µm)	3.20		% Retained		2.60				21	35
Fractional % Sieve #60 (425-250µm)	33.7		% Retained			33.2		1	35	
Fractional % Sieve #100 (250-150µm)	0.400	QR5	% Retained		3.20				156	35
Fractional % Sieve #200 (150-75µm)	60.3		% Retained			58.3			3	35
Fractional % Sieve #230 (less than 75µm)	2.10		% Retained			2.40			13	35

The following list indicates the date and time low-level VOC soil/sediment samples were placed in the freezer:

SB98147-08	NR-DS-SEDV-03	10/15/2014 6:20 PM
SB98147-11	NR-DS-SEDV-04	10/15/2014 6:20 PM
SB98147-14	NR-DS-SEDV-05	10/15/2014 6:20 PM
SB98147-32	BB-US-SEDV-04	10/15/2014 6:20 PM
SB98147-35	BB-US-SEDV-05	10/15/2014 6:20 PM
SB98147-38	BB-US-SEDV-06	10/15/2014 6:20 PM
SB98147-41	BB-US-SEDV-07	10/15/2014 6:20 PM
SB98147-44	BB-US-SEDV-08	10/15/2014 6:20 PM
SB98147-56	NR-US-SEDV-01	10/15/2014 6:20 PM
SB98147-59	NR-US-SEDV-02	10/15/2014 6:20 PM
SB98147-62	NR-US-SEDV-03	10/15/2014 6:20 PM
SB98147-65	NR-US-SEDV-04	10/15/2014 6:20 PM
SB98147-68	NR-US-SEDV-05	10/15/2014 6:20 PM
SB98147-02	NR-DS-SEDV-01	10/15/2014 6:20 PM
SB98147-05	NR-DS-SEDV-02	10/15/2014 6:20 PM
SB98147-16	DUP-4-Soil	10/15/2014 6:20 PM
SB98147-17	DUP-5-Soil	10/15/2014 6:20 PM
SB98147-23	BB-US-SEDV-01	10/15/2014 6:20 PM
SB98147-26	BB-US-SEDV-02	10/15/2014 6:20 PM
SB98147-29	BB-US-SEDV-03	10/15/2014 6:20 PM
SB98147-47	NR-DS-SEDV-06	10/15/2014 6:20 PM
SB98147-50	NR-DS-SEDV-07	10/15/2014 6:20 PM
SB98147-53	NR-DS-SEDV-08	10/15/2014 6:20 PM
SB98147-71	NR-US-SEDV-06	10/15/2014 6:20 PM
SB98147-74	NR-US-SEDV-07	10/15/2014 6:20 PM
SB98147-77	NR-US-SEDV-08	10/15/2014 6:20 PM

Notes and Definitions

D	Data reported from a dilution
E	This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.
QC2	Analyte out of acceptance range in QC spike but no reportable concentration present in sample.
QCR	Sample data reported for QC purposes only.
QM2	The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.
QM4	Visual evaluation of the sample indicates the RPD is above the control limit due to a non-homogeneous sample matrix.
QM6	Due to noted non-homogeneity of the QC sample matrix, the MS/MSD did not provide reliable results for accuracy and precision. Sample results for the QC batch were accepted based on LCS/LCSD percent recoveries and RPD values.
QM7	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
QM8	The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon acceptable PS and /or LCS recovery.
QM9	The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.
QR2	The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
QR5	RPD out of acceptance range.
SOL	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -01 were used to calculate the results on a dry weight basis.
SOLa	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -04 were used to calculate the results on a dry weight basis.
SOLb	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -07 were used to calculate the results on a dry weight basis.
SOLc	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -10 were used to calculate the results on a dry weight basis.
SOLd	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -13 were used to calculate the results on a dry weight basis.
SOLe	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -22 were used to calculate the results on a dry weight basis.
SOLf	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -25 were used to calculate the results on a dry weight basis.
SOLg	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -28 were used to calculate the results on a dry weight basis.
SOLh	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -31 were used to calculate the results on a dry weight basis.
SOLi	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -34 were used to calculate the results on a dry weight basis.
SOLj	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -37 were used to calculate the results on a dry weight basis.
SOLk	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -40 were used to calculate the results on a dry weight basis.
SOL1	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -43 were used to calculate the results on a dry weight basis.
SOLm	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -46 were used to calculate the results on a dry weight basis.
SOLn	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -49 were used to calculate the results on a dry weight basis.

Notes and Definitions

SOLo	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -52 were used to calculate the results on a dry weight basis.
SOLp	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -55 were used to calculate the results on a dry weight basis.
SOLq	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -58 were used to calculate the results on a dry weight basis.
SOLr	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -61 were used to calculate the results on a dry weight basis.
SOLs	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -64 were used to calculate the results on a dry weight basis.
SOLt	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -67 were used to calculate the results on a dry weight basis.
SOLu	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -70 were used to calculate the results on a dry weight basis.
SOLv	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -73 were used to calculate the results on a dry weight basis.
SOLw	This sample was submitted without an unpreserved sample aliquot to determine dry weight. Per client request, the solid weight results from Use result from -76 were used to calculate the results on a dry weight basis.
TOC 1	This sample was analyzed in quadruplicate. The % RSD is 22.61677%.
TOC 1a	This sample was analyzed in quadruplicate. The % RSD is 5.71563%.
dry	Sample results reported on a dry weight basis
NID	N. D. A. I.

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Kimberly LaPlante Nicole Leja

				Ü								<	12	9	214	17	-	5	31	1		
		ANALYTICAL, INC. Featuring LL TECHNOLOGY		CHAI		N OF CUSTODY R						ECORD					Special Handling: Standard TAT - 7 to 10 business days Rush TAT - Date Needed: All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise inst					
Telep Projec	Telephone #: $207-517-8225$ Project Mgr: $Derek$ Reliefier P.O No. F=Field Filtered $1=Na_2S2O_3$ $2=HCI$ $3=H_2SO_4$ $4=HNO_3$ $5=NaOH$ 6					Envirite Kris Salanga PO BOX 594 Chappagua, NY 105 Quote/RON:						Location: Sampler(s):						1218 ite	8G	13		
		1=Na ₂ S2O ₃			=Ascorl						7,	9 2	List Pro	eservati	ve Coc	le belo	w:			QA/QC Repor * additional charg		
DW=Dinking Water GW=Groundwater SW=Surface Water WW=Waste Water O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas X1= X2= X3= G= Grab C=Compsite					ı.x	# of VOA Vials	# of Amber Glass	of Clear Glass	of Plastic	0,00		Ac. 6a C. C.	NA		J	Grain Size	90.00	- Cont	MA DEP MCP CAM Report? CT DPH RCP Report? Standard DQA* ASP A* NJ Reduced* Tier II*	ort? Yes No Yes No No QC ASP B* NJ Full* Tier IV*		
L	ab ID:	Sample ID:	Date:	Time:	Type	Matrix	y Jo #	# of A	# of Cl	# of Pl	N. S.	3 3	A A	3	Z	12	Ž.	total	Check	Other: State-specific report	1 K, 74	
181	47-01	NR-DS-SED-01	10/14/14	1540	4	SO	74-	3	71-	-		3	X	X	×	X	X	X		Soil jar 3		
1		NR-DS-SEDY-01	1	1540	1	50	3				×									Samples com		
	03	NR-DS-SWV-01		1540		SW	3					X								soil in "SE		
	THE RESERVE AND PARTY OF THE PARTY.	NR-DS-SED-02 NR-DS-SEDV-02	10	1600	1	50	3	3			Х		X	X	X	X	X	X		for all say		
		NR-DS-SWV-0Z		1600		SW	3			0 1		X										
	0)	NR-DS-SED-03		1615		30		3					X	X	X	X	X	X		7 6 8 7 W		
	08	NR-DS-SEDV-03		1615		50	3				. >											
	09	NR-DS-SWV-03		1615	V	SW	3					X										
V/ 10 NR-DS-5ED-04 10/14/14 1635		9	50		3					X	X	X	X	X	X							
	Relin	equished by:	Receive	d by:			Date:			Time:		emp °C		EDD f	ormat:				,			
Chulhda DEC			10/15/4 3:30		30		2 ection Factor															
1 De mary				10-	15:14 1820			(octed		ition up	on rece		general i			Present Intac	0				

Ambient Iced

Soil Jar Frozen

☐ Refrigerated ☐ DI VOA Frozen

Featuring

CHAIN OF CUSTODY RECORD Page 42 of 8

7			-	1 : 1	
				a 1 .	WW WW.
				Special	Handling:
				CAN PATORE	O MARKET AND ARREST AND ARREST AND ARREST AR

	-					
Standard	TAT	- 7	to 10	business	days	9

	Rush TAT - Date Needed:	The San
5	All TATs subject to laboratory approval	100
	Min. 24-hr notification needed for rushes	

HA	NIBAL TECHNOLOGY			Samples disposed after c	oo days umess otherwise instructed.
Report To:	ENVIRON	Invoice To: Envirite	Project No:	08-1421893	
	136 Commercial St Suite 402	Kris Sabinga PD Box 591	Site Name:	Envirite	
Telephone #:	Portland, ME 04101 DD 207-517-3225	Chappagua NY 105	/ 4 Location: Sampler(s):	Thomaston Anne Daniel	State: CT
Project Mgr:	Derek pelletier	P.O No.: Quote/RQN:	Sample(s).	John Underwood	
F=Field Filtered		5=NaOH 6=Ascorbic Acid	List Preservative Co	de below:	QA/QC Reporting Notes:

										T/	9 6								
DW=Dinking Wat	er GW=Groundwater SW=	=Surface Water WY	W=Waste Wate	r			C	ontain	ers				Ana	lysis					MA DEP MCP CAM Report? Yes No
O=Oil SO=So X1=		xmbient Air SG=So X3=				Vials	r Glass	Glass	9	0,178	0778	3	, Mn, Na	17 NZ (0		Size	Solids	Check if chlorinated	CT DPH RCP Report? Yes No Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full*
	G = Grab	C=Compsite	e	be	Matrix	of VOA	of Amber	Clear	of Plastic	\/\/\	\$ S S S	8	3	Pe	00	gran	otal	k if c	☐ NJ Reduced* ☐ NJ Full* Tier II* ☐ Tier IV*
Lab ID:	Sample ID:	Date:	Time:	Ty	Ma	# of.	# of,	# of (# of]		3	J.	3	Z	F	D	10	Chec	Other: State-specific reporting standards:
98147-11	NR-DS-SEDV-04	10/14/14	1635	9	30	3			3 4	X									
1 12	NR-DS-SWV-04	1	1635	1	SW	3			17		X								Soil gar for "SED"
13	NR-DS-SED-05		1700		50		3					X	X	X	X	X	X		samples corresponds
14	NR-DS-SEDV-OST		1700	60	50	3				X							•		with soil in "SEDV"
1.5	NR-DS-SWV-05		1700		SW	3					X								samples, For all samples.
16	DUP-4-501L		-		SOX	3,8	3			X	1	X	X	X	X	X	X		
17	DUP-5-SOIL				50/50	183	3			X	gex	X	X	X	X	X	X		
13/14	MS/MSD-3-SOIL				50/33	-63	3			· X	14	X	X	X	X	X	X		Parent sample NR-DS-05
	DUP-14-WATER	V	-	1	SW	3					X								(SED, SEDV, SWU) for
1/19	DUP-5-WATER	10/14/14	-	6	SW	3					X								MSFMSD-3-SOIL
Relia	nquished by:	Received	l by:			Date:			Time:	To	emp °C		EDD fo	ormat:					
goh h	ih dal	DE	C		10,	/15	/14		3130	-	2 ction Factor	×	E-mail	to:	a	dani	ele) e	invironcorp. com
/	DEC	man	1		10-1	0-1	4	18	320	(.19						
			J							Corre	2		tion up	1		Custod			☐ Present ☐ Intact ☐ Broken
					1						20	1 0	mbient	MIC	od	Dof	rigarate	he	DI VOA Frozen Soil for Frozen

		Ci.	
	Beech	A	
1			
		11	
-K			1
		I ANALYTIC	

CHAIN OF CUSTODY RECORD

	Α	
18y		
Spec	ial Handling:	*
☐ Standard TAT -	7 to 10 business days	
☐ Rush TAT - Dat	te Needed:	4 5 5 %
Min. 24-hr notific	to laboratory approval cation needed for rushes after 60 days unless oth	The second secon
08-142186	43	
Envirite Thomaston Anne Daniel John Underw	100d	State: <u>C7</u>
le below:		oorting Notes: arges may appply
	MA DEP MCP CAM I	
Stre	Standard Standard DADQA*	□ No QC

	M ANALYTICAL, INC. Featuring BAL TECHNOLOGY				Page	3	of	8	-					5		Min. 24	4-hr no	otifica	o laboratory approval ation needed for rushes after 60 days unless otherwise instructed.
	NVIRON		Invoice To	o;	En	vici	te						Project	No:	0	8-14	1218	86	13
	6 Commercial St				Kr	is Si	abino				_		Site Na	me.		nvi	,	-3320033000	
	Suite 402 Portland, ME 04101	4					591		12711	1	-								
Telephone #:	207-517-8225			***************************************	cnap	page	ya,	NY	10514	1	-	1	Locatio Sample	n: r(s):	Ann	e D	sto	el	State: CT
Project Mgr:	Derek Pelletier		P.O No	.:			Quot	e/RQN				,		_	Joh	n Ur	nder	rwo	200
A CONTRACTOR CONTRACTOR CONTRACTOR	1 =Na ₂ S2O ₃ 2 =HCl 3 =H ₂ SO aHSO ₄ 9 =Deionized Water 10 =H ₃ PO			=Ascor	bic Aci	d					L	ist Pres	ervati	ve Cod	e belov	v:			QA/QC Reporting Notes:
, chisti a it	ariso4 > Detomized water 10 1131 o	4 11		1.20			***************************************			7/0	12								* additional charges may appply
DW=Dinking Wat	ter GW =Groundwater SW =Sur	face Water W	W=Waste Wate	er		- T	C	ontain	ers				Ana	lysis					MA DEP MCP CAM Report? Yes No
O=Oil SO=So	oil SL=Sludge A=Indoor/Ambie	ent Air SG=So	il Gas							,		ک	2			10	-0	ed .	CT DPH RCP Report? Ves No
XI= Tr	ip Blank x2=	X3=	:		_	als	rlass	ass		0918	0928	0	2	y		375	Soll	rina	DASP A* ASP B*
	G= Grab	- C=Compsit			7	A Vi	lber G	ar Glass	stic			2	· .0	Po	J		-8	f chla	NJ Reduced* NJ Full*
Lab ID:	Sample ID:	Date:	Time:	Type	Matrix	# of VOA Vials	of Amber Glass	of Clear	of Plastic	Voc	800	As, Ba, Cd,	CX, Fe, Mrn, Na	Z	5	Grain	. 10	Check if chlorinated	Tier II* Tier IV*
	MS/MSD-3-WATER	P. C. C. Sandara (2) (1) (1)	R IRRE.	9	SW	3	#	#	#	->	X		. <u>U</u>			0	1		State-specific reporting standards: Parent Sample is NR-05-05
8147 -15		10/14/14	0700	A	XI	31	-			×	X								(SED, SEDV, SWM) for
20		10/15/14	0700	++-	XI	31				X	X								
22	TB-3 - Water		0800		50	P	3			1	1	X	X	X	X	X	X	局	MS/MSD-3-WATER
. 23	BB-US-SED-01		0800	1	50	3				X			^		/		^	+-+	Soil jar for "SED" is
1 63	BB-US-SEDV-01 BB-US-SWV-01	(9)	0800	1	SW	3				+^	X	<i>F</i>						+	the same soil as "SEDV"
25	BB-45-5ED-07	1	810	+	-)					1	X	×		×	X	Х		
26	BB-US-SEDV-02		810	+	50	3	3		1	· X		^		X	_	~	/\	旹	samples for % solids
27	BB-US-SWV-02	+	810	1	SW	3				+^	2							十十	analysis. For all sample
1/ 99	BB-US-SED-03	10/15/14	325	4	50)	3				X	X	X	X	Χ	X	X	H	Trip Blanks separate
Reli	nquished by:	Received		19	30	Date:			Time:	Ter	np °C	1	EDD fo	1		^]			Soil TBS click not if
~ /		Character and the control of the con			17.	7	$\overline{}$			Observe	d		E-mail	100	o do		10		/
Clohe	what !	1)	EC		10	115	/14	1	30	1/010/SEE 100	2 on Factor	1		Ġ	X GIO	-VIE	100	SUI	vironcorp.com On
	5/2	May	u		10	5	4		320	(<u>C</u>								10/16
		1								Correcte	7	Condi	ion up	on recei	ipt:	Custody	y Seals	: :	☐ Present ☐ Intact ☐ Broken
							447			IR ID#	NO.	1 -	mbient	His	ed l	□ Refr	ioerate	ed	DI VOA Frozen Soil lar Frozen

SPECTRUM ANALYTICAL, INC.

CHAIN OF CUSTODY RECORD

special rianumg:	
☐ Standard TAT - 7 to 10 business days	

П	Ruch	TAT -	Date	Needed.	

			CITAI	ITA A	JF	UU	DI	UI	JIN	LLC	UN					Rush 1	rat -	Date	Needed:
	M ANALYTICAL, INC. Featuring AL TECHNOLOGY				Page	4	of (8	-							Min. 2	4-hr n	otifica	o laboratory approval ation needed for rushes ufter 60 days unless otherwise instructed.
Report To:	ENVIRON		Invoice To	0:		E	vir	ite					Project	No:		08	-14	121	893
Management of the Control of the Con	136 Commercial St Suite 402					Kr.	5 3	abin	ga				Site Na			Env			9888
Telephone #: Project Mgr:	Portland, ME 0410 207-517-8225 Derek Pelletier	-	P.O No	i.:	C	hap	pae	Bua	NYI	10514	_	2	Location		A	nne	Dav	nie	State: CT
F=Field Filtered	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SC			=Ascor							1	ist Pre	servativ	ve Cod	e helov	w•			OA/OC Passauting Notes
7=CH3OH 8=N	aHSO ₄ 9=Deionized Water 10=H ₃ PC) ₄ 11=	-	12=	=			-		7/		S. 1675			e belo				QA/QC Reporting Notes: * additional charges may appply
DW=Dinking Wat	er GW=Groundwater SW=Sur	rface Water W	W=Waste Wate	er			C	ontain	ers				Anal	lysis					MA DEP MCP CAM Report? Yes No
O=Oil SO=So X1=					- xi	of VOA Vials	Amber Glass	Clear Glass	of Plastic		1	Ba, Cd, Cr	Cu, Fe, Mn, Na	Pb, Zn	-	Grain Size	of Solids	Check if chlorinated	CT DPH RCP Report? Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full* Tier II* Tier IV*
Lab ID:	Sample ID:	Date:	Time:	Type	Matrix	V jo #	# of A	# of C	d Jo #	1000	1000 1000 1000	\$	3	Z	TOC.	25	1	Check	Other: State-specific reporting standards:
78147-29	BB-US-SEDV-03	10/15/14	825	6	SO	3	44.	74-	*	X					•				Soll jor for "SED"
1 30	BB-US-5WV-03	A	825	A	SW	3					X								Samples corresponds to
31	BB-US-SED-04		840		50		3					X	X	X	X	X	X		soil in "SEDV" samples
32			840		50	3				X	2		190				-		for all sample.
33	BB-45-SWV-04	(x	840	10	SW	3					9/x	X	X	X	X	X	*		
34	BB-US-SED-05	11	850	111	50		3			尝	2	X	X	X	X	X	X		
35			850	11	50	3				X	X	,							\$
36	-		850		SW	3				-	X	X	Xg	X	X	X	X	-	
3)	BB- US-SED -06	4	905	V	50		3				-	X	X	X	X	X	X		
38	BB-US-SEDV-Ob	10/15/14	905	6	30	3				X	1 16	1 "							1
Relii	nquished by:	Receive	d by:			Date:			Time:		emp °C		EDD fo	rmat:			I		*
ghuh	211	DE			10,	1151	14	-	3:30	00000	2	X	E-mail	to:	ao	lani	e16	e e	Environcorp-com
1	TEC	mar	111		10.	15-1	4	19	320	Corec	ction Factor								
		, /	J			1				Correc	2	Condi	tion upo	on rece	ipt:	Custod	y Seals	s:	☐ Present ☐ Intact ☐ Broken
										IR ID	72		Ambient	Tic	ed	Refi	rigerat	ed	☐ DI VOA Frozen ☐ Soil Jar Frozen

Featuring
HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Page <u>5</u> of <u>8</u>

SB	×	7.2	14	7	V	n		ir E	. *	
0 0		()		(v	/		Sp	ecia	al Handling:
		4					Standaı	rd TA	Γ-7	to 10 business days
REC	O	RI					Rush T	AT - I	Date	Needed:
							Min. 24	l-hr no	tifica	laboratory approval tion needed for rushes fler 60 days unless otherwise instructed.
				Project	No:	DE	3-14	2/8	43	
		-		Site Na	ne:	E	nvir,	ite	aparadaga ipan wa	
,				Locatio Sample		Tho	mas one	ton Dan	iel ru	State: <u>CT</u>
		May 2	10.00					77,00		
1			st Pres	ervativ	e Cod	e belov	v:			QA/QC Reporting Notes: * additional charges may appply
7/0		2		Anal	. 4					
X VIOC 02160		X 10C3 8260	X As, Ba, G, Cr	X Ku, Fe, Mr, Na	X Ni, Pb, Zn	X X TDC	X Grain Size	X Total Salids	□ □ □ □ □ Check if chlorinated	MA DEP MCP CAM Report? Yes No CT DPH RCP Report? ASP A* ASP B* ASP
		×								
			X	X	X	X	X	人		
X										
	1	X								
Obser	ved , Z etion) °C	Condit	EDD fo	to:		Custody			VICON(OrpoCona

Report To:		ENVIRON		Invoice To	o:									Project	No:	DE	3-14	2/8	43	
-		136 Commercial St.			-	Kri	5 S	abin	ga					Site Na	me:	E	nvir,	te		
-		Suite 402 Portland, MF 04101	100				BOX			10514						1).	mas	1		State: CT
Telephone #:		207-517-8225				rapp	0	(a N	17_1	10514				Locatio Sample	-		one			State: C.7
Project Mgr:		Derek Pelletier		P.O No).:			Quot	e/RQN:		************					Joi	hn L	Inde	rw	pod
F=Field Filt		1 =Na ₂ S2O ₃ 2 =HCl 3 =H ₂ S0 aHSO ₄ 9 =Deionized Water 10 =H ₃ P0		5=NaOH 6	5=Ascor 12=		d					L	ist Pres	ervati	ve Cod	e belov	v:			QA/QC Reporting Notes:
									-		7/9	Z								* additional charges may appply
DW=Dinkin	ıg Wat	er GW=Groundwater SW=Su	ırface Water W	W=Waste Wate	er			C	ontain	ers				Ana	lysis					MA DEP MCP CAM Report? Yes No
O=Oil S	SO=So	il SL =Sludge A =Indoor/Amb	oient Air SG=So	il Gas							•			NA			-1	50	pa	CT DPH RCP Report? Yes No
X1=_		X2=	X3=				'ials	Glass	ilass		0978	0928	とって	Cu, Fe, Mr, Na	Pb, Zn		Size	iles	Check if chlorinated	DQA* ASP A* ASP B*
		G = Grab	C=Compsit	e	Type	Matrix	# of VOA Vials	# of Amber Glass	of Clear Glass	of Plastic	1		As, Ba, Ca,	4	9)	Grain	stal	k if ch	NJ Reduced* NJ Full* Tier II* Tier IV*
Lab ID:		Sample ID:	Date:	Time:	Ty	Ma	Jo #	# of /) Jo #	# of I	VOCs	VOCS	ř	3	-	9	00	F	Chec	Other: State-specific reporting standards:
18147-	39	BB-US-SWV-06	10/15/14	905	4	SW	3					X								Soil gus for "SED"
	40	BB-US-SED-07	A	920	1	So		3					X	X	X	X	人	X		samples corresponds
	41	BB-US-SEDV-07		920		so	3				X									with soil in "SEDV"
	42	BB-US-SWV-07	(1)	920	d	SW	3					X								samples for 70 solids
	43	BB-US-SED-08	9	930	CAN CAN	SO		3					X	X	X	×	Х	Х		analysis. For all sample
	44	BB-US-SEDV-08		930		Su	3				X									
	45	BB-US-SWV-08		930		sw	3					×								
	46	NR-DS-SED-06		1025		SO		3			•		X	X	X	X	X	X		
		NR-DS-SEDY-06	V	1025	Y	50	3				X									
V	48	NR-DS-SWV-06	10/15/14	1025	6	sw	3					X								
	Reli	nquished by:	Receive	d by:			Date:			Time:	Ten	p °C		EDD fo	ormat:					
ahwh Luy/						10	115	/14	3:	30	Observed ,	2	X	E-mail	to:	ao	lanie	10	eni	vironcorp.com
		DEC	Mori	1			10	H		320	Corecctio									
				J							Corrected	2	Condit	ion up	on rece	ipt:	Custody	Seals:	[Present Intact Broken
											IR ID#	2		mbient	XIC	ed	Refi	igerate	d [☐ DI VOA Frozen ☐ Soil Jar Frozen
			11 Almgren D	rive • Agawar	n, MA	01001 •	413-78	9-9018	8 • FA	X 413-789-4	1076 • ww	w.spe	ctrum-a	nalyti	cal.cor	n				Rev. Jan 2014

CHAIN OF CUSTODY RECORD

Page 6 of 8

	· ·		
CB98147	Ry		
0000	Special Handling:		
x **	☐ Standard TAT - 7 to 10 business days		
ECORD	Rush TAT - Date Needed:	*	
	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes		

HANIB	AL TECHNOLOGY															Sample	es disp	osed	after 60 days unless otherwise instructed.
Report To:	ENVIRON		Invoice T	0:		Env	irit	e]	Project	No:	0	18-11	4218	34	3
	136 Commercial St.			principle of the second				ingo	λ				Site Na			EM	inci	to	
	Suite 40Z	*		harmen harmon harman ha			150					,	one Na			-			
T. 1. 1	Portland, ME 0410	1			Cr	app	1991	1a	NY 10	514			Locatio		Tho	mas	noti		State: CT
Telephone #: Project Mgr:	207-517-8225 Derek Pelletier		P.O No).1									Sample	r(s):		nne			ruppd
F=Field Filtered	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SC	O ₄ 4=HNO ₃	5=NaOH (
	aHSO ₄ 9=Deionized Water 10=H ₃ PO		=	12=	=			-				st Pres	ervati	ve Cod	e belov	w:			QA/QC Reporting Notes: * additional charges may appply
										7/9	2				Marin Marin	an sa			
DW=Dinking Water	er GW =Groundwater SW =Su	rface Water W	W=Waste Wate	er			C	ontain	ers				Ana	lysis			Γ		MA DEP MCP CAM Report? Yes No
O=Oil SO=So	il SL=Sludge A=Indoor/Ambi	ient Air SG=Sc	il Gas							,		3	N			6)	~	Check if chlorinated	Standard No QC
X1=	X2=	X3=	***		-	Vials	ilass	ass		00728	0228		5	E. C.		Size	Solids	rina	DQA* □ ASP A* □ ASP B*
	G= Grab	- C=Compsi			٦.,	A Vi	ber (ar Gl	stic			3	· P	Po	C	S	V	f chil	NJ Reduced* NJ Full*
		1		Type	Matrix	of VOA	of Amber Glass	of Clear Glass	of Plastic	YOCS	VOC.	ag .	Cu, Re, Mrs.		0	Grain	ta	eck i	☐ Tier II* ☐ Tier IV*
Lab ID:	Sample ID:	Date:	Time:			#	#	0 #	0 #		>	Ä	-		1		F	15	State-specific reporting standards:
98147-49	NR-DS-SED-07	10/18/14	1035	19	30		3					X	X	X	X	X	X		Soil in ISED samples
1 50	NR-DS-SEDV-07	A	1035	11	30	3				X									corresponds to soil
51	NR-DS-SWV-07		1035	(61)	Sho	3					x								in SEDV" samples
52	NR-DS-SED-08	(9)	1045	19	SO		3					X	X	X	X	X	X		For all samples
53	NR-DS-SEDV-08	(3)	1045		50	3				X									
54	NR-DS-SWV- 08		1045	11	SW	3					X								
50	NR-US-SED-0)	1	1125	1	50		3					X	Y	×	×	人	X		
56	NR-US-SEDV-O)		1125	1	50	3				· X									
	NR-US-3WV-01	- V	1125	1	SW	3				1	X								
58	NR-UK-SED-02	10/15/14	1135	61	50		3					X	X	X	×	X	X		
	equished by:	Receive		101		Date:			Time:	Town	p °C						1		
<i>a</i> .		Receive			-3	Jaic.	7	-	Carl General	Observed			EDD fo		1		10		
AleW	hound	1)6			10	1151	14	5:	30	1.2	-	X	E-mail	to:	ada	inie	00	21/	ironcorp.com.
1	the /	m	010		10.	15.1	1	19	20	Corecction	n Factor								
			y		1		-1			Corrected	2	Condit	ion un	on road	int:	Cueto	v Sanl		☐ Present ☐ Intact ☐ Broken
					-		+			IR ID#				1					
										0	2	□ A	mbient	Alc	ed	Ref	rigerat	ed	☐ DI VOA Frozen ☐ Soil Jar Frozen
		11 Almaren D	rive • Agawar	n MA	11001 .	112 76	20_0019	PATAN	7 413 790	1076 a xxxx	ow coo	++++++++++++++++++++++++++++++++++++++	nolvti	col con	2				Pay lan 2014

Specia	Handling:	*	
andard TAT - 7 t	o 10 business days		

HANIBA Report To:	ANALYTICAL, INC. Featuring ALTECHNOLOGY NVIRON Commercial St Swite 402 Partland, ME 207-517-9225 Derek pelktier		CHA Invoice T		Page Er Po	7 nvi is s Box opas	of rite	8 ga	y 105		ORI		Project Site Na Locatic Sample	me:	<u> </u>	Rush TA All TA Min. 2 Sample EA NU/r	TAT- Ts subj 4-hr no ss dispo The	T - 7 Date ject to tifical seed a	to 10 business days Needed: Delaboratory approval ation needed for rushes after 60 days unless otherwise instructed. State: 7
	1=Na ₂ S2O ₃ 2 =HCl 3 =H ₂ S0 HSO ₄ 9 =Deionized Water 10 =H ₃ P0	100	5=NaOH	6=Ascor	bic Aci			-		7/9		ist Pre	servati	ve Cod	e belov	w:			QA/QC Reporting Notes: * additional charges may appply
OW=Dinking Wate	er GW=Groundwater SW=Si	rface Water W	V=Waste Wat	ter			C	ontain	ers				Ana	lysis				11	MA DEP MCP CAM Report? Yes No
D=Oil SO=Soi	SL=Sludge	ient Air SG=So X3= C=Compsit	l Gas	Type	Matrix	# of VOA Vials	of Amber Glass	of Clear Glass	of Plastic	VDCs 8260.	2728	As, Ba, Cd, Cr.	CU, Fe, Min, Na	Nipb,zn	Toc	Grain Size	Total Solids	eck if chlorinated	CT DPH RCP Report? Standard No QC DQA* ASP A* ASP B* NI Reduced* NI Full* Tier II* Other:
Lab ID:	Sample ID:	Date:	Time: 1/35	10	-	1	#	#	#	X		<	0	2		7)	1	C	State-specific reporting standards:
	NR-US-SEDV-02	10/15/14	1135	N	50	3	-			^	X								Soil in "SED" samples
	NR-US-SWV-02	1		-	Sw	3	(2)					X	V	X	X	X	V		corresponds to soil
			1150	-	50		3			X	-	^	X	^	X	^	X		in SEDV samples
02	NR-US-SEDV-03	10	1150	\mathbf{H}	50	3					X								For all samples
0)	NR-US-SWV-03	+(9)	1150	191	SW	3	2				-	X	~/	X	X	V	X	H	
	NR-US-SED-04		1250	1	50	3	3			X	-	1	X	^	7	У.			***************************************
66	NR-US-SEDV-04 NR-US-EWV-04		1250	+	SW	3					X								
06	NR-US-SED-05	+	1305	1	-)	3				1	X	~/	X	X	X	X		
68	NK-03-2EDY-02	10/15/14	1305	1/2	50	3	-			X		/	X	~		^			
	quished by:	Received		16	30	Date:			Time:	(A) (A) (A) (A) (A) (A)									
Alakh	TO EC	oy.		10,	151	14	3	·30	Observe	np °C		EDD fo		ada	mil	10	,en	Nironcurp, com	
1,000	DEC	man	4		10-1	51	4	18	20	Correcte	AND DESCRIPTION OF THE PARTY OF							14000	
Market Market State Company		,	J							4000000	2	Condi	ion up	on rece					☐ Present ☐ Intact ☐ Broken ☐ DI VOA Frozen ☐ Soil Iar Frozen

		#		
	Service Control	a p	er)b	
-	SOATONIO.	1		
		1		λ
Witness research	one manufactured and the	Storm	and the same	anytension.
SPECT	RUM A	NALY	TICAL	, INC.

CHAIN OF CUSTODY RECORD

Special Handlin	g:
☐ Standard TAT - 7 to 10 business	s days
Rush TAT - Date Needed:	×
All TATe subject to laboratory com	lavon

A STATE OF THE PROPERTY OF THE PARTY OF THE	
	All TATs subject to laboratory approval
	Min. 24-hr notification needed for rushes
	Samples disposed after 60 days unless otherwise instructed

	M ANALYTICAL, INC. Featuring AL TECHNOLOGY				Page	8	of .	8	•							Min. 2	4-hr n	otifica	ation needed for rushes after 60 days unless otherwise instructed.
Report To:	ENVIRON		Invoice T	0:	En	vir)	te.			***************************************			Project	No:	08	3-147	2/8	43	>
-	136 Commercial Suite 402				Kris 00 B	Sal	bing	A					Site Na	me:	En	vir	ite		
entime annihi e annih Lautene da	Portland, ME oylol	11 /96		-	W B	OK	571	NIV	105/11				Locatio		th	oma	-1-	20	State: CT
Telephone #:	207-517-8225				rapp	Dugi	evi ji		105/4	-			Sample		A	· Dan	riel		State.
Project Mgr:	Derek Pullyier		P.O No).:			Quot	te/RQN:		γ					J.	unde	w	101	
	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₂ aHSO ₄ 9=Deionized Water 10=H ₃ PO ₃			=Ascor		d					L	ist Pre	servati	ve Cod	e belo	w:			QA/QC Reporting Notes:
A comme	\$							_		7/9	2								* additional charges may appply
DW=Dinking Water	er - GW=Groundwater SW=Sur	face Water WY	W=Waste Wate	er			C	ontain	ers		1		Ana	lysis			T .	41	MA DEP MCP CAM Report? Yes No
O=Oil SO=So	il SL =Sludge A =Indoor/Ambie	ent Air SG=So	il Gas								0	Jan .	5				Ų	ted	☐ Standard ☐ No QC
X1=	X2=	X3=	=		_	Vials	Glass	ass		8240	0976	0,0	Fe, Mn, Na	3		77.		oring	DQA* □ ASP A* □ ASP B*
	G= Grab	C=Compsite	e	43	×	A V	nber (ear G	ıstic	8	30	75	e, s	Pb. 2n		0	_	if ch	☐ NJ Reduced* ☐ NJ Full* ☑ Tier II* ☐ Tier IV*
Lab ID:	Sample ID:	Date:	Time:	Type	Matrix	# of VOA	# of Amber	# of Clear Glass	# of Plastic	VOCS	VOCS	As, Ba Cd,	(C) F	N	TOC	Grain Size	4	Check if chlorinated	Other: State-specific reporting standards:
8147-69	SVR-US-SWV-OS	10/19/15	1395	9	SW	3		7	9 3 3		X								Soil in "SED" samples
1 70	NR-US-SED-06	A	1315	1	50		3		2 8 1			X	X	X	X	X	X		corresponds to soil
71	NR-US-SEDV-06		1315		SU	3				X									in "SEDV" Samples.
72	NR-US-SWY-076		1315		SW	3					1								For all samples
13	NR-US-SED-07		1330	194	30		3					X	X	X	X	X	X		
74	NR-US-SEDV-07	W	1330		So	3				X									
75	NR-US-SWV-07		1330		SW	3					X								
76	NR-US-SED-08		1340		50		3		-			X	X	X	X	X	X		
1. 77	NR-US-SEDV-08		1340	B	50	3				X									
78	NR-US-SWV-08	10/14/15	1340	6	SW	3					X	and the state of t							
19 Relin	nquished by: \\B-2-\Solland	Received	d by:			Date	2		Time:	Ten	ıp °C		EDD f	ormat:			***************************************		
1 phil he		1)tic			10	115	1/4	1	30	Observed	2	×	E-mail	to:	90	lani	ele	ee!	nvironcorp.com
	DEC	ma	11		10	15-1	4	18	370	Corecctio	n ractor								· ·
			J							Corrected		Cond	tion up	on rece	ipt:	Custod	y Seal	s:	☐ Present ☐ Intact ☐ Broken
										IR ID#			Ambient	Yo	ed	☐ Refi	rigerat	ted	☐ DI VOA Frozen ☐ Soil Jar Frozen

Appendix E

Electronic File (Excel) – Analytical Database

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected	Units	Detected ?	Sampl e Type
BB-US-SED- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	62.8	Result	%	Yes	N
BB-US-SED- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	0.7		%	Yes	N
BB-US-SED- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	6		%	Yes	N
BB-US-SED- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	0.2		%	Yes	N
BB-US-SED- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	30.9		%	Yes	N
BB-US-SED- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	45.6		%	Yes	N
BB-US-SED- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	0.4		%	Yes	N
BB-US-SED- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	15.5		%	Yes	N
BB-US-SED- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.6		%	Yes	N
BB-US-SED- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/23	Wet	A412B	TOC	TOC	Total Organic Carbon	1700		mg/kg	Yes	N
BB-US-SED- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS -	7439-92-1	Lead	8.56		mg/kg	Yes	N
BB-US-SED- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS -	7439-96-5	Manganese	130		mg/kg	Yes	N
BB-US-SED- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS -	7440-02-0	Nickel	11.6		mg/kg	Yes	N
BB-US-SED- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS -	7440-38-2	Arsenic		2.08	mg/kg	No	N
BB-US-SED- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS -	7440-43-9	Cadmium		0.692	mg/kg	No	N
BB-US-SED- 01 BB-US-SED-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25		SW3050B	METALS - ICP AES METALS -	7440-47-3	Chromium	11.7		mg/kg	Yes	N
01 BB-US-SED-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	ICP AES METALS -	7440-50-8	Copper	11.2		mg/kg	Yes	N
01 BB-US-SED-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	ICP AES METALS -	7440-66-6	Zinc	45.1		mg/kg	Yes	N
01 BB-US-SED-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	ICP AES METALS -	7439-89-6	Iron	10500		mg/kg	Yes	N
01 BB-US-SED-	Branch Brook - Upstream	2014/10/15				2014/10/27			ICP AES METALS -	7440-23-5	Sodium	80.3		mg/kg	Yes	N
01 BB-US-SED-	·	2014/10/15		SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	ICP AES TOTAL	7440-39-3	Barium	35		mg/kg	Yes	N
02 BB-US-SED-	Branch Brook - Upstream	2014/10/15		SPECTRUM	A209A	2014/10/16		A412B	SOLIDS	Per Solids PSEP-	Percent Solids Fractional % Sieve #10	68.9		%	Yes	N
02 BB-US-SED-	·	2014/10/15		SPECTRUM	D422	2014/10/22		A412B	GRAIN SIZE	FS10 PSEP-	(4750-2000µm) Fractional % Sieve #20	11.2		%	Yes	N
02 BB-US-SED-	Branch Brook - Upstream	2014/10/15		SPECTRUM	D422	2014/10/22		A412B	GRAIN SIZE	FS20	(2000-850µm) Fractional % Sieve #4	14.0		%	Yes	N
02 BB-US-SED-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/22		A412B	GRAIN SIZE	PSEP-FS4 PSEP-	(>4750µm) Fractional % Sieve #40	32.2		%	Yes	N
02 BB-US-SED-	· · · · · · · · · · · · · · · · · · ·	2014/10/15		SPECTRUM	D422	2014/10/22		A412B	GRAIN SIZE	FS40 PSEP-	(850-425µm) Fractional % Sieve #60	23.9		%	Yes	N
02 BB-US-SED-	·	2014/10/15		SPECTRUM	D422	2014/10/22		A412B	GRAIN SIZE	FS60	(425-250µm) SIEVE, NO. 100,	13.8		%	Yes	N
02 BB-US-SED-	·	2014/10/15		SPECTRUM	D422	2014/10/22		A412B	GRAIN SIZE	SIEVE100	PERCENT PASSING SIEVE NO. 200,	1.9		%	Yes	N
02 BB-US-SED-	· · · · · · · · · · · · · · · · · · ·	2014/10/15		SPECTRUM	D422	2014/10/22		A412B	GRAIN SIZE	SIEVE200	PERCENT PASSING SIEVE NO. 230,	2		%	Yes	N
02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE230	PERCENT PASSING	0.1		%	Yes	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-US-SED- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/23	Wet	A412B	TOC	TOC	Total Organic Carbon	1910	- NOSGIL	mg/kg	Yes		N
BB-US-SED- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	3.99		mg/kg	Yes		N
BB-US-SED- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	217		mg/kg	Yes		N
BB-US-SED- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	8.1		mg/kg	Yes		N
BB-US-SED- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.91	mg/kg	No		N
BB-US-SED- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.637	mg/kg	No		N
BB-US-SED- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	8.94		mg/kg	Yes		N
BB-US-SED- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	7.15		mg/kg	Yes		N
BB-US-SED- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	23.6		mg/kg	Yes		N
BB-US-SED- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	7150		mg/kg	Yes		N
BB-US-SED- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	47.4		mg/kg	Yes		N
BB-US-SED- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	17.7		mg/kg	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	67.8		%	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	14.8		%	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	16.2		%	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	24		%	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	24.5		%	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	15.2		%	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	4.21		%	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	1.03		%	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.0383		%	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/23	Wet	A412B	TOC	TOC	Total Organic Carbon	473		mg/kg	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	4.9		mg/kg	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	178		mg/kg	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	9.08		mg/kg	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		2.18	mg/kg	No		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.726	mg/kg	No		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	8.17		mg/kg	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	8.77		mg/kg	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	25.2		mg/kg	Yes		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	8200		mg/kg	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	88.1		mg/kg	Yes		N
BB-US-SED- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	21.4		mg/kg	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	70.1		%	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	6.16		%	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	7.05		%	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	32		%	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	28.8		%	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	19.9		%	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	4.41		%	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	1.6		%	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.178		%	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/24	Wet	A412B	TOC	TOC	Total Organic Carbon	929		mg/kg	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	5.55		mg/kg	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	330		mg/kg	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	8.26		mg/kg	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.94	mg/kg	No		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.646	mg/kg	No		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	7.25		mg/kg	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	10.5		mg/kg	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	29.9		mg/kg	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	10500		mg/kg	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	81.6		mg/kg	Yes		N
BB-US-SED- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	25.7		mg/kg	Yes		N
BB-US-SED- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	71.3		%	Yes		N
BB-US-SED- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	6.98		%	Yes		N
BB-US-SED- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	11.7		%	Yes		N
BB-US-SED- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	11.5		%	Yes		N
BB-US-SED- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	27.1		%	Yes		N
BB-US-SED- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	25.8		%	Yes		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected	Units	Detected 2	Qualifier s	Sampl e Type
BB-US-SED-									<u> </u>		SIEVE, NO. 100,		Result		, f	, s	
05 BB-US-SED-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23		A412B	GRAIN SIZE	SIEVE100	PERCENT PASSING SIEVE NO. 200,	3.91		%	Yes		N
05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE200	PERCENT PASSING	11.8		%	Yes		N
BB-US-SED- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	1.37		%	Yes		N
BB-US-SED- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/24	Wet	A412B	TOC	TOC	Total Organic Carbon	3370		mg/kg	Yes		N
BB-US-SED- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	8.64		mg/kg	Yes		N
BB-US-SED- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	211		mg/kg	Yes		N
BB-US-SED- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	7.7		mg/kg	Yes		N
BB-US-SED- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.91	mg/kg	No		N
BB-US-SED- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.636	mg/kg	No		N
BB-US-SED- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	10.4		mg/kg	Yes		N
BB-US-SED-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	19.8		mg/kg	Yes		N
05 BB-US-SED-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS -	7440-66-6	Zinc	54.9		mg/kg	Yes		N
05 BB-US-SED-	Branch Brook - Upstream	2014/10/15		SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	ICP AES METALS -	7439-89-6	Iron	14500		mg/kg	Yes		N
05 BB-US-SED-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Drv	SW3050B	ICP AES METALS -	7440-23-5	Sodium	150		mg/kg	Yes		N
05 BB-US-SED-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	_	SW3050B	ICP AES METALS -	7440-39-3	Barium	30.1		mg/kg	Yes		N
05 BB-US-SED-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16		A412B	ICP AES TOTAL	Per Solids	Percent Solids	74.4		g/g %	Yes		N
06 BB-US-SED-	<u>'</u>	2014/10/15	Sediment	SPECTRUM				A412B	SOLIDS GRAIN SIZE	PSEP-	Fractional % Sieve #10			%	Yes		N
06 BB-US-SED-	Branch Brook - Upstream				D422	2014/10/23				FS10 PSEP-	(4750-2000µm) Fractional % Sieve #20	3.23					
06 BB-US-SED-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23		A412B	GRAIN SIZE	FS20	(2000-850µm) Fractional % Sieve #4	27.2		%	Yes		N
06 BB-US-SED-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP-FS4 PSEP-	(>4750µm) Fractional % Sieve #40	1.9		%	Yes		N
06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	FS40	(850-425µm)	48.8		%	Yes		N
BB-US-SED- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	15.7		%	Yes		N
BB-US-SED- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	2.39		%	Yes		N
BB-US-SED- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	0.84		%	Yes		N
BB-US-SED- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING			%	No		N
BB-US-SED- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/24	Wet	A412B	TOC	TOC	Total Organic Carbon	614		mg/kg	Yes		N
BB-US-SED- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	4.11		mg/kg	Yes		N
BB-US-SED- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	419		mg/kg	Yes		N
BB-US-SED- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	7.65		mg/kg	Yes		N
BB-US-SED- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.97	mg/kg	No		N
BB-US-SED- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.656	mg/kg	No		N

e 4 of 212 ENVIRON

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SED- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	5.03		mg/kg	Yes	N
BB-US-SED- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	6.82		mg/kg	Yes	N
BB-US-SED- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	27.6		mg/kg	Yes	N
BB-US-SED- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	6820		mg/kg	Yes	N
BB-US-SED- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	66.1		mg/kg	Yes	N
BB-US-SED- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	24.2		mg/kg	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	75.9		%	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	22		%	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	19.5		%	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	35.7		%	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	12.8		%	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	6.52		%	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	1.39		%	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	2.03		%	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.107		%	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/24	Wet	A412B	TOC	TOC	Total Organic Carbon	1520		mg/kg	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	8530		mg/kg	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	4.06		mg/kg	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	270		mg/kg	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	10.7		mg/kg	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	43.5		mg/kg	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.68	mg/kg	No	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	23.5		mg/kg	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.559	mg/kg	No	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	7.54		mg/kg	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	9.94		mg/kg	Yes	N
BB-US-SED- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	22.5		mg/kg	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	80.9		%	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	38.1		%	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	36		%	Yes	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750um)	17.2		%	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	8.14		%	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	0.361		%	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	0.0984		%	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	0.23		%	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING			%	No	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/24	Wet	A412B	TOC	TOC	Total Organic Carbon	1020		mg/kg	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	9460		mg/kg	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	4.63		mg/kg	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	290		mg/kg	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	10.3		mg/kg	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	94.6		mg/kg	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.69	mg/kg	No	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	26.1		mg/kg	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.564	mg/kg	No	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	9.22		mg/kg	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	6.99		mg/kg	Yes	N
BB-US-SED- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	44		mg/kg	Yes	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	62.8		%	Yes	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-42-5	Styrene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0058	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0058	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0058	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0058	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0058	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0058	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0058	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0576	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-88-3	Toluene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0115	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0288	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.115	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0115	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0576	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	64-17-5	Ethanol		2.3	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-64-1	Acetone		0.0576	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-66-3	Chloroform		0.0058	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	· ·	Sampl e Type
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-43-2	Benzene		0.0058	mg/kg	No		N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0058	mg/kg	No		N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0115	mg/kg	No		N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0115	mg/kg	No		N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0058	mg/kg	No		N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0058	mg/kg	No		N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0115	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0058	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0115	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0115	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-25-2	Bromoform		0.0058	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0058	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0058	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0058	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0576	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0058	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0115	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0058	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0058	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0576	mg/kg	No		N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0058	mg/kg	No		N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0058	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0058	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0058	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0058	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0058	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0058	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0058	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0058	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0058	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0115	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0058	mg/kg	No	N
BB-US-SEDV- 01	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0058	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	68.9		%	Yes	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-42-5	Styrene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0495	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-88-3	Toluene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0099	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0248	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.099	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.005	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0099	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0495	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	64-17-5	Ethanol		1.98	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-64-1	Acetone		0.0495	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-66-3	Chloroform		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-43-2	Benzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0099	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0099	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0099	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0099	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0099	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-25-2	Bromoform		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.005	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0495	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0099	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0495	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	91-20-3	Naphthalene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-47-6	o-Xylene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0099	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.005	mg/kg	No	N
BB-US-SEDV- 02	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.005	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	67.8		%	Yes	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-42-5	Styrene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0061	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected	Units	Detected ?	Sampl e Type
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0614	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-88-3	Toluene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0123	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0307	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.123	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0123	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0614	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0061	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	64-17-5	Ethanol		2.46	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-64-1	Acetone		0.0614	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-66-3	Chloroform		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-43-2	Benzene		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0123	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0123	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0123	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0123	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0123	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-25-2	Bromoform		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0614	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0123	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0614	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0061	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0061	mg/kg	No	N
BB-US-SEDV- 03	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0123	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0061	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0061	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	70.1		%	Yes	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-42-5	Styrene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0055	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0554	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-88-3	Toluene		0.0055	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0111	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0277	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.111	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0111	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0554	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	64-17-5	Ethanol		2.21	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-64-1	Acetone		0.0554	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-66-3	Chloroform		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-43-2	Benzene		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0111	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0111	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0055	mg/kg	No		N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0055	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0111	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0111	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0111	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-25-2	Bromoform		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0554	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0111	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0554	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0111	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0055	mg/kg	No	N
BB-US-SEDV- 04	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0055	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	71.3		%	Yes	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-42-5	Styrene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0527	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-88-3	Toluene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0105	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0264	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.105	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0105	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0053	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0527	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	64-17-5	Ethanol		2.11	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-64-1	Acetone		0.0527	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-66-3	Chloroform		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-43-2	Benzene		0.0053	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0105	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0105	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0053	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0105	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0105	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0105	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-25-2	Bromoform		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0053	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0053	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0053	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0527	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0053	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0105	mg/kg	No	N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0053	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0053	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0527	mg/kg	No		N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0053	mg/kg	No		N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0053	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0053	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0053	mg/kg	No		N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0053	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0053	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0053	mg/kg	No		N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0053	mg/kg	No		N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0053	mg/kg	No		N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0053	mg/kg	No		N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0105	mg/kg	No		N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0053	mg/kg	No		N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0053	mg/kg	No		N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0053	mg/kg	No		N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0053	mg/kg	No		N
BB-US-SEDV- 05	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0053	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	74.4		%	Yes		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-42-5	Styrene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0052	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0052	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?		Sampl e Type
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0525	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-88-3	Toluene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0105	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0262	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.105	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0105	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0525	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	64-17-5	Ethanol		2.1	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-64-1	Acetone		0.0525	mg/kg	No	_	N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-66-3	Chloroform		0.0052	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	· ·	Sampl e Type
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-43-2	Benzene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0105	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0105	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0105	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0105	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0105	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-25-2	Bromoform		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0525	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan		0.0105	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0525	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0052	mg/kg	No		N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0052	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0105	mg/kg	No	N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0052	mg/kg	No	N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0052	mg/kg	No	N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0052	mg/kg	No	N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0052	mg/kg	No	N
BB-US-SEDV- 06	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0052	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	75.9		%	Yes	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-42-5	Styrene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0369	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-88-3	Toluene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0074	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0185	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.0739	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0037	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0037	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0074	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0369	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	64-17-5	Ethanol		1.48	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-64-1	Acetone		0.0369	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-66-3	Chloroform		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-43-2	Benzene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0074	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0074	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0074	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0074	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0074	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-25-2	Bromoform		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0037	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0369	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0074	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0369	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0037	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0037	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0037	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0037	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0037	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0037	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0037	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0037	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0037	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0037	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0074	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0037	mg/kg	No	N
BB-US-SEDV- 07	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0037	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0037	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0037	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	80.9		%	Yes	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0042	mg/kg	No	N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-42-5	Styrene		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0042	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0042	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0042	mg/kg	No		N
BB-US-SEDV-	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-88-3	Toluene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0084	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.021	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.084	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0084	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0042	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	64-17-5	Ethanol		1.68	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-64-1	Acetone		0.042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-66-3	Chloroform		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-43-2	Benzene		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0084	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0084	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0084	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0084	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0084	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-25-2	Bromoform		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0084	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-93-3	2-Butanone		0.042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0042	mg/kg	No	N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0042	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0084	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0042	mg/kg	No		N
BB-US-SEDV- 08	Branch Brook - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0042	mg/kg	No		N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No	N
BB-US-SWV- 01	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No	 N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No	N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
BB-US-SWV- 02	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No	N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No	N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No	N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No	N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No	N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No	N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No	N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No	N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No	N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No	N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No	N
BB-US-SWV- 03	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	· ·	Sampl e Type
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No	 N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No	N
BB-US-SWV- 04	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No	N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
BB-US-SWV- 05	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No	N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No	 N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
BB-US-SWV- 06	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	· ·	Sampl e Type
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
BB-US-SWV- 07	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No	N
BB-US-SWV-	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No	N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
BB-US-SWV- 08	Branch Brook - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	78.2		%	Yes		FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	7.8		%	Yes		FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	17.6	l Result	%	Yes	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	23.8		%	Yes	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	26.5		%	Yes	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	16.9		%	Yes	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	1.7		%	Yes	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	5.5		%	Yes	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.2		%	Yes	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	LLOYDKAH N	2014/10/23	Wet	A412B	TOC	TOC	Total Organic Carbon	597		mg/kg	Yes	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	10.8		mg/kg	Yes	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	100		mg/kg	Yes	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	7.13		mg/kg	Yes	FD
NR-DS-SED-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.72	mg/kg	No	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.573	mg/kg	No	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	9.34		mg/kg	Yes	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	15.8		mg/kg	Yes	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	46.3		mg/kg	Yes	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS -	7439-89-6	Iron	4880		mg/kg	Yes	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS -	7440-23-5	Sodium	54.3		mg/kg	Yes	FD
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	18		mg/kg	Yes	FD
NR-DS-SEDV- 01 NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0045	mg/kg	No	FD
01 NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-42-5	Styrene cis-1,3-		0.0045	mg/kg	No	FD
01 NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	10061-01-5	Dichloropropene		0.0045	mg/kg	No	FD
01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0045	mg/kg	No	FD
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	103-65-1	n-Propylbenzene		0.0045	mg/kg	No	FD
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0045	mg/kg	No	FD
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	106-43-4	4-Chlorotoluene		0.0045	mg/kg	No	FD
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0045	mg/kg	No	FD
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0045	mg/kg	No	FD
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0045	mg/kg	No	FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0045	mg/kg	No	FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0454	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-88-3	Toluene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0091	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0227	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.0907	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0091	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0454	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	64-17-5	Ethanol		1.81	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-64-1	Acetone		0.0454	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-66-3	Chloroform		0.0045	mg/kg	No		FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-43-2	Benzene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0091	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0091	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0091	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0091	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0091	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-25-2	Bromoform		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0454	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0091	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0454	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0045	mg/kg	No		FD

Sample ID	Location	Sample	Motrix	Lab Name	Analytical	Analysis	Basi	Prep	Parameter	CAS DN	Parameter	Detected	Non-	Units	Detected	Qualifier	Sampl
Sample ID	Location	Date	Matrix	Lab Name	Method	Date	s	Method	Group	CAS RN	Parameter	Result	Detected Result	Units	?	S	е Туре
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0091	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0045	mg/kg	No		FD
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0045	mg/kg	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		FD
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		FD
NR-DS-SWV- 01 NR-DS-SWV-	Naugatuck River - Downstream Naugatuck River -	2014/10/14	Surface Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		FD
01 NR-DS-SWV-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		FD
01 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Surface Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		FD
01 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		FD
01 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		FD
01 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		FD
01 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		FD
01 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		FD
01 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		FD
01 NR-DS-SWV-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Surface Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		FD
01 NR-DS-SWV-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		FD
01 NR-DS-SWV-	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		FD
01 NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		FD
01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		FD
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	82.8		%	Yes		FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	14.4		%	Yes		FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	31.5		%	Yes		FD
NR-DS-SED-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	14.5		%	Yes		FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	24.6		%	Yes		FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	10.6		%	Yes		FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	0.9		%	Yes		FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	3.3		%	Yes	FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.2		%	Yes	FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	LLOYDKAH N	2014/10/23	Wet	A412B	TOC	TOC	Total Organic Carbon	334		mg/kg	Yes	FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	6.42		mg/kg	Yes	FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	280		mg/kg	Yes	FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	7.77		mg/kg	Yes	FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.57	mg/kg	No	FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium	0.706		mg/kg	Yes	FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	8.27		mg/kg	Yes	FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	17.5		mg/kg	Yes	FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	71.7		mg/kg	Yes	FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	7700		mg/kg	Yes	FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	62.9		mg/kg	Yes	FD
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	20.7		mg/kg	Yes	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-42-5	Styrene		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0305	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.003	mg/kg	No	FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-88-3	Toluene		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0061	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0152	mg/kg	No	FD
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.003	mg/kg	No	FD
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.061	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0061	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.003	mg/kg	No	FD
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.003	mg/kg	No	FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.003	mg/kg	No	FD
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.003	mg/kg	No	FD
NR-DS-SEDV- 03 NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.003	mg/kg	No	FD
03 NR-DS-SEDV-	Naugatuck River - Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.003	mg/kg	No	FD
03 NR-DS-SEDV-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.003	mg/kg	No	FD
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.003	mg/kg	No	FD
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	-	SW5035	VOC	591-78-6	2-Hexanone		0.0305	mg/kg	No	FD
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.003	mg/kg	No	FD
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14			SW8260	2014/10/18		SW5035	VOC	60-29-7	Diethyl ether 1,1,1,2-		0.003	mg/kg	No	FD
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW8260	2014/10/18		SW5035	VOC	630-20-6	Tetrachloroethane Ethyl tertiary-butyl		0.003	mg/kg	No	FD
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW8260	2014/10/18		SW5035	VOC	637-92-3	ether		0.003	mg/kg	No	FD
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW8260	2014/10/18		SW5035	VOC	64-17-5	Ethanol	2.36		mg/kg	Yes	FD
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW8260	2014/10/18		SW5035	VOC	67-64-1	Acetone		0.0305	mg/kg	No	FD
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW8260	2014/10/18		SW5035	VOC	67-66-3	Chloroform		0.003	mg/kg	No	FD
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW8260	2014/10/18		SW5035	VOC	71-43-2	Benzene		0.003	mg/kg	No	FD
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW8260	2014/10/18		SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.003	mg/kg	No	FD
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW8260	2014/10/18	-	SW5035	VOC	74-83-9	Bromomethane		0.0061	mg/kg	No	FD
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW8260	2014/10/18	_	SW5035	VOC	74-87-3	Chloromethane		0.0061	mg/kg	No	FD
03	Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.003	mg/kg	No	FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0061	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0061	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0061	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-25-2	Bromoform		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0305	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0061	mg/kg	No		FD
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0305	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.003	mg/kg	No		FD
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	91-20-3	Naphthalene		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-47-6	o-Xylene		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.003	mg/kg	No		FD
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0061	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.003	mg/kg	No		FD
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.003	mg/kg	No		FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected	Units	Detected	Qualifier	Sampl
NR-DS-SEDV-	Naugatuck River -				Wethou	Date	S		<u> </u>		Tertiary-amyl methyl	Result	Result		, 	S	е Туре
03	Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	994-05-8	ether		0.003	mg/kg	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		FD
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		FD
NR-DS-SWV-	Naugatuck River -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3-		0.0005	mg/L	No		FD
03 NR-DS-SWV-	Downstream Naugatuck River -		Water Surface								Dichloropropene trans-1,3-						
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17	vvet	SW5030	VOC	10061-02-6	Dichloropropene		0.0005	mg/L	No		FD
03	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		FD
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		FD
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		FD
NR-DS-SWV-	Naugatuck River -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		FD
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		FD
03 NR-DS-SWV-	Downstream Naugatuck River -		Water Surface								1,3,5-				NO		
03	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	Trimethylbenzene		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		FD
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		FD
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		FD
NR-DS-SWV-	Naugatuck River -	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		FD
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		FD
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM													
03 NR-DS-SWV-	Downstream Naugatuck River -		Water Surface		SW8260	2014/10/17		SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		FD
03	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		FD
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No	FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No	FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No	FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No	FD
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No	FD
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No	FD
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No	FD
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No	FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No	FD
NR-DS-SWV- 03 NR-DS-SWV-	Naugatuck River - Downstream Naugatuck River -	2014/10/14	Surface Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No	FD
03 NR-DS-SWV-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No	FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No	FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No	FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No	FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No	FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No	FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No	FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No	FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No	FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No	FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM SPECTRUM	SW8260 SW8260	2014/10/17		SW5030 SW5030	VOC	75-09-2 75-15-0	Methylene chloride Carbon disulfide		0.002	mg/L	No No	FD FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-15-0	Bromoform		0.002	mg/L mg/L	No	FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-25-2	Bromodichloromethane		0.0005	mg/L	No	FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No	FD
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No	FD
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No	FD
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No	FD
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-71-8	Dichlorodifluoromethan		0.002	mg/L	No	FD
03 NR-DS-SWV- 03	Downstream Naugatuck River - Downstream	2014/10/14	Water Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	e 1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No	FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		FD
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		FD
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		FD
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		FD
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		FD
NR-DS-SWV- 03 NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		FD
03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		FD
NR-DS-SED- 01 NR-DS-SED-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids PSEP-	Percent Solids Fractional % Sieve #10	77.4		%	Yes		N
01 NR-DS-SED-	Naugatuck River - Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	FS10 PSEP-	(4750-2000μm) Fractional % Sieve #20	9.6		%	Yes		N
01 NR-DS-SED-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	FS20	(2000-850µm) Fractional % Sieve #4	23.1		%	Yes		N
01 NR-DS-SED-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	D422	2014/10/22		A412B	GRAIN SIZE	PSEP-FS4 PSEP-	(>4750µm) Fractional % Sieve #40	14.2		%	Yes		N
01 NR-DS-SED-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	FS40 PSEP-	(850-425µm) Fractional % Sieve #60	27.9		%	Yes		N
01 NR-DS-SED-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	FS60	(425-250µm) SIEVE, NO. 100,	17.3		%	Yes		N
01	Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE100	PERCENT PASSING	0.4		%	Yes		N
NR-DS-SED- 01 NR-DS-SED-	Naugatuck River - Downstream	2014/10/14		SPECTRUM	D422	2014/10/22		A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	7.2		%	Yes		N
01 NR-DS-SED-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22		A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.3		%	Yes		N
01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	LLOYDKAH N	2014/10/23	Wet	A412B	TOC	TOC	Total Organic Carbon	1120		mg/kg	Yes		N
NR-DS-SED-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS -	7439-92-1	Lead	5.68		mg/kg	Yes		N
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	97.3		mg/kg	Yes		N

		T	1	•	1	1			7	ı		1	1	1		1	
Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	5.97		mg/kg	Yes		N
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.72	mg/kg	No		N
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.572	mg/kg	No		N
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	8.46		mg/kg	Yes		N
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	13.9		mg/kg	Yes		N
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	47.1		mg/kg	Yes		N
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	5030		mg/kg	Yes		N
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	68.5		mg/kg	Yes		N
NR-DS-SED- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	16.4		mg/kg	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	71		%	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	22.2		%	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	27.6		%	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	27.1		%	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	17.2		%	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	4.3		%	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	0.3		%	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	1.1		%	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.2		%	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	LLOYDKAH N	2014/10/23	Wet	A412B	TOC	TOC	Total Organic Carbon	550		mg/kg	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	6.14		mg/kg	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	465		mg/kg	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	11.5		mg/kg	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.88	mg/kg	No		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.626	mg/kg	No		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	68.6		mg/kg	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	18.3		mg/kg	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	54		mg/kg	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	14500		mg/kg	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	56.5		mg/kg	Yes		N
NR-DS-SED- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	23		mg/kg	Yes		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	82.1		%	Yes	N
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	17		%	Yes	N
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	35.1		%	Yes	N
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	14.3		%	Yes	N
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	22.9		%	Yes	N
NR-DS-SED- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	7.8		%	Yes	N
NR-DS-SED- 03 NR-DS-SED-	Naugatuck River - Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING SIEVE NO. 200,	0.1		%	Yes	N
03 NR-DS-SED-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE200	PERCENT PASSING SIEVE NO. 230,	2.6		%	Yes	N
03 NR-DS-SED-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	D422 LLOYDKAH	2014/10/22		A412B	GRAIN SIZE	SIEVE230	PERCENT PASSING	0.3		%	Yes	N
03 NR-DS-SED-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	N	2014/10/23		A412B	TOC METALS -	TOC	Total Organic Carbon	488		mg/kg	Yes	N
03 NR-DS-SED-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	,	SW3050B	ICP AES METALS -	7439-92-1	Lead	6.61		mg/kg	Yes	N
03 NR-DS-SED-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	_	SW3050B	ICP AES METALS -	7439-96-5	Manganese	250		mg/kg	Yes	N
03 NR-DS-SED-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25		SW3050B	ICP AES METALS -	7440-02-0	Nickel	8.72		mg/kg	Yes	N
03 NR-DS-SED-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	,	SW3050B	ICP AES METALS -	7440-38-2	Arsenic		1.61	mg/kg	No	N
03 NR-DS-SED-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	_	SW3050B	ICP AES METALS -	7440-43-9	Cadmium		0.536	mg/kg	No	N
03 NR-DS-SED-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25		SW3050B	ICP AES METALS -	7440-47-3	Chromium	9.3		mg/kg	Yes	N
03 NR-DS-SED-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	_	SW3050B	ICP AES METALS -	7440-50-8	Copper	17.3		mg/kg	Yes	N
03 NR-DS-SED-	Downstream Naugatuck River -	2014/10/14	Sediment Sediment	SPECTRUM SPECTRUM	SW6010 SW6010	2014/10/25	_	SW3050B SW3050B	ICP AES METALS -	7440-66-6 7439-89-6	Zinc	50.9 7920		mg/kg	Yes Yes	N N
03 NR-DS-SED-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW6010	2014/10/27			ICP AES METALS -	7440-23-5	Sodium	47		mg/kg mg/kg	Yes	N
03 NR-DS-SED-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW6010	2014/10/27		SW3050B	ICP AES METALS -	7440-23-3	Barium	17		mg/kg	Yes	N
03 NR-DS-SED-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	A209A	2014/10/16	,	A412B	ICP AES TOTAL	Per Solids	Percent Solids	71.8		%	Yes	N
NR-DS-SED-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	D422	2014/10/22		A412B	SOLIDS GRAIN SIZE	PSEP-	Fractional % Sieve #10			%	Yes	N
NR-DS-SED-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	D422	2014/10/22		A412B	GRAIN SIZE	FS10 PSEP-	(4750-2000µm) Fractional % Sieve #20			%	Yes	N
NR-DS-SED-	Downstream Naugatuck River -	2014/10/14	 	SPECTRUM	D422	2014/10/22		A412B	GRAIN SIZE	FS20 PSEP-FS4	(2000-850µm) Fractional % Sieve #4	5.2		%	Yes	N
04 NR-DS-SED-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22		A412B	GRAIN SIZE	PSEP-	(>4750µm) Fractional % Sieve #40	46.1		%	Yes	N
04 NR-DS-SED- 04	Downstream Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	FS40 PSEP- FS60	(850-425µm) Fractional % Sieve #60 (425-250µm)	12.3		%	Yes	N
NR-DS-SED- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	2.4		%	Yes	N
NR-DS-SED- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	0.5		%	Yes	N
NR-DS-SED- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.2		%	Yes	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SED- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	LLOYDKAH N	2014/10/23	Wet	A412B	TOC	TOC	Total Organic Carbon	1030		mg/kg	Yes		N
NR-DS-SED- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	5.16		mg/kg	Yes		N
NR-DS-SED- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	171		mg/kg	Yes		N
NR-DS-SED- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	5.69		mg/kg	Yes		N
NR-DS-SED- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.81	mg/kg	No		N
NR-DS-SED- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.604	mg/kg	No		N
NR-DS-SED- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	6.04		mg/kg	Yes		N
NR-DS-SED- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	11.5		mg/kg	Yes		N
NR-DS-SED- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	34.8		mg/kg	Yes		N
NR-DS-SED- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	5120		mg/kg	Yes		N
NR-DS-SED- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	55.4		mg/kg	Yes		N
NR-DS-SED- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	13.3		mg/kg	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	82.4		%	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	43		%	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	29.9		%	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	17.2		%	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	8.1		%	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	1.4		%	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	0.3		%	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	0.1		%	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/22	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0		%	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	LLOYDKAH N	2014/10/24	Wet	A412B	TOC	TOC	Total Organic Carbon	410		mg/kg	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	8.5		mg/kg	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	201		mg/kg	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	9.42		mg/kg	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.59	mg/kg	No		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.531	mg/kg	No		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	7.59		mg/kg	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	24.7		mg/kg	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/25	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	54.8		mg/kg	Yes		N

		1	1				1			1	<u> </u>					1	
Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	9070		mg/kg	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	74.9		mg/kg	Yes		N
NR-DS-SED- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	24.7		mg/kg	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	73.4		%	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	5.03		%	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	20.2		%	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	1.33		%	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	26.9		%	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	21.7		%	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	2.85		%	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	18.8		%	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	3.13		%	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/24	Wet	A412B	TOC	TOC	Total Organic Carbon	8230		mg/kg	Yes	J	N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	8300		mg/kg	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	10.2		mg/kg	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	144		mg/kg	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	7.43		mg/kg	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	106		mg/kg	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		2.04	mg/kg	No		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	30.1		mg/kg	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.679	mg/kg	No		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	10.4		mg/kg	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	19.9		mg/kg	Yes		N
NR-DS-SED- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	56.1		mg/kg	Yes		N
NR-DS-SED- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	75.6		%	Yes		N
NR-DS-SED- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	2.75		%	Yes		N
NR-DS-SED- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	14.9		%	Yes		N
NR-DS-SED- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	0.25		%	Yes		N
NR-DS-SED- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	33.8		%	Yes		N
NR-DS-SED- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	29.3		%	Yes		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SED- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	0	l Result	%	Yes	N
NR-DS-SED- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	18.2		%	Yes	N
NR-DS-SED- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.9		%	Yes	N
NR-DS-SED- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/24	Wet	A412B	TOC	TOC	Total Organic Carbon	296		mg/kg	Yes	N
NR-DS-SED- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	6430		mg/kg	Yes	N
NR-DS-SED- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	8.68		mg/kg	Yes	N
NR-DS-SED- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS -	7439-96-5	Manganese	100		mg/kg	Yes	N
NR-DS-SED- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS -	7440-02-0	Nickel	7.01		mg/kg	Yes	N
NR-DS-SED- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES METALS -	7440-23-5	Sodium	63.7		mg/kg	Yes	N
NR-DS-SED- 07 NR-DS-SED-	Naugatuck River - Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	ICP AES METALS -	7440-38-2	Arsenic		1.78	mg/kg	No	N
07 NR-DS-SED-	Downstream Naugatuck River - Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	ICP AES METALS -	7440-39-3	Barium	22.9		mg/kg	Yes	N
07 NR-DS-SED-	Downstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	ICP AES METALS -	7440-43-9	Cadmium		0.593	mg/kg	No	N
07 NR-DS-SED-	Naugatuck River - Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	ICP AES METALS -	7440-47-3	Chromium	10.2		mg/kg	Yes	N
07 NR-DS-SED-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	ICP AES METALS -	7440-50-8	Copper	40.6		mg/kg	Yes	N
07 NR-DS-SED-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	ICP AES TOTAL	7440-66-6	Zinc	55.7		mg/kg	Yes	N
08 NR-DS-SED-	Upstream Naugatuck River - Naugatuck River -	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	SOLIDS	Per Solids PSEP-	Percent Solids Fractional % Sieve #10	70.2		%	Yes	N
08 NR-DS-SED-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	FS10 PSEP-	(4750-2000μm) Fractional % Sieve #20	0.53		%	Yes	N
08 NR-DS-SED-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23		A412B	GRAIN SIZE	FS20	(2000-850µm) Fractional % Sieve #4	3.52		%	Yes	N
08 NR-DS-SED-	Upstream Naugatuck River -	2014/10/15		SPECTRUM	D422	2014/10/23		A412B	GRAIN SIZE	PSEP-FS4 PSEP-	(>4750µm) Fractional % Sieve #40			%	No	N
08 NR-DS-SED-	Upstream Naugatuck River -	2014/10/15			D422	2014/10/23		A412B	GRAIN SIZE	FS40 PSEP-	(850-425µm) Fractional % Sieve #60	7.81		%	Yes	N
08 NR-DS-SED-	Upstream Naugatuck River -	2014/10/15		SPECTRUM	D422	2014/10/23		A412B	GRAIN SIZE	FS60	(425-250μm) SIEVE, NO. 100,	21.8		%	Yes	N
08 NR-DS-SED-	Upstream Naugatuck River -	2014/10/15			D422	2014/10/23		A412B	GRAIN SIZE	SIEVE100	PERCENT PASSING SIEVE NO. 200,	3.86		%	Yes	N
08 NR-DS-SED-	Upstream Naugatuck River -	2014/10/15		SPECTRUM	D422	2014/10/23		A412B	GRAIN SIZE	SIEVE200	PERCENT PASSING SIEVE NO. 230,	60.3		%	Yes	N
08 NR-DS-SED-	Upstream Naugatuck River -	2014/10/15		SPECTRUM	D422 LLOYDKAH	2014/10/23	ł	A412B	GRAIN SIZE	SIEVE230	PERCENT PASSING	2.31		%	Yes	N
08 NR-DS-SED-	Upstream Naugatuck River -	2014/10/15			N	2014/10/24		A412B	TOC METALS -	TOC	Total Organic Carbon	2880		mg/kg	Yes	N
08 NR-DS-SED-	Upstream Naugatuck River -	2014/10/15		SPECTRUM	SW6010	2014/10/27		SW3050B	ICP AES METALS -	7439-89-6	Iron	9560		mg/kg	Yes	N
08 NR-DS-SED-	Upstream Naugatuck River -	2014/10/15				2014/10/27		SW3050B	ICP AES METALS -	7439-92-1	Lead	12.7		mg/kg	Yes	N
08 NR-DS-SED-	Upstream Naugatuck River -	2014/10/15		SPECTRUM	SW6010	2014/10/27		SW3050B	ICP AES METALS -	7439-96-5	Manganese	143		mg/kg	Yes	N
08 NR-DS-SED-	Upstream Naugatuck River -	2014/10/15		SPECTRUM		2014/10/27		SW3050B	ICP AES METALS -	7440-02-0	Nickel	10.6		mg/kg	Yes	N
08	Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	ICP AES	7440-23-5	Sodium	118		mg/kg	Yes	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		2.02	mg/kg	No		N
NR-DS-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	38.6		mg/kg	Yes		N
NR-DS-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.672	mg/kg	No		N
NR-DS-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	14.8		mg/kg	Yes		N
NR-DS-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	34.8		mg/kg	Yes		N
NR-DS-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	89.2		mg/kg	Yes		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	77.4		%	Yes		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-42-5	Styrene		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0391	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-88-3	Toluene		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0078	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0195	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0039	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.0781	mg/kg	No		N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0039	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0078	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0391	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	64-17-5	Ethanol		1.56	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-64-1	Acetone		0.0391	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-66-3	Chloroform		0.0039	mg/kg	No	N
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-43-2	Benzene		0.0039	mg/kg	No	N
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0078	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0078	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0078	mg/kg	No	N
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0078	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0078	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-25-2	Bromoform		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0039	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0391	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0078	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0391	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0078	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0039	mg/kg	No	N
NR-DS-SEDV- 01	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0039	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	71		%	Yes	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-42-5	Styrene		0.0051	mg/kg	No	 N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-01-5	Dichloropropene		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0051	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0051	mg/kg	No		N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0051	mg/kg	No		N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0051	mg/kg	No		N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0051	mg/kg	No		N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0051	mg/kg	No		N
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0515	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-67-8	1,3,5-		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-70-3	Trimethylbenzene 1,3,5-Trichlorobenzene		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-88-3	Toluene		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0103	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2-		0.0257	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	120-82-1	butene 1,2,4-Trichlorobenzene		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.103	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0103	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-60-5	trans-1,2-		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1634-04-4	Dichloroethene Methyl tert-butyl ether		0.0051		No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -										, ,			mg/kg			
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0051	mg/kg	No		N
02 NR-DS-SEDV-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0515	mg/kg	No		N
02	Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0051	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	64-17-5	Ethanol		2.06	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-64-1	Acetone		0.0515	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-66-3	Chloroform		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-43-2	Benzene		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0103	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0103	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0103	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0103	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0103	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-25-2	Bromoform		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0515	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0103	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0515	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0051	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0103	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0051	mg/kg	No	N
NR-DS-SEDV- 02 NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0051	mg/kg	No	N
02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0051	mg/kg	No	N
NR-DS-SEDV- 02	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0051	mg/kg	No	N
NR-DS-SEDV- 03 NR-DS-SEDV-	Naugatuck River - Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	82.1		%	Yes	N
03 NR-DS-SEDV-	Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Naugatuck River - Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-42-5	Styrene cis-1.3-		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-01-5	Dichloropropene trans-1,3-		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-02-6	Dichloropropene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20		SW5035	VOC	106-43-4	4-Chlorotoluene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0364	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER 1,3,5-		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-67-8	Trimethylbenzene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0036	mg/kg	No	N
03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-88-3	Toluene		0.0036	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0073	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0182	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.0728	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0073	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0364	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	64-17-5	Ethanol		1.46	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-64-1	Acetone		0.0364	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-66-3	Chloroform		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-43-2	Benzene		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0073	mg/kg	No	 N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0073	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0036	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0073	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0073	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0073	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-25-2	Bromoform		0.0036	mg/kg	No	N
NR-DS-SEDV- 03	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0036	mg/kg	No	N
NR-DS-SEDV- 03 NR-DS-SEDV-	Naugatuck River - Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	,	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0364	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane Dichlorodifluoromethan		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20		SW5035	VOC	75-71-8	e 1,1,2-Trichloro-1,2,2-		0.0073	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	76-13-1	trifluoroethane		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20		SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20		SW5035	VOC	78-93-3	2-Butanone		0.0364	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	-	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20		SW5035	VOC	79-01-6	Trichloroethene 1,1,2,2-		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20		SW5035	VOC	79-34-5	Tetrachloroethane		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	-	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20		SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14			SW8260	2014/10/20		SW5035	VOC	91-20-3	Naphthalene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW8260	2014/10/20		SW5035	VOC	95-47-6	o-Xylene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW8260	2014/10/20		SW5035	VOC	95-49-8	2-Chlorotoluene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW8260	2014/10/20		SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14		SPECTRUM SPECTRUM	SW8260	2014/10/20		SW5035	VOC	95-63-6 96-12-8	Trimethylbenzene 1,2-Dibromo-3-		0.0036	mg/kg	No	N N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14	Sediment Sediment	SPECTRUM	SW8260 SW8260	2014/10/20		SW5035 SW5035	VOC	96-12-8	chloropropane 1,2,3-Trichloropropane		0.0073	mg/kg mg/kg	No No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW8260	2014/10/20		SW5035	VOC	98-06-6	tert-Butylbenzene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW8260	2014/10/20		SW5035	VOC	98-82-8	Isopropylbenzene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14		SPECTRUM	SW8260	2014/10/20		SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0036	mg/kg	No	N
03 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/14			SW8260	2014/10/20		SW5035	VOC	994-05-8	Tertiary-amyl methyl		0.0036	mg/kg	No	N
03	Downstream		- Commont	J0.7(0.0)	00200		J.y	20000	1	55.500	ether		0.0000	9,9	.,0	

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	71.8		%	Yes	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-42-5	Styrene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0481	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-88-3	Toluene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0096	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0241	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.0962	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0096	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0048	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0481	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	64-17-5	Ethanol		1.92	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-64-1	Acetone		0.0481	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-66-3	Chloroform		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-43-2	Benzene		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0096	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0096	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0096	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0096	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0096	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-25-2	Bromoform		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0481	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0048	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0096	mg/kg	No		N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0048	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0481	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0096	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0048	mg/kg	No	N
NR-DS-SEDV- 04	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0048	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	82.4		%	Yes	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	100-42-5	Styrene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0033	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0328	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-88-3	Toluene		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0066	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0164	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.0657	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0066	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0328	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	64-17-5	Ethanol		1.31	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-64-1	Acetone		0.0328	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	67-66-3	Chloroform		0.0033	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-43-2	Benzene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0066	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0066	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0066	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0066	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0066	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-25-2	Bromoform		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0328	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0066	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0328	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0033	mg/kg	No	N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0033	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0066	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0033	mg/kg	No		N
NR-DS-SEDV- 05	Naugatuck River - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/20	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0033	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	73.4		%	Yes		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-42-5	Styrene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-01-5	Dichloropropene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0482	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-88-3	Toluene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0096	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0241	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.0963	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0048	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0096	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0482	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	64-17-5	Ethanol		1.93	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-64-1	Acetone		0.0482	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-66-3	Chloroform		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-43-2	Benzene		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0096	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0096	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0096	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0096	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0096	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-25-2	Bromoform		0.0048	mg/kg	No	N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0048	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0482	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0096	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0482	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0096	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0048	mg/kg	No		N
NR-DS-SEDV- 06	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0048	mg/kg	No		N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	75.6		%	Yes		N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0041	mg/kg	No		N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-42-5	Styrene		0.0041	mg/kg	No		N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0041	mg/kg	No		N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-02-6	tranc-1 3-		0.0041	mg/kg	No		N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0041	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.041	mg/kg	No	N
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-88-3	Toluene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0082	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0205	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.082	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0041	mg/kg	No	N
NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0082	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07 NR-DS-SEDV-	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0041	mg/kg	No	N
07	Naugatuck River - Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0041	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0041	mg/kg	No		N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0041	mg/kg	No		N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0041	mg/kg	No		N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	64-17-5	Ethanol		1.64	mg/kg	No		N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-64-1	Acetone		0.041	mg/kg	No		N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-66-3	Chloroform		0.0041	mg/kg	No		N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-43-2	Benzene		0.0041	mg/kg	No		N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0041	mg/kg	No		N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0082	mg/kg	No		N
NR-DS-SEDV-	Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0082	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0041	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0041	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0082	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0041	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0082	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0082	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-25-2	Bromoform		0.0041	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0041	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0041	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0041	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.041	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0041	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan		0.0082	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	76-13-1	e 1,1,2-Trichloro-1,2,2-		0.0041	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-87-5	trifluoroethane 1,2-Dichloropropane		0.0041	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-93-3	2-Butanone		0.041	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0041	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0041	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-34-5	1,1,2,2-		0.0041	mg/kg	No		N
07 NR-DS-SEDV-	Downstream Naugatuck River -	2014/10/15		SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-61-6	Tetrachloroethane 1,2,3-Trichlorobenzene		0.0041	mg/kg	No		N
07	Downstream			1 20	20200		٠.۶			2. 0. 0	,=,= 1110.110.0001120110		2.0011				

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0082	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0041	mg/kg	No	N
NR-DS-SEDV- 07	Naugatuck River - Downstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0041	mg/kg	No	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	70.2		%	Yes	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0046	mg/kg	No	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-42-5	Styrene		0.0046	mg/kg	No	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0046	mg/kg	No	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0046	mg/kg	No	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0046	mg/kg	No	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0046	mg/kg	No	N
NR-DS-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0046	mg/kg	No	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0046	mg/kg	No	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0046	mg/kg	No	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0046	mg/kg	No	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0046	mg/kg	No	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.046	mg/kg	No	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0046	mg/kg	No	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0046	mg/kg	No	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0046	mg/kg	No	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0046	mg/kg	No	N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-88-3	Toluene		0.0046	mg/kg	No	N

			_	_		_	-			-	-		-			-	
Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0092	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.023	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.0921	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0092	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	64-17-5	Ethanol		1.84	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-64-1	Acetone		0.046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-66-3	Chloroform		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-43-2	Benzene		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0092	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0092	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0046	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0092	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0092	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0092	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-25-2	Bromoform		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.046	mg/kg	No		N
NR-DS-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0046	mg/kg	No		N
NR-DS-SEDV-	Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan		0.0092	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	76-13-1	e 1,1,2-Trichloro-1,2,2-		0.0046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-87-5	trifluoroethane 1,2-Dichloropropane		0.0046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-93-3	2-Butanone		0.046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-34-5	1,1,2,2-		0.0046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-61-6	Tetrachloroethane 1,2,3-Trichlorobenzene		0.0046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-63-6	1,2,4-		0.0046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-12-8	Trimethylbenzene 1,2-Dibromo-3-		0.0092	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-18-4	chloropropane 1,2,3-Trichloropropane		0.0046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0046	mg/kg	No		N
08 NR-DS-SEDV-	Upstream Naugatuck River -	2014/10/15		SPECTRUM	SW8260	2014/10/21	Dry	SW5035	voc	99-07-0	Tertiary-amyl methyl		0.0046	mg/kg	No		N
80	Upstream	2014/10/13	Sediment	OF LOTROW	3440200	201 4 /10/21	ыу	3443033	VOC	334-00-0	ether		0.0040	mg/kg	INU		14

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N

		_	1			•				•	_					•	
Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
NR-DS-SWV- 01	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	10061-02-6	trans-1 3-		0.0005	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?		Sampl e Type
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
NR-DS-SWV-	Naugatuck River - Downstream Naugatuck River -	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
NR-DS-SWV- 02 NR-DS-SWV-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Surface Water Surface	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
02 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
02 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
02 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
02 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	75-69-4	Trichlorofluoromethane Dichlorodifluoromethan		0.001	mg/L	No		N
02 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	75-71-8	e 1,1,2-Trichloro-1,2,2-		0.002	mg/L	No		N
02 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	76-13-1	trifluoroethane		0.001	mg/L	No		N
02 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM SPECTRUM	SW8260	2014/10/18		SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
02 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260 SW8260	2014/10/18		SW5030 SW5030	VOC	78-93-3 79-00-5	2-Butanone 1,1,2-Trichloroethane		0.01	mg/L mg/L	No No		N N
02 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	79-00-5	Trichloroethene		0.001	mg/L	No		N
02 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	79-34-5	1,1,2,2-		0.0005	mg/L	No		N
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	87-61-6	Tetrachloroethane 1,2,3-Trichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
02 NR-DS-SWV- 02	Downstream Naugatuck River - Downstream	2014/10/14	Water Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene	1	0.001	mg/L	No	1	N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No	N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No	N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No	N
NR-DS-SWV- 02	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No	N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No	N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No	N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No	N
NR-DS-SWV- 03 NR-DS-SWV-	Naugatuck River - Downstream Naugatuck River -	2014/10/14	Surface Water Surface	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No	N
03 NR-DS-SWV-	Downstream Naugatuck River - Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No	N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No	N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No	N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No	N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No	N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No	N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM SPECTRUM	SW8260	2014/10/18		SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No	N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260 SW8260	2014/10/18		SW5030 SW5030	VOC	108-10-1	4-Methyl-2-pentanone ISOPROPYL ETHER		0.01	mg/L	No No	N N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	voc	108-20-3	1,3,5-		0.001	mg/L mg/L	No	N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	108-70-3	Trimethylbenzene 1,3,5-Trichlorobenzene		0.001	mg/L	No	N
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No	N
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No	N
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No	N
03 NR-DS-SWV- 03	Downstream Naugatuck River - Downstream	2014/10/14	Water Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No	N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No	N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No	N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No	N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No	N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No	N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No	N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
NR-DS-SWV- 03	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 03 NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
03 NR-DS-SWV-	Naugatuck River - Downstream Naugatuck River -	2014/10/14	Surface Water Surface	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	95-63-6	Trimethylbenzene 1,2-Dibromo-3-		0.001	mg/L	No		N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	96-12-8	chloropropane		0.002	mg/L	No		N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM SPECTRUM	SW8260	2014/10/18		SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260 SW8260	2014/10/18	Wet	SW5030 SW5030	VOC	98-06-6 98-82-8	tert-Butylbenzene		0.001	mg/L	No No		N N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	99-87-6	Isopropylbenzene 4-Isopropyltoluene		0.001	mg/L	No		N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	994-05-8	Tertiary-amyl methyl		0.001	mg/L mg/L	No		N
03 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	100-41-4	ether Ethylbenzene		0.001	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	10061-01-5	cis-1,3-		0.0005	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	10061-02-6	Dichloropropene trans-1,3-		0.0005	mg/L	No		N
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	103-65-1	Dichloropropene n-Propylbenzene		0.001	mg/L	No		N
04 NR-DS-SWV- 04	Downstream Naugatuck River - Downstream	2014/10/14	Water Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No	1	N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
NR-DS-SWV-	Naugatuck River -	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2-		0.005	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	120-82-1	butene 1,2,4-Trichlorobenzene		0.001	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM		2014/10/18		SW5030	VOC	156-60-5	trans-1,2-		0.001	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	1634-04-4	Dichloroethene Methyl tert-butyl ether		0.001	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001		No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC					mg/L			N
04 NR-DS-SWV-	Downstream Naugatuck River -		Water Surface							591-78-6	2-Hexanone		0.01	mg/L	No		
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	60-29-7	Diethyl ether 1,1,1,2-		0.001	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	630-20-6	Tetrachloroethane Ethyl tertiary-butyl		0.001	mg/L	No		N
04 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/18		SW5030	VOC	637-92-3	ether		0.001	mg/L	No		N
04	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
NR-DS-SWV- 04	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
NR-DS-SWV- 05	Naugatuck River - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/18	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	Dichloropropene		0.0005	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No	N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No	N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No	N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No	N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No	N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No	N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No	N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No	N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No	N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No	N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No	N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No	N
NR-DS-SWV- 06 NR-DS-SWV-	Naugatuck River - Downstream Naugatuck River -	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No	N
06 NR-DS-SWV-	Downstream	2014/10/15	Surface Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran trans-1,4-Dichloro-2-		0.002	mg/L	No	N
06 NR-DS-SWV-	Naugatuck River - Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	butene		0.005	mg/L	No	N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No	N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No	N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No	N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No	N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No	N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No	N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No	N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	156-59-2	cis-1,2-Dichloroethene trans-1,2-		0.001	mg/L	No	N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	156-60-5	Dichloroethene		0.001	mg/L	No	N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No	N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No	N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No	N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM SPECTRUM	SW8260 SW8260	2014/10/17		SW5030 SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No No	N N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water	SPECTRUM						591-78-6	2-Hexanone			mg/L		
06	Downstream	2014/10/15	Water	SPECIKUM	SW8260	2014/10/17	vvet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No	N

	-	T.	1	ı	Ī	ı	, <u> </u>		ı	ı	T	Ī	.,			1	
Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
NR-DS-SWV- 06	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 06 NR-DS-SWV-	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene 1,2-Dibromo-3-		0.001	mg/L	No		N
06 NR-DS-SWV-	Naugatuck River - Downstream Naugatuck River -	2014/10/15	Surface Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	chloropropane		0.002	mg/L	No		N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene Tertiary-amyl methyl		0.001	mg/L	No		N
06 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260 SW8260	2014/10/17	Wet Wet	SW5030 SW5030	VOC	994-05-8	ether Ethylbenzene		0.001	mg/L mg/L	No No		N N
07 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Styrene		0.001	mg/L	No		N
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3-		0.0005	mg/L	No		N
07 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	Dichloropropene trans-1,3-		0.0005	mg/L	No		N
07 NR-DS-SWV- 07	Downstream Naugatuck River - Downstream	2014/10/15	Water Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	Dichloropropene n-Propylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
NR-DS-SWV- 07 NR-DS-SWV-	Naugatuck River - Downstream Naugatuck River -	2014/10/15	Surface Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	108-20-3	ISOPROPYL ETHER 1,3,5-		0.001	mg/L	No		N
07 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	108-67-8	Trimethylbenzene		0.001	mg/L	No		N
07 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
07 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
07 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
07	Downstream	2014/10/15	Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
NR-DS-SWV- 07 NR-DS-SWV-	Naugatuck River - Downstream Naugatuck River -	2014/10/15	Surface Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
07 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
07 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
07 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene trans-1,2-		0.001	mg/L	No		N
07 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	Dichloroethene		0.001	mg/L	No		N
07 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
07 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM SPECTRUM	SW8260 SW8260	2014/10/17	Wet Wet	SW5030 SW5030	VOC	541-73-1 56-23-5	1,3-Dichlorobenzene Carbon tetrachloride		0.001	mg/L mg/L	No No		N N
07 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
07 NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.001	mg/L	No		N
NR-DS-SWV-	Downstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
07 NR-DS-SWV- 07	Downstream Naugatuck River - Downstream	2014/10/15	Water Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
NR-DS-SWV-	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
NR-DS-SWV- 07 NR-DS-SWV-	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
07	Naugatuck River - Downstream Naugatuck River -	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No	N
NR-DS-SWV- 07	Naugatuck River - Downstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No	N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No	N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No	N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No	N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No	N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No	N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No	N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No	N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No	N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No	N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No	N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No	N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No	N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No	N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No	N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No	N
NR-DS-SWV- 08	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No	N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	65.1		%	Yes	N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	0.28		%	Yes	N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	0.28		%	Yes	N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE		Fractional % Sieve #4 (>4750µm)	29.2		%	Yes	N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	1.73		%	Yes	N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	13.2		%	Yes	N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING			%	No	N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	50.6		%	Yes	N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/23	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	4.81		%	Yes	N
NR-US-SED-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/24	Wet	A412B	TOC	TOC	Total Organic Carbon	6960		mg/kg	Yes	N
NR-US-SED-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	10500		mg/kg	Yes	N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	18.1		mg/kg	Yes	N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	208		mg/kg	Yes	N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	12.9		mg/kg	Yes	N

		1	Г			Г	1		1	Г	T			1			
Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	129		mg/kg	Yes		N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		2.04	mg/kg	No		N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	47.6		mg/kg	Yes		N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.679	mg/kg	No		N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	19.2		mg/kg	Yes		N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	53.3		mg/kg	Yes		N
NR-US-SED- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	135		mg/kg	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	69.2		%	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	1.1		%	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	3.7		%	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	0.5		%	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	8		%	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	40.4		%	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	12.5		%	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	32.5		%	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	1.3		%	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/24	Wet	A412B	TOC	TOC	Total Organic Carbon	3070		mg/kg	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	6380		mg/kg	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	9.16		mg/kg	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	140		mg/kg	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	6.11		mg/kg	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	73.5		mg/kg	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		2.01	mg/kg	No		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	23.5		mg/kg	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.67	mg/kg	No		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	11.1		mg/kg	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	22.4		mg/kg	Yes		N
NR-US-SED- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	51.1		mg/kg	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	75.6		%	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	0.1		%	Yes		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	1		%	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	0.9		%	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	21.3		%	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	51		%	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	0.2		%	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	24		%	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	1.4		%	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/24	Wet	A412B	TOC	TOC	Total Organic Carbon	378		mg/kg	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	5860		mg/kg	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	7.8		mg/kg	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	85.1		mg/kg	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	6.53		mg/kg	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	63.4		mg/kg	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.77	mg/kg	No		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	19.9		mg/kg	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.591	mg/kg	No		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	14		mg/kg	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	16.5		mg/kg	Yes		N
NR-US-SED- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	55.2		mg/kg	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	70.4		%	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	0.3		%	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	0.4		%	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	0.2		%	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	8.1		%	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	45.7		%	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	0.9		%	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	43		%	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	1.4		%	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/24	Wet	A412B	тос	TOC	Total Organic Carbon	1960		mg/kg	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	6620		mg/kg	Yes		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	7.9		mg/kg	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	81.7		mg/kg	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	7.23		mg/kg	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	82.9		mg/kg	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.89	mg/kg	No		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	24.4		mg/kg	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.629	mg/kg	No		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	9.97		mg/kg	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	19.9		mg/kg	Yes		N
NR-US-SED- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	54.2		mg/kg	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	71.2		%	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	0.1		%	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	0.1		%	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	0.1		%	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	2.6		%	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	33.2		%	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	3.2		%	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	58.3		%	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	2.4		%	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/24	Wet	A412B	TOC	TOC	Total Organic Carbon	2620		mg/kg	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	7040		mg/kg	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	14.1		mg/kg	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	112		mg/kg	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	7.56		mg/kg	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	83.4		mg/kg	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.99	mg/kg	No		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	27.4		mg/kg	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.663	mg/kg	No		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	13.2		mg/kg	Yes		N
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	20.8		mg/kg	Yes		N

	•	1	ı	1		ı		1	1	T	T			1		1	
Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SED- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	60.7		mg/kg	Yes		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	71.8		%	Yes		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	5.2		%	Yes		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	23.5		%	Yes		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	0		%	Yes		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	23.7		%	Yes		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	24.1		%	Yes		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	0.1		%	Yes		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	20.1		%	Yes		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	3.2		%	Yes		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/24	Wet	A412B	TOC	TOC	Total Organic Carbon	5280		mg/kg	Yes		N
NR-US-SED-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	7080		mg/kg	Yes		N
NR-US-SED-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	14.5		mg/kg	Yes		N
NR-US-SED-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	236		mg/kg	Yes		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	8.68		mg/kg	Yes		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	73.7		mg/kg	Yes		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		2.01	mg/kg	No		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	27		mg/kg	Yes		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.67	mg/kg	No		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	11.3		mg/kg	Yes		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	19.8		mg/kg	Yes		N
NR-US-SED- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	61.7		mg/kg	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	76.2		%	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	7.1		%	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	48.5		%	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	1.1		%	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	29.5		%	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	8.6		%	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	0.2		%	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	4.5		%	Yes		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.6		%	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/24	Wet	A412B	TOC	TOC	Total Organic Carbon	2870		mg/kg	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	7210		mg/kg	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	12.5		mg/kg	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	113		mg/kg	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	6.08		mg/kg	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	88.8		mg/kg	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.76	mg/kg	No		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	19.3		mg/kg	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.586	mg/kg	No		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	9.3		mg/kg	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	16.9		mg/kg	Yes		N
NR-US-SED- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	41.6		mg/kg	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	77.2		%	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	9.2		%	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	45		%	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	0.6		%	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	36.9		%	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	6.7		%	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	0.7		%	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	0.9		%	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	D422	2014/10/24	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.1		%	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	LLOYDKAH N	2014/10/24	Wet	A412B	TOC	TOC	Total Organic Carbon	260		mg/kg	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	8080		mg/kg	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	6.06		mg/kg	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	219		mg/kg	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	8.32		mg/kg	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	55.3		mg/kg	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.8	mg/kg	No		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	18.6		mg/kg	Yes		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.599	mg/kg	No		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	10.1		mg/kg	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	20.8		mg/kg	Yes		N
NR-US-SED- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	47.6		mg/kg	Yes		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	65.1		%	Yes		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-42-5	Styrene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0743	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-88-3	Toluene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0149	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0371	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.149	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0149	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0743	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0074	mg/kg	No		N
NR-US-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	64-17-5	Ethanol		2.97	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-64-1	Acetone		0.0743	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-66-3	Chloroform		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-43-2	Benzene		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0149	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0149	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0149	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0149	mg/kg	No		N
NR-US-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0149	mg/kg	No		N
01 NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-25-2	Bromoform		0.0074	mg/kg	No		N
NR-US-SEDV- 01	Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0074	mg/kg	No		N
NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0074	mg/kg	No		N
01 NR-US-SEDV- 01	Upstream Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0074	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0743	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0149	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0743	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0149	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0074	mg/kg	No	N
NR-US-SEDV- 01	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0074	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	69.2		%	Yes	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-42-5	Styrene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-01-5	Dichioropropene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0052	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-88-3	Toluene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0104	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.026	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.104	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0104	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0052	mg/kg	No	N

	•		1	•		1			•	1	T					1	
Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	64-17-5	Ethanol		2.08	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-64-1	Acetone		0.052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-66-3	Chloroform		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-43-2	Benzene		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0104	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0104	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0104	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0104	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0104	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-25-2	Bromoform		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0104	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-93-3	2-Butanone		0.052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0052	mg/kg	No		N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0052	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0104	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0052	mg/kg	No	N
NR-US-SEDV- 02	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0052	mg/kg	No	N
NR-US-SEDV- 02 NR-US-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0052	mg/kg	No	N
02 NR-US-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC TOTAL	994-05-8	Tertiary-amyl methyl ether		0.0052	mg/kg	No	N
03 NR-US-SEDV-	Naugatuck River - Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	SOLIDS	Per Solids	Percent Solids	75.6		%	Yes	N
03 NR-US-SEDV-	Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0048	mg/kg	No	N
03 NR-US-SEDV-	Naugatuck River - Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-42-5	Styrene cis-1,3-		0.0048	mg/kg	No	N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-01-5	Dichloropropene trans-1,3-		0.0048	mg/kg	No	N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-02-6	Dichloropropene		0.0048	mg/kg	No	N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0048	mg/kg	No	N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0048	mg/kg	No	N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0048	mg/kg	No	N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0048	mg/kg	No	N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15		SPECTRUM	SW8260	2014/10/21		SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0048	mg/kg	No	N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0048	mg/kg	No	N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0048	mg/kg	No	N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0478	mg/kg	No	N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER 1,3,5-		0.0048	mg/kg	No	N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-67-8	Trimethylbenzene		0.0048	mg/kg	No	N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0048	mg/kg	No	N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0048	mg/kg	No	N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-88-3	Toluene		0.0048	mg/kg	No	N
03 NR-US-SEDV-	Upstream Naugatuck River - Naugatuck River -	2014/10/15		SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0048	mg/kg	No	N
03	Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0096	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0239	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.0957	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0096	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0478	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	64-17-5	Ethanol		1.91	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-64-1	Acetone		0.0478	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-66-3	Chloroform		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-43-2	Benzene		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0096	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0096	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0048	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0096	mg/kg	No	N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0048	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0096	mg/kg	No		N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0096	mg/kg	No		N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-25-2	Bromoform		0.0048	mg/kg	No		N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0048	mg/kg	No		N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0048	mg/kg	No		N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0048	mg/kg	No		N
NR-US-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0478	mg/kg	No		N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0048	mg/kg	No		N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0096	mg/kg	No		N
NR-US-SEDV- 03 NR-US-SEDV-	Naugatuck River - Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0048	mg/kg	No		N
03 NR-US-SEDV-	Upstream Naugatuck River - Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0048	mg/kg	No		N
03 NR-US-SEDV-	Upstream Naugatuck River - Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21		SW5035	VOC	78-93-3	2-Butanone		0.0478	mg/kg	No		N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21		SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0048	mg/kg	No		N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21		SW5035	VOC	79-01-6	Trichloroethene 1,1,2,2-		0.0048	mg/kg	No		N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	-	SW5035	VOC	79-34-5	Tetrachloroethane		0.0048	mg/kg	No		N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21		SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0048	mg/kg	No		N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21		SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0048	mg/kg	No		N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21		SW5035	VOC	91-20-3	Naphthalene		0.0048	mg/kg	No		N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	_	SW5035	VOC	95-47-6	o-Xylene		0.0048	mg/kg	No		N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15		SPECTRUM SPECTRUM	SW8260 SW8260	2014/10/21		SW5035 SW5035	VOC	95-49-8 95-50-1	2-Chlorotoluene 1,2-Dichlorobenzene		0.0048	mg/kg mg/kg	No No		N N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15		SPECTRUM	SW8260	2014/10/21		SW5035	VOC	95-63-6	1,2,4-		0.0048	mg/kg	No		N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15		SPECTRUM	SW8260	2014/10/21		SW5035	VOC	96-12-8	Trimethylbenzene 1,2-Dibromo-3-		0.0096	mg/kg	No		N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15		SPECTRUM	SW8260	2014/10/21		SW5035	VOC	96-18-4	chloropropane 1,2,3-Trichloropropane		0.0048	mg/kg	No		N
03 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15		SPECTRUM	SW8260	2014/10/21		SW5035	VOC	98-06-6	tert-Butylbenzene		0.0048	mg/kg	No		N
03 NR-US-SEDV-	Upstream Naugatuck River - Upstream	2014/10/15		SPECTRUM	SW8260	2014/10/21		SW5035	VOC	98-82-8	Isopropylbenzene		0.0048	mg/kg	No		N
03 NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0048	mg/kg	No		N
NR-US-SEDV- 03	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0048	mg/kg	No		N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	70.4		%	Yes		N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0053	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-42-5	Styrene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0533	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-88-3	Toluene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0107	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0266	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.107	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0107	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0053	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0533	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	64-17-5	Ethanol		2.13	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-64-1	Acetone		0.0533	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-66-3	Chloroform		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-43-2	Benzene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0053	mg/kg	No	N
NR-US-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0107	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0107	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0107	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0107	mg/kg	No	N
NR-US-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0107	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-25-2	Bromoform		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0053	mg/kg	No	N
NR-US-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0533	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0107	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0533	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0107	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0053	mg/kg	No	N
NR-US-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0053	mg/kg	No	N
NR-US-SEDV- 04	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0053	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	71.2		%	Yes	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-42-5	Styrene		0.0056	mg/kg	No	N
NR-US-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-01-5	Dichloropropene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0565	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0056	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-88-3	Toluene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0113	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0282	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.113	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0113	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0565	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	64-17-5	Ethanol		2.26	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-64-1	Acetone		0.0565	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-66-3	Chloroform		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-43-2	Benzene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0056	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0113	mg/kg	No		N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0113	mg/kg	No		N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0056	mg/kg	No		N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0056	mg/kg	No		N
NR-US-SEDV-	Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0113	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0113	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0113	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-25-2	Bromoform		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0565	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan		0.0113	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	76-13-1	e 1,1,2-Trichloro-1,2,2-		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-87-5	trifluoroethane 1,2-Dichloropropane		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0565	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15			SW8260	2014/10/21	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-34-5	1,1,2,2-		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-61-6	Tetrachloroethane 1,2,3-Trichlorobenzene		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	+		SPECTRUM					VOC								
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment		SW8260	2014/10/21	Dry	SW5035		91-20-3	Naphthalene		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15		SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0056	mg/kg	No		N
05 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-63-6	Trimethylbenzene 1,2-Dibromo-3-		0.0056	mg/kg	No		N
05	Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-12-8	chloropropane		0.0113	mg/kg	No		N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0056	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0056	mg/kg	No	N
NR-US-SEDV- 05	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0056	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	71.8		%	Yes	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-42-5	Styrene		0.0051	mg/kg	No	N
NR-US-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0051	mg/kg	No	N
NR-US-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0505	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0051	mg/kg	No	N
NR-US-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-88-3	Toluene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0051	mg/kg	No	N
NR-US-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0101	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0253	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.101	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0101	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0505	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	64-17-5	Ethanol		2.02	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-64-1	Acetone		0.0505	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-66-3	Chloroform		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-43-2	Benzene		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0101	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0101	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0101	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0101	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0101	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-25-2	Bromoform		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0051	mg/kg	No	N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0051	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0505	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0101	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0505	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0101	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0051	mg/kg	No		N
NR-US-SEDV- 06	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0051	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	76.2		%	Yes		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-42-5	Styrene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-01-5	Dichloropropene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0041	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0411	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-88-3	Toluene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0082	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0206	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.0822	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0082	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0411	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0041	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	64-17-5	Ethanol		1.64	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-64-1	Acetone		0.0411	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-66-3	Chloroform		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-43-2	Benzene		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0082	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0082	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0082	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0082	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0082	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-25-2	Bromoform		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0411	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0082	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0411	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0041	mg/kg	No	N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0041	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0041	mg/kg	No		N
NR-US-SEDV- 07	Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3-		0.0082	mg/kg	No		N
NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-18-4	chloropropane 1,2,3-Trichloropropane		0.0041	mg/kg	No		N
07 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0041	mg/kg	No		N
07 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0041	mg/kg	No		N
07 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0041	mg/kg	No		N
07 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl		0.0041	mg/kg	No		N
07 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL	Per Solids	ether Percent Solids	77.2		%	Yes		N
08 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	SOLIDS VOC	100-41-4	Ethylbenzene		0.0039	mg/kg	No		N
08 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	100-42-5	Styrene		0.0039	mg/kg	No		N
08 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-01-5	cis-1,3-		0.0039	mg/kg	No		N
08 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	10061-02-6	Dichloropropene trans-1,3-		0.0039	mg/kg	No		N
08 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	103-65-1	Dichloropropene n-Propylbenzene		0.0039	mg/kg	No		N
08 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0039	mg/kg	No		N
08 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0039	mg/kg	No		N
08 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0039	mg/kg	No		N
08 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15		SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0039		No		N
08 NR-US-SEDV-	Upstream Naugatuck River -													mg/kg			
08 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0039	mg/kg	No		N
08 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0039	mg/kg	No		N
08 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0391	mg/kg	No		N
08 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER 1,3,5-		0.0039	mg/kg	No		N
08 NR-US-SEDV-	Upstream Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-67-8	Trimethylbenzene		0.0039	mg/kg	No		N
08 NR-US-SEDV-	Upstream Naugatuck River - Naugatuck River -	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0039	mg/kg	No		N
08	Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0039	mg/kg	No		N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-88-3	Toluene		0.0039	mg/kg	No		N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0039	mg/kg	No		N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0078	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0196	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.0782	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0078	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0391	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	64-17-5	Ethanol		1.56	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-64-1	Acetone		0.0391	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	67-66-3	Chloroform		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-43-2	Benzene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0078	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0078	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0039	mg/kg	No	 N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0039	mg/kg	No	 N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0078	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0039	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0078	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0078	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-25-2	Bromoform		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0039	mg/kg	No	N
NR-US-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0391	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0039	mg/kg	No	N
NR-US-SEDV- 08 NR-US-SEDV-	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e 1,1,2-Trichloro-1,2,2-		0.0078	mg/kg	No	N
08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	76-13-1	trifluoroethane		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0391	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0078	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0039	mg/kg	No	N
NR-US-SEDV- 08	Naugatuck River - Upstream	2014/10/15	Sediment	SPECTRUM	SW8260	2014/10/21	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0039	mg/kg	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5-		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	Trimethylbenzene 1,3,5-Trichlorobenzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River -	2014/10/15	Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
01 NR-US-SWV- 01	Upstream Naugatuck River - Upstream	2014/10/15	Water Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No	N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	· ·	Sampl e Type
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
NR-US-SWV- 01	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No	N
NR-US-SWV- 02	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No	N
NR-US-SWV- 03	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No	N
NR-US-SWV- 03 NR-US-SWV-	Naugatuck River - Upstream Naugatuck River -	2014/10/15	Surface Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No	N
03 NR-US-SWV-	Upstream Naugatuck River - Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No	N
03 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No	N
03 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No	N
03 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No	N
03 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No	N
03 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No	N
03 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No	N
03 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No	N
03 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	Trimethylbenzene		0.001	mg/L	No	N
03 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260 SW8260	2014/10/17	Wet Wet	SW5030 SW5030	VOC	108-70-3 108-86-1	1,3,5-Trichlorobenzene Bromobenzene		0.001	mg/L mg/L	No No	N N
03 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No	N
03 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No	N
03 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No	N
03 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	110-57-6	trans-1,4-Dichloro-2-		0.005	mg/L	No	N
03 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	butene 1,2,4-Trichlorobenzene		0.001	mg/L	No	N
03 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No	N
03 NR-US-SWV- 03	Upstream Naugatuck River - Upstream	2014/10/15	Water Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No	N
NR-US-SWV- 03	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SWV- 03	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SWV- 03	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
NR-US-SWV- 03	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
NR-US-SWV- 03	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
NR-US-SWV- 03	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
NR-US-SWV- 03	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No	N
NR-US-SWV- 04 NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No	N
04 NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No	N
04 NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No	N
04 NR-US-SWV-	Naugatuck River - Upstream Naugatuck River -	2014/10/15	Surface Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane Dichlorodifluoromethan		0.001	mg/L	No	N
04 NR-US-SWV-	Upstream Naugatuck River - Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	e 1,1,2-Trichloro-1,2,2-		0.002	mg/L	No	N
04 NR-US-SWV-	Upstream Naugatuck River - Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	trifluoroethane		0.001	mg/L	No	N
04 NR-US-SWV-	Upstream Naugatuck River - Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No	N
04 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No	N
04 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No	N
04 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	79-01-6	Trichloroethene 1,1,2,2-		0.001	mg/L	No	N
04 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	79-34-5	Tetrachloroethane		0.0005	mg/L	No	N
04 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No	N
04 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No	N
04 NR-US-SWV-	Upstream Naugatuck River - Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No	N
04 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No	N
04 NR-US-SWV-	Upstream Naugatuck River - Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No	N
04 NR-US-SWV-	Upstream Naugatuck River - Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No	N
04	Upstream	2014/10/15	Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	Trimethylbenzene		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No	N
NR-US-SWV- 04	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No	 N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No	N
NR-US-SWV- 05 NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No	N
05	Naugatuck River - Upstream	2014/10/15	Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No	N
NR-US-SWV- 05 NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No	N
05 NR-US-SWV-	Naugatuck River - Upstream Naugatuck River -	2014/10/15	Surface Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No	N
05 NR-US-SWV-	Upstream Naugatuck River - Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No	N
05 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No	N
05 NR-US-SWV-	Upstream Naugatuck River - Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No	N
05 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No	N
05 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No	N
05 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No	N
05 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No	N
05 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No	N
05 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No	N
05 NR-US-SWV-	Upstream Naugatuck River - Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No	N
05 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No	N
05 NR-US-SWV-	Upstream Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No	N
05 NR-US-SWV-	Upstream Naugatuck River - Naugatuck River -	2014/10/15	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No	N
05	Upstream	2014/10/15	Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No	N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No	N
NR-US-SWV- 05	Naugatuck River - Upstream Naugatuck River -	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No	N
NR-US-SWV-	Upstream Naugatuck River - Naugatuck River -	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No	N
NR-US-SWV- 06	Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No	N
NR-US-SWV- 06 NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	10061-01-5	Dicnioropropene		0.0005	mg/L	No	N
06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No	N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No	N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No	N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	· ·	Sampl e Type
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	· ·	Sampl e Type
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N

			1			1				1						T	
Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?		Sampl e Type
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
NR-US-SWV- 06	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1 3-		0.0005	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		Z
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		Z
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	· ·	Sampl e Type
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
NR-US-SWV- 07	Naugatuck River - Upstream	2014/10/15	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	· ·	Sampl e Type
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N

Sample ID	Location	Sample	Matrix	Lab Name	Analytical	Analysis	Basi	Prep	Parameter	CAS RN	Parameter	Detected	Non- Detected	Units	Detected	Qualifier	Sampl
_		Date		Lab Name	Method	Date	s	Method	Group	OAO KK		Result	Result	Onits	?	s	е Туре
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
NR-US-SWV-	Naugatuck River -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
08 NR-US-SWV-	Upstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM		2014/10/17		SW5030	VOC	95-47-6	·				No		N
08 NR-US-SWV-	Upstream Naugatuck River -	1	Water Surface		SW8260						o-Xylene		0.001	mg/L			1
80	Upstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
NR-US-SWV- 08	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
NR-US-SWV-	Naugatuck River - Upstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
08 NR-US-SWV-	Naugatuck River -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/17	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
08 NR-US-SWV-	Upstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17		SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
08 NR-US-SWV-	Upstream Naugatuck River -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/17			VOC	994-05-8	Tertiary-amyl methyl		0.001		No		N
08 BB-DS-SED-	Upstream Branch Brook -	+	Water					SW5030	TOTAL		ether		0.001	mg/L			
01	Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/15	Wet	A412B	SOLIDS	Per Solids	Percent Solids	70.1		%	Yes		N
BB-DS-SED- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	3.36		%	Yes		N
BB-DS-SED- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	14		%	Yes		N
BB-DS-SED- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	5.43		%	Yes		N
BB-DS-SED- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	33.9		%	Yes		N
BB-DS-SED- 01	Branch Brook -	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	31.7		%	Yes		N
BB-DS-SED-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100,	7.58		%	Yes		N
01 BB-DS-SED-	Downstream Branch Brook -	2014/10/14		SPECTRUM	D422	2014/10/21		A412B	GRAIN SIZE	SIEVE200	PERCENT PASSING SIEVE NO. 200,	3.81		%	Yes		N
01 BB-DS-SED-	Downstream Branch Brook -			SPECTRUM							PERCENT PASSING SIEVE NO. 230,			%			
01 BB-DS-SED-	Downstream Branch Brook -	2014/10/14			D422 LLOYDKAH	2014/10/21		A412B	GRAIN SIZE	SIEVE230	PERCENT PASSING	0.277			Yes		N
01 BB-DS-SED-	Downstream Branch Brook -	2014/10/14		SPECTRUM	N	2014/10/21		A412B	TOC METALS -	TOC	Total Organic Carbon	498		mg/kg	Yes		N
01	Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	ICP AES	7439-92-1	Lead	3.57		mg/kg	Yes		N
BB-DS-SED- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	216		mg/kg	Yes		N
BB-DS-SED- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	9.12		mg/kg	Yes		N
BB-DS-SED- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	75.2		mg/kg	Yes		N
BB-DS-SED-	Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS -	7440-38-2	Arsenic		1.9	mg/kg	No		N
01 BB-DS-SED-	Downstream Branch Brook -	2014/10/14		SPECTRUM	SW6010	2014/10/23		SW3050B	ICP AES METALS -	7440-43-9	Cadmium		0.632	mg/kg	No		N
01	Downstream	2014/10/14	Sediment	OF LOTROW	300010	2014/10/23	ыу	34430300	ICP AES	7440-43-8	Cauilliulli		0.032	mg/kg	INO		14

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SED- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	7.31	Nesun	mg/kg	Yes		N
BB-DS-SED- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	7.78		mg/kg	Yes		N
BB-DS-SED- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	30		mg/kg	Yes		N
BB-DS-SED- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	9050		mg/kg	Yes		N
BB-DS-SED- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	24.8		mg/kg	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/15	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	72.2		%	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	13.6		%	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	16.3		%	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	35.8		%	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	16.6		%	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	12.7		%	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	0.171		%	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	4.56		%	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.313		%	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	LLOYDKAH N	2014/10/21	Wet	A412B	тос	TOC	Total Organic Carbon	540		mg/kg	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	4.1		mg/kg	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	199		mg/kg	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	9.67		mg/kg	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	80.6		mg/kg	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.99	mg/kg	No		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.662	mg/kg	No		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	8.52		mg/kg	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	8.66		mg/kg	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	28.3		mg/kg	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	9590		mg/kg	Yes		N
BB-DS-SED- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	30.3		mg/kg	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/15	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	74.4		%	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	11.8		%	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	14.3		%	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	13.9		%	Yes		N

Commis ID	Location	Sample	Madrice	Lab Nama	Analytical	Analysis	Basi	Prep	Parameter	CACDN	Barrantan	Detected	Non-	l luita	Detected	Qualifier	Sampl
Sample ID	Location	Date	Matrix	Lab Name	Method	Date	s	Method	Group	CAS RN	Parameter	Result	Detected Result	Units	?	s	e Type
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	23.8		%	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	28		%	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	6.65		%	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	1.27		%	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.246		%	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	LLOYDKAH N	2014/10/21	Wet	A412B	TOC	TOC	Total Organic Carbon	841		mg/kg	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	2.89		mg/kg	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	124		mg/kg	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	8.14		mg/kg	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	64.7		mg/kg	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.97	mg/kg	No		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.658	mg/kg	No		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	6.21		mg/kg	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	6.06		mg/kg	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	23.6		mg/kg	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	7790		mg/kg	Yes		N
BB-DS-SED- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	23		mg/kg	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	63.3		%	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	1.71		%	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	2.05		%	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	2.39		%	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	19.1		%	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	53.6		%	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	14.4		%	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	6.02		%	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.684		%	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	LLOYDKAH N	2014/10/21	Wet	A412B	TOC	TOC	Total Organic Carbon	2830		mg/kg	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	8.09		mg/kg	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	153		mg/kg	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	9.76		mg/kg	Yes		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	96.6		mg/kg	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		2.33	mg/kg	No		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.775	mg/kg	No		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	9.45		mg/kg	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	9.29		mg/kg	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	37.2		mg/kg	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	8810		mg/kg	Yes		N
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	28.5		mg/kg	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	76.1		%	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	7.84		%	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	15.6		%	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	5.79		%	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	21.5		%	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	17.9		%	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	9.54		%	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	16.4		%	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	5.45		%	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	LLOYDKAH N	2014/10/21	Wet	A412B	TOC	TOC	Total Organic Carbon	1530		mg/kg	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	2.77		mg/kg	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	190		mg/kg	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	7.71		mg/kg	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	78.7		mg/kg	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		1.87	mg/kg	No		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.622	mg/kg	No		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	8.95		mg/kg	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	6.42		mg/kg	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/23	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	27.8		mg/kg	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	9620		mg/kg	Yes		N
BB-DS-SED- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	29.5		mg/kg	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	70.3		%	Yes		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	1.2		%	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	5.18		%	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	0.414		%	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	26.3		%	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	44.5		%	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	2.03		%	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	18.7		%	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	1.66		%	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	LLOYDKAH N	2014/10/21	Wet	A412B	TOC	TOC	Total Organic Carbon	1120		mg/kg	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	4.19		mg/kg	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	159		mg/kg	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	9.94		mg/kg	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	78.4		mg/kg	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		2	mg/kg	No		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.667	mg/kg	No		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	8.4		mg/kg	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	9.38		mg/kg	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	34.8		mg/kg	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	9670		mg/kg	Yes		N
BB-DS-SED- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	32.4		mg/kg	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	69.5		%	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	8.97		%	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	24.4		%	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	14.5		%	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	30.5		%	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	15.7		%	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	2.95		%	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	2.3		%	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.727		%	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	LLOYDKAH N	2014/10/21	Wet	A412B	TOC	TOC	Total Organic Carbon	2850		mg/kg	Yes		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	5.56		mg/kg	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	246		mg/kg	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	12		mg/kg	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	76.2		mg/kg	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		2.02	mg/kg	No		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.675	mg/kg	No		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	7.84		mg/kg	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	10.3		mg/kg	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	37.5		mg/kg	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	10400		mg/kg	Yes		N
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	28.7		mg/kg	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	67.4		%	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	1.2		%	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	6.77		%	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	1.2		%	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	27.9		%	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	44.3		%	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	0.287		%	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	17.6		%	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.803		%	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	LLOYDKAH N	2014/10/21	Wet	A412B	TOC	TOC	Total Organic Carbon	828		mg/kg	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	5.97		mg/kg	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	93.6		mg/kg	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	9.14		mg/kg	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	79.7		mg/kg	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		2.11	mg/kg	No		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.702	mg/kg	No		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	8.15		mg/kg	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	9.09		mg/kg	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	34.7		mg/kg	Yes		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	8390		mg/kg	Yes		N
BB-DS-SED- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	33.3		mg/kg	Yes		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/15	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	70.1		%	Yes		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-42-5	Styrene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0521	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-88-3	Toluene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0104	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0261	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.104	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0104	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0052	mg/kg	No		N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0052	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0521	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0052	mg/kg	No	N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	64-17-5	Ethanol		2.09	mg/kg	No	N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-64-1	Acetone		0.0521	mg/kg	No	N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-66-3	Chloroform		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-43-2	Benzene		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0052	mg/kg	No	N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0104	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0104	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0104	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0104	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0104	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-25-2	Bromoform		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0052	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0521	mg/kg	No	N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0052	mg/kg	No	N

			-	-		_	-			_	-		-			-	
Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0104	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0521	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0104	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0052	mg/kg	No		N
BB-DS-SEDV- 01	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0052	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/15	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	72.2		%	Yes		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-42-5	Styrene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-02-6	tranc-1 3-		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0042	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0418	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-88-3	Toluene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0084	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0209	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.0835	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0084	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0418	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0042	mg/kg	No		N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	64-17-5	Ethanol		1.67	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-64-1	Acetone		0.0418	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-66-3	Chloroform		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-43-2	Benzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0084	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0084	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0084	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0084	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0084	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-25-2	Bromoform		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0418	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0084	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0418	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0042	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?		Sampl e Type
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0084	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0042	mg/kg	No		N
BB-DS-SEDV- 02	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0042	mg/kg	No		N
BB-DS-SEDV- 03 BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/15	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	74.4		%	Yes		N
03 BB-DS-SEDV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0045	mg/kg	No		N
03 BB-DS-SEDV-	Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-42-5	Styrene cis-1,3-		0.0045	mg/kg	No		N
03 BB-DS-SEDV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-01-5	Dichloropropene trans-1,3-		0.0045	mg/kg	No		N
03 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-02-6	Dichloropropene		0.0045	mg/kg	No		N
03 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0045	mg/kg	No		N
03 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	_	SW5035	VOC	104-51-8	n-Butylbenzene		0.0045	mg/kg	No		N
03 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0045	mg/kg	No		N
03 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0045	mg/kg	No		N
03 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0045	mg/kg	No		N
03 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0045	mg/kg	No		N
03 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM		2014/10/18	,	SW5035	VOC	107-13-1	Acrylonitrile		0.0045	mg/kg	No		N
03 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0447	mg/kg	No		N
03 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	- 1	SW5035	VOC	108-20-3	ISOPROPYL ETHER 1,3,5-		0.0045	mg/kg	No		N
03 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-67-8	Trimethylbenzene		0.0045	mg/kg	No		N
03 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM SPECTRUM	SW8260	2014/10/18	,	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0045	mg/kg	No		N
03 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260			SW5035	VOC	108-86-1	Bromobenzene		0.0045	mg/kg	No		N
03 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment Sediment	SPECTRUM	SW8260 SW8260	2014/10/18	,	SW5035 SW5035	VOC	108-88-3	Toluene Chlorobenzene		0.0045	mg/kg mg/kg	No No		N N
03 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035 SW5035	VOC	108-90-7	Tetrahydrofuran		0.0045	mg/kg	No		N
03 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM	SW8260	2014/10/18		SW5035 SW5035	VOC	110-57-6	trans-1,4-Dichloro-2-		0.0089	mg/kg	No		N
03 BB-DS-SEDV-	Downstream Branch Brook -										butene						
03	Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0045	mg/kg	No	<u> </u>	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.0893	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0089	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0045	mg/kg	No	N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0045	mg/kg	No	N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0447	mg/kg	No	N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0045	mg/kg	No	N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0045	mg/kg	No	N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	64-17-5	Ethanol		1.79	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-64-1	Acetone		0.0447	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-66-3	Chloroform		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-43-2	Benzene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0089	mg/kg	No	N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0089	mg/kg	No	N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0045	mg/kg	No	N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0045	mg/kg	No	N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0089	mg/kg	No	N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0089	mg/kg	No	N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0089	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-25-2	Bromoform		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0447	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0089	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0447	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0089	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0045	mg/kg	No	N
BB-DS-SEDV- 03	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0045	mg/kg	No	 N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	63.3		%	Yes	 N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-42-5	Styrene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.006	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0604	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-88-3	Toluene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0121	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0302	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.121	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0121	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	voc	1634-04-4	Methyl tert-butyl ether		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.006	mg/kg	No	N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.006	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0604	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	64-17-5	Ethanol		2.42	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-64-1	Acetone		0.0604	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-66-3	Chloroform		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-43-2	Benzene		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0121	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0121	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0121	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0121	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0121	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-25-2	Bromoform		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0604	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0121	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0604	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.006	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	91-20-3	Naphthalene		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-47-6	o-Xylene		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0121	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.006	mg/kg	No		N
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.006	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	76.1		%	Yes		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-42-5	Styrene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-01-5	Dichloropropene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0406	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0041	mg/kg	No		N

	-		_			_	-			-			-			-	-
Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-88-3	Toluene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0081	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0203	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.0813	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0081	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0406	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	64-17-5	Ethanol		1.63	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-64-1	Acetone		0.0406	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-66-3	Chloroform		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-43-2	Benzene		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0041	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0081	mg/kg	No		N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0081	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0081	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0081	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0081	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-25-2	Bromoform		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0406	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0081	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0406	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0081	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0041	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0041	mg/kg	No	N
BB-DS-SEDV- 05	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0041	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	70.3		%	Yes	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-42-5	Styrene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-88-3	Toluene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0114	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0285	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.114	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0114	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0057	mg/kg	No	 N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	64-17-5	Ethanol		2.28	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-64-1	Acetone		0.057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-66-3	Chloroform		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-43-2	Benzene		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0114	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0114	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0114	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0114	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0114	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-25-2	Bromoform		0.0057	mg/kg	No	N
BB-DS-SEDV- 06	Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0057	mg/kg	No	N
BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0057	mg/kg	No	N
06 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0057	mg/kg	No	N
06 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.057	mg/kg	No	N
06 BB-DS-SEDV- 06	Downstream Branch Brook - Downstream	2014/10/14		SPECTRUM	SW8260	2014/10/18		SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0057	mg/kg	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0114	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0057	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0057	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-93-3	2-Butanone		0.057	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0057	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0057	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0057	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0057	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0057	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0057	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0057	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0057	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0057	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0057	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0114	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0057	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0057	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0057	mg/kg	No		N
BB-DS-SEDV- 06	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0057	mg/kg	No		N
BB-DS-SEDV- 06		2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0057	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	69.5		%	Yes		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-42-5	Styrene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-02-6	tranc_1 3_		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0053	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0534	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.0053	mg/kg	No		N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-88-3	Toluene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0107	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0267	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07 BB-DS-SEDV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.107	mg/kg	No		N
07 BB-DS-SEDV-	Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0107	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene trans-1,2-		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM		2014/10/18		SW5035	VOC	156-60-5	Dichloroethene		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	- 1	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	563-58-6	1,1-Dichloropropene		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	591-78-6	2-Hexanone		0.0534	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	,	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM	SW8260	2014/10/18		SW5035	VOC	60-29-7	Diethyl ether 1,1,1,2-		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	630-20-6	Tetrachloroethane Ethyl tertiary-butyl		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream	2014/10/14		SPECTRUM	SW8260	2014/10/18		SW5035	VOC	637-92-3	ether		0.0053	mg/kg	No		N
07 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	64-17-5	Ethanol		2.13	mg/kg	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-64-1	Acetone		0.0534	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-66-3	Chloroform		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-43-2	Benzene		0.0053	mg/kg	No		N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0107	mg/kg	No		N
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0107	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0107	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0107	mg/kg	No		N
BB-DS-SEDV- 07	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0107	mg/kg	No		N
BB-DS-SEDV- 07	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-25-2	Bromoform		0.0053	mg/kg	No		N
BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0053	mg/kg	No		N
07 BB-DS-SEDV- 07	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0053	mg/kg	No		N
BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0053	mg/kg	No		N
07 BB-DS-SEDV- 07	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0534	mg/kg	No		N
BB-DS-SEDV- 07	Downstream Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0053	mg/kg	No		N
BB-DS-SEDV-	Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan		0.0107	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	76-13-1	e 1,1,2-Trichloro-1,2,2-		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-87-5	trifluoroethane 1,2-Dichloropropane		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0534	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-34-5	1,1,2,2-		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-61-6	Tetrachloroethane 1,2,3-Trichlorobenzene		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	91-20-3	Naphthalene		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM	SW8260	2014/10/18		SW5035	VOC	95-47-6	o-Xylene		0.0053	mg/kg	No		N
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM	SW8260	2014/10/18	,	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0053	mg/kg	No		N
07	Downstream						,							J			

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?		Sampl e Type
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0107	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0053	mg/kg	No		N
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0053	mg/kg	No	<u> </u>	N
BB-DS-SEDV- 08 BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	67.4		%	Yes	<u> </u>	N
08 BB-DS-SEDV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.0054	mg/kg	No		N
08 BB-DS-SEDV-	Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	100-42-5	Styrene cis-1,3-		0.0054	mg/kg	No		N
08 BB-DS-SEDV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-01-5	Dichloropropene trans-1,3-		0.0054	mg/kg	No		N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	10061-02-6	Dichloropropene		0.0054	mg/kg	No	<u></u>	N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.0054	mg/kg	No	<u> </u>	N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	_	SW5035	VOC	104-51-8	n-Butylbenzene		0.0054	mg/kg	No	<u> </u>	N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.0054	mg/kg	No	<u> </u>	N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.0054	mg/kg	No		N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.0054	mg/kg	No		N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.0054	mg/kg	No	<u> </u>	N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM		2014/10/18	,	SW5035	VOC	107-13-1	Acrylonitrile		0.0054	mg/kg	No		N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0541	mg/kg	No	<u> </u>	N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	- 1	SW5035	VOC	108-20-3	ISOPROPYL ETHER 1,3,5-		0.0054	mg/kg	No		N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	108-67-8	Trimethylbenzene		0.0054	mg/kg	No		N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.0054	mg/kg	No		N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	108-86-1	Bromobenzene		0.0054	mg/kg	No		N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	,	SW5035	VOC	108-88-3	Toluene		0.0054	mg/kg	No	 	N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM	SW8260	2014/10/18		SW5035	VOC	108-90-7	Chlorobenzene		0.0054	mg/kg	No	 	N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18		SW5035	VOC	109-99-9	Tetrahydrofuran trans-1,4-Dichloro-2-		0.0108	mg/kg	No	 	N
08 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM	SW8260	2014/10/18		SW5035	VOC	110-57-6	butene		0.0271	mg/kg	No	 	N
08	Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.0054	mg/kg	No	<u> </u>	N

Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.108	mg/kg	No		N
Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.0054	mg/kg	No		N
Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.0054	mg/kg	No		N
Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0108	mg/kg	No		N
Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.0054	mg/kg	No		N
Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.0054	mg/kg	No		N
Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.0054		No		N
Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	156-60-5	trans-1,2-		0.0054	mg/kg	No		N
Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260		•	SW5035	VOC	1634-04-4			0.0054		No		N
Branch Brook -	2014/10/14	Sediment		SW8260		Dry	SW5035		541-73-1	1,3-Dichlorobenzene		0.0054		No		N
Branch Brook -										,				No		N
Branch Brook -	+															N
Downstream Branch Brook -										, , ,						N
Downstream Branch Brook -						,										N
Downstream Branch Brook -						•										N
Downstream Branch Brook -										1,1,1,2-						N
Downstream Branch Brook -										Tetrachloroethane Ethyl tertiary-butyl						
Downstream Branch Brook -	+									ether						N
Downstream										Ethanol				No		N
Downstream						,				Acetone			mg/kg	No		N
Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	67-66-3	Chloroform		0.0054	mg/kg	No		N
Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-43-2	Benzene		0.0054	mg/kg	No		N
Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.0054	mg/kg	No		N
Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0108	mg/kg	No		N
Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0108	mg/kg	No		N
Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.0054	mg/kg	No		N
Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.0054	mg/kg	No		N
Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0108	mg/kg	No		N
Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.0054	mg/kg	No		N
Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0108	mg/kg	No		N
Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0108	mg/kg	No		N
	Branch Brook - Downstream	Branch Brook - 2014/10/14	Branch Brook - Downstream 2014/10/14 Sediment	Location Date Matrix Lab Name Branch Brook - Downstream 2014/10/14 Sediment SPECTRUM Branch Brook - Downstream 2014/10/14	Location Date Matrix Lab Name Method Branch Brook - Downstream 2014/10/14 Sediment SPECTRUM SW8260 Branch Brook - Downstream 2014/10/14 <td> Branch Brook - Downstream Date Matrix Lab Name Method Date </td> <td> Branch Brook</td> <td> Branch Brook</td> <td> Branch Brook - Downstream 2014/10/14 Sediment SPECTRUM SW8260 2014/10/18 Dry SW5035 VOC SW8260 SW8260 SW8260 SW8260 Dry SW5035 VOC SW8260 SW8260 Dry SW5035 VOC SW8260 SW8260 Dry SW5035 VOC SW8260 Dry SW5035 VOC SW8260 Dry SW5035 VOC Dry SW5035 VOC Dry SW5035 VOC SW8260 Dry SW5035 VOC Dry SW5</td> <td> Branch Brook</td> <td> December December</td> <td> Branch Brook Downstream Sepectrum SPECTRUM SW8260 2014/1014 Downstream SPECTRUM SW8260 2014/1014 Downstream SPECTRUM SW8260 2014/1014 Downstream SPECTRUM SW8260 2014/1014 Spectrum SPECTRUM SW8260 SW8260</td> <td> Branch Brook</td> <td> Brunch Brook Date Date </td> <td> Basent Brook</td> <td> Branch Brown Service Service </td>	Branch Brook - Downstream Date Matrix Lab Name Method Date	Branch Brook	Branch Brook	Branch Brook - Downstream 2014/10/14 Sediment SPECTRUM SW8260 2014/10/18 Dry SW5035 VOC SW8260 SW8260 SW8260 SW8260 Dry SW5035 VOC SW8260 SW8260 Dry SW5035 VOC SW8260 SW8260 Dry SW5035 VOC SW8260 Dry SW5035 VOC SW8260 Dry SW5035 VOC Dry SW5035 VOC Dry SW5035 VOC SW8260 Dry SW5035 VOC Dry SW5	Branch Brook	December December	Branch Brook Downstream Sepectrum SPECTRUM SW8260 2014/1014 Downstream SPECTRUM SW8260 2014/1014 Downstream SPECTRUM SW8260 2014/1014 Downstream SPECTRUM SW8260 2014/1014 Spectrum SPECTRUM SW8260 SW8260	Branch Brook	Brunch Brook Date Date	Basent Brook	Branch Brown Service Service

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-25-2	Bromoform		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0541	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.0108	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	78-93-3	2-Butanone		0.0541	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	91-20-3	Naphthalene		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-47-6	o-Xylene		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.0054	mg/kg	No		N
BB-DS-SEDV- 08		2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.0054	mg/kg	No		N
BB-DS-SEDV- 08		2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0108	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.0054	mg/kg	No		N
BB-DS-SEDV- 08		2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.0054	mg/kg	No		N
BB-DS-SEDV- 08		2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.0054	mg/kg	No		N
BB-DS-SEDV- 08	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/18	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.0054	mg/kg	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	10061-02-6	tranc_1 3_		0.0005	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
BB-DS-SWV- 01 BB-DS-SWV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Surface Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
01 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
01 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
01 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
01 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
01 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM		2014/10/16		SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
01 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
01 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
01 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	75-69-4	Trichlorofluoromethane Dichlorodifluoromethan		0.001	mg/L	No		N
01 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	75-71-8	e 1,1,2-Trichloro-1,2,2-		0.002	mg/L	No		N
01 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	76-13-1	trifluoroethane		0.001	mg/L	No		N
01 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
01 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
01 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
01 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	79-01-6	Trichloroethene 1,1,2,2-		0.001	mg/L	No		N
01	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-34-5	Tetrachloroethane		0.0005	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
BB-DS-SWV- 01	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No	_	N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
BB-DS-SWV- 02	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No	N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No	N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No	N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No	N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No	N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No	N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No	N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No	N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No	N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No	N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No	N
BB-DS-SWV- 03 BB-DS-SWV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Surface Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER 1,3,5-		0.001	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-67-8	Trimethylbenzene		0.001	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	109-99-9	Tetrahydrofuran trans-1,4-Dichloro-2-		0.002	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	110-57-6	butene		0.005	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM SPECTRUM	SW8260 SW8260	2014/10/16		SW5030 SW5030	VOC	123-91-1 124-48-1	1,4-Dioxane Dibromochloromethane		0.02	mg/L	No No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	124-46-1	Tetrachloroethene		0.0005	mg/L mg/L	No	N N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	1330-20-7	Xylene, M&P-		0.001	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	135-98-8	sec-Butylbenzene		0.002	mg/L	No	N
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No	N
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No	N
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	156-60-5	trans-1,2-		0.001	mg/L	No	N
BB-DS-SWV-	Downstream Branch Brook - Downstream	2014/10/14	Water Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	1634-04-4	Dichloroethene Methyl tert-butyl ether		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No	N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No	N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No	N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No	N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No	N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No	N
BB-DS-SWV- 03	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No	N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No	N
BB-DS-SWV- 03 BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No	N
03 BB-DS-SWV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Surface Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene 1,2,4-		0.001	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-63-6	Trimethylbenzene 1,2-Dibromo-3-		0.001	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-12-8	chloropropane		0.002	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	99-87-6	4-Isopropyltoluene Tertiary-amyl methyl		0.001	mg/L	No	N
03 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	994-05-8	ether		0.001	mg/L	No	N
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No	N
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	100-42-5	Styrene cis-1,3-		0.001	mg/L	No	N
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	10061-01-5	Dichloropropene trans-1,3-		0.0005	mg/L	No	N
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM SPECTRUM	SW8260 SW8260	2014/10/16		SW5030 SW5030	VOC	10061-02-6	Dichloropropene		0.0005	mg/L	No No	N N
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	103-03-1	n-Propylbenzene n-Butylbenzene		0.001	mg/L mg/L	No	N
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	104-31-8	4-Chlorotoluene		0.001	mg/L	No	N
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No	N
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No	N
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No	N
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No	N
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No	N
04 BB-DS-SWV- 04	Downstream Branch Brook - Downstream	2014/10/14	Water Surface Water	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No	_	N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected	Units	Detected	Qualifier	
DD DO 0140 /		Date	0 (Wethou	Date	S	Wethou	Group			Result	Result		ſ	S	е Туре
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
BB-DS-SWV-	Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
04 BB-DS-SWV-	Downstream Branch Brook -		Water Surface					0117000									
04	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
04 BB-DS-SWV-	Downstream Branch Brook -		Water Surface														
04	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
BB-DS-SWV-	Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
04 BB-DS-SWV-	Downstream Branch Brook -		Water Surface														
04	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
BB-DS-SWV-	Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
04 BB-DS-SWV-	Downstream Branch Brook -	+	Water Surface								,						
04	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
BB-DS-SWV-	Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
04 BB-DS-SWV-	Downstream Branch Brook -	+	Water Surface								Dichlorodifluoromethan						
04	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-71-8	е		0.002	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
04 BB-DS-SWV-	Downstream Branch Brook -	+	Water Surface														
04	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
04 BB-DS-SWV-	Downstream Branch Brook -		Water Surface								1,1,2,2-						
04	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-34-5	Tetrachloroethane		0.0005	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
04 BB-DS-SWV-	Downstream Branch Brook -	+	Water Surface														
04	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
04 BB-DS-SWV-	Downstream Branch Brook -		Water Surface														
04	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3-		0.002	mg/L	No		N
04 BB-DS-SWV-	Downstream Branch Brook -		Water Surface								chloropropane						
04	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	10061-01-5	Dichloropropene		0.0005	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	10061-02-6	trans-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
BB-DS-SWV- 05 BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
05 BB-DS-SWV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER 1,3,5-		0.001	mg/L	No		N
05 BB-DS-SWV-	Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-67-8	Trimethylbenzene		0.001	mg/L	No		N
05 BB-DS-SWV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Surface Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	109-99-9	Tetrahydrofuran trans-1,4-Dichloro-2-		0.002	mg/L	No		N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	110-57-6	butene		0.005	mg/L	No		N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC		Dibromochloromethane		0.0005	mg/L	No		N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
05	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No	N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No	N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No	N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No	N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No	N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No	N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No	N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No	N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No	N
BB-DS-SWV- 05 BB-DS-SWV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Surface Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	60-29-7	Diethyl ether 1,1,1,2-		0.001	mg/L	No	N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	630-20-6	Tetrachloroethane		0.001	mg/L	No	N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Surface Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No	N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No	N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No	N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No	N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No	N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No	N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No	N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No	N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No	N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM SPECTRUM	SW8260 SW8260	2014/10/16		SW5030 SW5030	VOC	74-97-5 75-00-3	Bromochloromethane		0.001	mg/L	No No	N N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	75-00-3	Chloroethane Vinyl chloride		0.002	mg/L mg/L	No	N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	75-01-4	Methylene chloride		0.001	mg/L	No	N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No	N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No	N
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No	N
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No	N
05 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No	N
05 BB-DS-SWV- 05	Downstream Branch Brook - Downstream	2014/10/14	Water Surface Water	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No	N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
BB-DS-SWV- 05	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	10061-02-6	trans_1 3_		0.0005	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook -	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
BB-DS-SWV- 06	Downstream Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2-		0.005	mg/L	No		N
06 BB-DS-SWV- 06	Branch Brook -	2014/10/14	Water Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	120-82-1	butene 1,2,4-Trichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
06 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
06 BB-DS-SWV- 06	Downstream Branch Brook -	2014/10/14	Water Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
06 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
06 BB-DS-SWV-	Downstream Branch Brook - Downstream	2014/10/14	Water Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
06 BB-DS-SWV-	Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
06 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	156-60-5	trans-1,2-		0.001	mg/L	No		N
06 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	1634-04-4	Dichloroethene Methyl tert-butyl ether		0.001	mg/L	No		N
06 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
06 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
06 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
06 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
06 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
06 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
06 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	630-20-6	1,1,1,2-		0.001	mg/L	No		N
06 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	637-92-3	Tetrachloroethane Ethyl tertiary-butyl		0.001	mg/L	No		N
06 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	64-17-5	ether Ethanol		0.4	mg/L	No		N
06	Downstream		Water	12.7.0.0	1 1 2 2 3 3		',			L				·	1		

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 06	Branch Brook -	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
06 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl		0.001	mg/L	No		N
06 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	100-41-4	ether Ethylbenzene		0.001	mg/L	No		N
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	10061-01-5	cis-1,3-		0.0005	mg/L	No		N
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	10061-02-6	Dichloropropene trans-1,3-		0.0005	mg/L	No		N
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	103-65-1	Dichloropropene n-Propylbenzene		0.001	mg/L	No		N
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM				SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	108-67-8	1,3,5-		0.001	mg/L	No		N
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	108-70-3	Trimethylbenzene 1,3,5-Trichlorobenzene		0.001		No		N
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM		2014/10/16		SW5030	VOC	108-70-3	Bromobenzene		0.001	mg/L	No		N
07 BB-DS-SWV-	Downstream Branch Brook -		Water Surface		SW8260									mg/L			
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	109-99-9	Tetrahydrofuran trans-1,4-Dichloro-2-		0.002	mg/L	No		N
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	110-57-6	butene		0.005	mg/L	No		N
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
07	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	10061-02-6	trans_1 3_		0.0005	mg/L	No		N
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	156-59-2	cis-1,2-Dichloroethene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	156-60-5	trans-1,2- Dichloroethene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		N

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		N

Sample ID	Location	Sample	Matrix	Lab Name	Analytical		Basi	Prep	Parameter	CAS RN	Parameter	Detected	Non- Detected	Units	Detected	Qualifier	Sampl
DD DC CW//	Describ Describ	Date	0		Method	Date	S	Method	Group	<u> </u>		Result	Result		ſ	S	е Туре
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		N
BB-DS-SWV-	Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		N
08 BB-DS-SWV-	Downstream Branch Brook -	004.4/4.0/4.4	Water Surface						1/00		. V. I		0.004		NI.		—
80	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	vvet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		N
08 BB-DS-SWV-	Downstream Branch Brook -	004.4/4.0/4.4	Water Surface								1,2,4-		0.004		NI.		—
80	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	vvet	SW5030	VOC	95-63-6	Trimethylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		N
BB-DS-SWV-	Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		N
08 BB-DS-SWV-	Downstream Branch Brook -	204 4/4 0/4 4	Water Surface	SPECTRUM	CM0000	2044/40/40	\\/o+	CWEOOO	VOC	00.00.0	tort Dutulbanzana		0.004		No		N
08 BB-DS-SWV-	Downstream	2014/10/14	Water		SW8260	2014/10/16	vvei	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		N
08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		N
BB-DS-SWV- 08	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		N
BB-DS-SWV-	Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16	\/\ot	SW5030	VOC	994-05-8	Tertiary-amyl methyl		0.001	mg/L	No		N
08 BB-DS-SED-	Downstream Branch Brook -		Water						TOTAL		ether		0.001	IIIg/L	INO		
04	Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	SOLIDS	Per Solids	Percent Solids	68.1		%	Yes		FD
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	1.27		%	Yes		FD
BB-DS-SED-	Branch Brook -	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP-	Fractional % Sieve #20	1.98		%	Yes		FD
04 BB-DS-SED-	Downstream Branch Brook -									FS20	(2000-850µm) Fractional % Sieve #4						
04	Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP-FS4	(>4750µm)	1.19		%	Yes		FD
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	20.7		%	Yes		FD
BB-DS-SED-	Branch Brook -	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP-	Fractional % Sieve #60	53.8		%	Yes		FD
04 BB-DS-SED-	Downstream Branch Brook -									FS60	(425-250μm) SIEVE, NO. 100,						
04	Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE100	PERCENT PASSING	15.9		%	Yes		FD
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	4.59		%	Yes		FD
BB-DS-SED-	Branch Brook -	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230,	0.554		%	Yes		FD
04 BB-DS-SED-	Downstream Branch Brook -				LLOYDKAH						PERCENT PASSING						
04	Downstream	2014/10/14	Sediment	SPECTRUM	N	2014/10/21	vvet	A412B	TOC	TOC	Total Organic Carbon	828		mg/kg	Yes		FD
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	5.07		mg/kg	Yes		FD
BB-DS-SED-	Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS -	7439-96-5	Manganese	131		mg/kg	Yes		FD
04 BB-DS-SED-	Downstream Branch Brook -								ICP AES METALS -		NE de d	0.40			V.		
04	Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	ICP AES	7440-02-0	Nickel	9.16		mg/kg	Yes		FD
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	79.7		mg/kg	Yes		FD
BB-DS-SED-	Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS -	7440-38-2	Arsenic		2.1	mg/kg	No		FD
04 BB-DS-SED-	Downstream Branch Brook -	204 4/4 0/4 4	Codime				_		ICP AES METALS -		Codesis		0.000		NI-		
04	Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24		SW3050B	ICP AES	7440-43-9	Cadmium		0.699	mg/kg	No		FD
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	8		mg/kg	Yes		FD
BB-DS-SED-	Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS -	7440-50-8	Copper	8.61		mg/kg	Yes		FD
04	Downstream	ĺ	I						ICP AES]	'''						ш

<u></u>	·	1	T	7	1	1			<u> </u>	1	1	I		•			
Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?		Sampl e Type
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	32.5		mg/kg	Yes		FD
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	7770		mg/kg	Yes		FD
BB-DS-SED- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	28.6		mg/kg	Yes		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	100-42-5	Styrene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	10061-01-5	Dichioropropene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.05	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	108-88-3	Toluene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.01	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.025	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.0999	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.01	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.005	mg/kg	No		FD

	-	_	-	-		-			-	-		-	-			-	-
Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?		Sampl e Type
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.05	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	64-17-5	Ethanol		2	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	67-64-1	Acetone		0.05	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	67-66-3	Chloroform		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	71-43-2	Benzene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	74-83-9	Bromomethane		0.01	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	74-87-3	Chloromethane		0.01	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	75-00-3	Chloroethane		0.01	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.01	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.01	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	75-25-2	Bromoform		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	75-27-4	Bromodichloromethane		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	75-34-3	1,1-Dichloroethane		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	75-35-4	1,1-Dichloroethene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.05	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	75-69-4	Trichlorofluoromethane		0.005	mg/kg	No		FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	75-71-8	Dichlorodifluoromethan e		0.01	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	78-87-5	1,2-Dichloropropane		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	78-93-3	2-Butanone		0.05	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	91-20-3	Naphthalene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	95-47-6	o-Xylene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.005	mg/kg	No		FD
BB-DS-SEDV- 04 BB-DS-SEDV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.005	mg/kg	No		FD
04 BB-DS-SEDV-	Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.005	mg/kg	No		FD
04 BB-DS-SEDV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.01	mg/kg	No		FD
04 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16		SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.005	mg/kg	No		FD
04 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.005	mg/kg	No		FD
04 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	,	SW5035	VOC	98-82-8	Isopropylbenzene		0.005	mg/kg	No		FD
04 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/16	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene Tertiary-amyl methyl		0.005	mg/kg	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Sediment Surface			2014/10/16		SW5035	VOC	994-05-8	ether		0.005	mg/kg	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM		2014/10/16		SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	100-42-5	Styrene cis-1,3-		0.001	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	10061-01-5	Dichloropropene trans-1,3-		0.0005	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	10061-02-6	Dichloropropene		0.0005	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No		FD
04	Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	vvet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No		FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?		Sampl e Type
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		FD
BB-DS-SWV- 04 BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		FD
04 BB-DS-SWV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran trans-1,4-Dichloro-2-		0.002	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	110-57-6	butene		0.005	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM SPECTRUM	SW8260 SW8260	2014/10/16		SW5030 SW5030	VOC	156-59-2 156-60-5	cis-1,2-Dichloroethene trans-1,2-		0.001	mg/L	No No		FD FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC		Dichloroethene Methyl tert-butyl ether		0.001	mg/L mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		FD
04 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	56-23-5	Carbon tetrachloride		0.001	mg/L	No		FD
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	563-58-6	1,1-Dichloropropene		0.001	mg/L	No		FD
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	591-78-6	2-Hexanone		0.01	mg/L	No		FD
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		FD
04 BB-DS-SWV- 04	Downstream Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No	1	FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	637-92-3	Ethyl tertiary-butyl ether		0.001	mg/L	No		FD
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	64-17-5	Ethanol		0.4	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-69-4	Trichlorofluoromethane		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-71-8	Dichlorodifluoromethan e		0.002	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	76-13-1	1,1,2-Trichloro-1,2,2- trifluoroethane		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-01-6	Trichloroethene		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.0005	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-61-6	1,2,3-Trichlorobenzene		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	87-68-3	Hexachlorobutadiene		0.0005	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	91-20-3	Naphthalene		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No		FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	95-63-6	1,2,4- Trimethylbenzene		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.002	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	96-18-4	1,2,3-Trichloropropane		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No		FD
BB-DS-SWV- 04	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	A209A	2014/10/16	Wet	A412B	TOTAL SOLIDS	Per Solids	Percent Solids	69.2		%	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS10	Fractional % Sieve #10 (4750-2000µm)	6.63		%	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS20	Fractional % Sieve #20 (2000-850µm)	18.8		%	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP-FS4	Fractional % Sieve #4 (>4750µm)	29.4		%	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS40	Fractional % Sieve #40 (850-425µm)	24.6		%	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	PSEP- FS60	Fractional % Sieve #60 (425-250µm)	14.6		%	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE100	SIEVE, NO. 100, PERCENT PASSING	3.01		%	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE200	SIEVE NO. 200, PERCENT PASSING	2.08		%	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	D422	2014/10/21	Wet	A412B	GRAIN SIZE	SIEVE230	SIEVE NO. 230, PERCENT PASSING	0.929		%	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	LLOYDKAH N	2014/10/21	Wet	A412B	TOC	TOC	Total Organic Carbon	847		mg/kg	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7439-92-1	Lead	5.51		mg/kg	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7439-96-5	Manganese	232		mg/kg	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-02-0	Nickel	8.44		mg/kg	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-23-5	Sodium	65.4		mg/kg	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-38-2	Arsenic		2.09	mg/kg	No		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-43-9	Cadmium		0.697	mg/kg	No		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-47-3	Chromium	6.19		mg/kg	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-50-8	Copper	8.81		mg/kg	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/24	Dry	SW3050B	METALS - ICP AES	7440-66-6	Zinc	33.4		mg/kg	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7439-89-6	Iron	7570		mg/kg	Yes		FD
BB-DS-SED- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW6010	2014/10/27	Dry	SW3050B	METALS - ICP AES	7440-39-3	Barium	25		mg/kg	Yes		FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	100-41-4	Ethylbenzene		0.005	mg/kg	No		FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	100-42-5	Styrene		0.005	mg/kg	No		FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	10061-01-5	cis-1,3- Dichloropropene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	10061-02-6	trans-1,3- Dichloropropene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	103-65-1	n-Propylbenzene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	104-51-8	n-Butylbenzene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	106-43-4	4-Chlorotoluene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	106-46-7	1,4-Dichlorobenzene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	106-93-4	1,2-Dibromoethane		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	107-06-2	1,2-Dichloroethane		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	107-13-1	Acrylonitrile		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	108-10-1	4-Methyl-2-pentanone		0.0504	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	108-20-3	ISOPROPYL ETHER		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	108-67-8	1,3,5- Trimethylbenzene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	108-70-3	1,3,5-Trichlorobenzene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	108-86-1	Bromobenzene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	108-88-3	Toluene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	108-90-7	Chlorobenzene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	109-99-9	Tetrahydrofuran		0.0101	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.0252	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	120-82-1	1,2,4-Trichlorobenzene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	123-91-1	1,4-Dioxane		0.101	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	124-48-1	Dibromochloromethane		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	127-18-4	Tetrachloroethene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	1330-20-7	Xylene, M&P-		0.0101	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	135-98-8	sec-Butylbenzene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	142-28-9	1,3-Dichloropropane		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	156-59-2	cis-1,2-Dichloroethene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	156-60-5	trans-1,2- Dichloroethene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	1634-04-4	Methyl tert-butyl ether		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	541-73-1	1,3-Dichlorobenzene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	56-23-5	Carbon tetrachloride		0.005	mg/kg	No	FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	563-58-6	1,1-Dichloropropene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	591-78-6	2-Hexanone		0.0504	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	594-20-7	2,2-Dichloropropane		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	60-29-7	Diethyl ether		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	630-20-6	1,1,1,2- Tetrachloroethane		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	637-92-3	Ethyl tertiary-butyl ether		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	64-17-5	Ethanol		2.02	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	67-64-1	Acetone		0.0504	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	67-66-3	Chloroform		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	71-43-2	Benzene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	71-55-6	1,1,1-Trichloroethane		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	74-83-9	Bromomethane		0.0101	mg/kg	No	FD
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	74-87-3	Chloromethane		0.0101	mg/kg	No	FD
BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	74-95-3	Dibromomethane		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	74-97-5	Bromochloromethane		0.005	mg/kg	No	FD
BB-DS-SEDV- 07 BB-DS-SEDV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	75-00-3	Chloroethane		0.0101	mg/kg	No	FD
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	75-01-4	Vinyl chloride		0.005	mg/kg	No	FD
07 BB-DS-SEDV-	Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	75-09-2	Methylene chloride		0.0101	mg/kg	No	FD
07 BB-DS-SEDV-	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	75-15-0	Carbon disulfide		0.0101	mg/kg	No	FD
07 BB-DS-SEDV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17		SW5035	VOC	75-25-2	Bromoform		0.005	mg/kg	No	FD
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM	SW8260	2014/10/17		SW5035	VOC	75-27-4	Bromodichloromethane		0.005	mg/kg	No	FD
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM	SW8260	2014/10/17		SW5035	VOC	75-34-3	1,1-Dichloroethane		0.005	mg/kg	No	FD
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM	SW8260	2014/10/17		SW5035	VOC	75-35-4	1,1-Dichloroethene		0.005	mg/kg	No	FD
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM	SW8260	2014/10/17		SW5035	VOC	75-65-0	Tert-Butyl alcohol		0.0504	mg/kg	No	FD
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM	SW8260	2014/10/17		SW5035	VOC	75-69-4	Trichlorofluoromethane Dichlorodifluoromethan		0.005	mg/kg	No	FD
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM	SW8260	2014/10/17	-	SW5035	VOC	75-71-8	e 1,1,2-Trichloro-1,2,2-		0.0101	mg/kg	No	FD
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM	SW8260	2014/10/17		SW5035	VOC	76-13-1	trifluoroethane		0.005	mg/kg	No	FD
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM	SW8260	2014/10/17		SW5035	VOC	78-87-5	1,2-Dichloropropane		0.005	mg/kg	No	FD
07 BB-DS-SEDV-	Downstream Branch Brook -	2014/10/14		SPECTRUM	SW8260	2014/10/17	-	SW5035	VOC	78-93-3	2-Butanone		0.0504	mg/kg	No	FD
07	Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	79-00-5	1,1,2-Trichloroethane		0.005	mg/kg	No	FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	79-01-6	Trichloroethene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	79-34-5	1,1,2,2- Tetrachloroethane		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	87-61-6	1,2,3-Trichlorobenzene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	87-68-3	Hexachlorobutadiene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	91-20-3	Naphthalene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	95-47-6	o-Xylene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	95-49-8	2-Chlorotoluene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	95-50-1	1,2-Dichlorobenzene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	95-63-6	1,2,4- Trimethylbenzene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	96-12-8	1,2-Dibromo-3- chloropropane		0.0101	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	96-18-4	1,2,3-Trichloropropane		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	98-06-6	tert-Butylbenzene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	98-82-8	Isopropylbenzene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	99-87-6	4-Isopropyltoluene		0.005	mg/kg	No	FD
BB-DS-SEDV- 07	Branch Brook - Downstream	2014/10/14	Sediment	SPECTRUM	SW8260	2014/10/17	Dry	SW5035	VOC	994-05-8	Tertiary-amyl methyl ether		0.005	mg/kg	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	100-41-4	Ethylbenzene		0.001	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	100-42-5	Styrene		0.001	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	10061-01-5	cis-1,3- Dichloropropene		0.0005	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	10061-02-6	tranc_1 3_		0.0005	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	103-65-1	n-Propylbenzene		0.001	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	104-51-8	n-Butylbenzene		0.001	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-43-4	4-Chlorotoluene		0.001	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-46-7	1,4-Dichlorobenzene		0.001	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	106-93-4	1,2-Dibromoethane		0.0005	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	107-06-2	1,2-Dichloroethane		0.001	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	107-13-1	Acrylonitrile		0.0005	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-10-1	4-Methyl-2-pentanone		0.01	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-20-3	ISOPROPYL ETHER		0.001	mg/L	No	FD
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-67-8	1,3,5- Trimethylbenzene		0.001	mg/L	No	FD
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-70-3	1,3,5-Trichlorobenzene		0.001	mg/L	No	FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected	Units	Detected ?	Qualifier s	Sampl e Type
BB-DS-SWV-	Branch Brook -	2014/10/14	Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	108-86-1	Bromobenzene		0.001	mg/L	No		FD
BB-DS-SWV-	Downstream Branch Brook - Downstream	2014/10/14	Water Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-88-3	Toluene		0.001	mg/L	No		FD
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	108-90-7	Chlorobenzene		0.001	mg/L	No		FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	109-99-9	Tetrahydrofuran		0.002	mg/L	No		FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	110-57-6	trans-1,4-Dichloro-2- butene		0.005	mg/L	No		FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	120-82-1	1,2,4-Trichlorobenzene		0.001	mg/L	No		FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	123-91-1	1,4-Dioxane		0.02	mg/L	No		FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	124-48-1	Dibromochloromethane		0.0005	mg/L	No		FD
BB-DS-SWV- 07 BB-DS-SWV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Surface Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	127-18-4	Tetrachloroethene		0.001	mg/L	No		FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	1330-20-7	Xylene, M&P-		0.002	mg/L	No		FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	135-98-8	sec-Butylbenzene		0.001	mg/L	No		FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	142-28-9	1,3-Dichloropropane		0.001	mg/L	No		FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	156-59-2	cis-1,2-Dichloroethene trans-1,2-		0.001	mg/L	No		FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	156-60-5	Dichloroethene		0.001	mg/L	No		FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	1634-04-4	Methyl tert-butyl ether		0.001	mg/L	No		FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	541-73-1	1,3-Dichlorobenzene		0.001	mg/L	No		FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM SPECTRUM	SW8260 SW8260	2014/10/16		SW5030 SW5030	VOC	56-23-5 563-58-6	Carbon tetrachloride 1,1-Dichloropropene		0.001	mg/L	No No		FD FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	591-78-6	2-Hexanone		0.001	mg/L mg/L	No		FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM		2014/10/16		SW5030	VOC	594-20-7	2,2-Dichloropropane		0.001	mg/L	No		FD
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	60-29-7	Diethyl ether		0.001	mg/L	No		FD
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	630-20-6	1,1,1,2-		0.001	mg/L	No		FD
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	637-92-3	Tetrachloroethane Ethyl tertiary-butyl		0.001	mg/L	No		FD
07 BB-DS-SWV- 07	Downstream Branch Brook -	2014/10/14	Water Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	64-17-5	ether Ethanol		0.4	mg/L	No		FD
BB-DS-SWV- 07	Downstream Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-64-1	Acetone		0.01	mg/L	No		FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	67-66-3	Chloroform		0.001	mg/L	No		FD
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-43-2	Benzene		0.001	mg/L	No		FD
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	71-55-6	1,1,1-Trichloroethane		0.001	mg/L	No		FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-83-9	Bromomethane		0.002	mg/L	No		FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-87-3	Chloromethane		0.002	mg/L	No		FD

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-95-3	Dibromomethane		0.001	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	74-97-5	Bromochloromethane		0.001	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-00-3	Chloroethane		0.002	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-01-4	Vinyl chloride		0.001	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-09-2	Methylene chloride		0.002	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-15-0	Carbon disulfide		0.002	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-25-2	Bromoform		0.001	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-27-4	Bromodichloromethane		0.0005	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-34-3	1,1-Dichloroethane		0.001	mg/L	No	FD
BB-DS-SWV- 07 BB-DS-SWV-	Branch Brook - Downstream Branch Brook -	2014/10/14	Surface Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-35-4	1,1-Dichloroethene		0.001	mg/L	No	FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	75-65-0	Tert-Butyl alcohol		0.01	mg/L	No	FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	75-69-4	Trichlorofluoromethane Dichlorodifluoromethan		0.001	mg/L	No	FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	75-71-8	e 1,1,2-Trichloro-1,2,2-		0.002	mg/L	No	FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	76-13-1	trifluoroethane		0.001	mg/L	No	FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	78-87-5	1,2-Dichloropropane		0.001	mg/L	No	FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	78-93-3	2-Butanone		0.01	mg/L	No	FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	79-00-5	1,1,2-Trichloroethane		0.001	mg/L	No	FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	79-01-6	Trichloroethene 1,1,2,2-		0.001	mg/L	No	FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	79-34-5	Tetrachloroethane		0.0005	mg/L	No	FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM SPECTRUM	SW8260	2014/10/16		SW5030	VOC	87-61-6 87-68-3	1,2,3-Trichlorobenzene		0.001	mg/L	No	FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260 SW8260	2014/10/16		SW5030 SW5030	VOC	91-20-3	Hexachlorobutadiene Naphthalene		0.0005	mg/L mg/L	No No	FD FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	95-47-6	o-Xylene		0.001	mg/L	No	FD
07 BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	95-49-8	2-Chlorotoluene		0.001	mg/L	No	FD
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	95-50-1	1,2-Dichlorobenzene		0.001	mg/L	No	FD
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	95-63-6	1,2,4-		0.001	mg/L	No	FD
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	96-12-8	Trimethylbenzene 1,2-Dibromo-3-		0.002	mg/L	No	FD
BB-DS-SWV-	Downstream Branch Brook -	2014/10/14	Water Surface	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	96-18-4	chloropropane 1,2,3-Trichloropropane		0.001	mg/L	No	FD
07 BB-DS-SWV- 07	Downstream Branch Brook - Downstream	2014/10/14	Water Surface Water	SPECTRUM	SW8260	2014/10/16		SW5030	VOC	98-06-6	tert-Butylbenzene		0.001	mg/L	No	FD
BB-DS-SWV-	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	98-82-8	Isopropylbenzene		0.001	mg/L	No	FD

Appendix E: Analytical Database

Sample ID	Location	Sample Date	Matrix	Lab Name	Analytical Method	Analysis Date	Basi s	Prep Method	Parameter Group	CAS RN	Parameter	Detected Result	Non- Detected Result	Units	Detected ?	Sampl e Type
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	99-87-6	4-Isopropyltoluene		0.001	mg/L	No	FD
BB-DS-SWV- 07	Branch Brook - Downstream	2014/10/14	Surface Water	SPECTRUM	SW8260	2014/10/16	Wet	SW5030	VOC	994-05-8	Tertiary-amyl methyl ether		0.001	mg/L	No	FD

Note: Non-detect value is equal to the detection limit

mg/kg: milligrams per kilogram mg/L: milligrams per liter

Page 212 of 212 **ENVIRON**

J: Estimated value N: Normal sample

FD: Field duplicate

Appendix F Data Validation Report

DATA VALIDATION REVIEW

Sediment Monitoring Event October 2014
Envirite RCRA Facility
Old Waterbury Road
Thomaston, Connecticut

Laboratory Sample Delivery Groups (SDGs): SB98147 and SB98028

Laboratory: Spectrum Analytical Technology, Inc., Agawam, Massachusetts

Reviewer: Wendy Stonestreet Date Reviewed: November 24, 2014

This data validation report has been prepared by ENVIRON International Corporation (ENVIRON) to assess the validity and usability of laboratory analytical data generated from samples collected during the sediment monitoring event October 2014 event at the Envirite RCRA Facility in Thomaston, Connecticut, (the "site"), October 14, 2014 to October 15, 2014.

The analytical data were evaluated for quality assurance and quality control (QA/QC) based on the following document: Quality Assurance Project Plan (QAPP)/Sampling Analysis Plan (SAP)for the Enivrite RCRA Facility, Old Waterbury Road, Thomaston, Connecticut (December 2013), USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008), USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, (January, 2010).

Analytical services for the analysis of 71 sediment samples were provided by Spectrum Analytical, Inc. (Spectrum) in Agawam, Massachusetts.

This report summarizes the QA/QC evaluation of the data according to precision, accuracy, representativeness, completeness and comparability relative to the project data quality objectives. This report provides a quantitative and qualitative assessment of the data and identifies potential sources of error, uncertainty, and bias that may affect the overall usability of the data.

Per the December 2013 QAPP/SAP, a USEPA Tier I data validation was performed on all laboratory data. The QAPP/SAP indicated that a minimum of 10% of the data would undergo USEPA Tier II data validation. Data package SDG SB98028 was selected for Tier II analysis to meet validation requirements.

The following table summarizes the field samples and quality control samples submitted to the laboratory which underwent Tier I data validation:

					Ana	lyses	
Field ID	Sample Type	Lab ID	Matrix	VOCs	Total Metals	100	Grain Size/Total Solids
SDG: SB98147							
NR-DS-SED-01	SA	SB98147-01	Solid		X	Χ	Χ
NR-DS-SEDV-01	SA	SB98147-02	Solid	Х			
NR-DS-SED-02	SA	SB98147-04	Solid		X	Χ	Χ
NR-DS-SEDV-02	SA	SB98147-05	Solid	Х			
NR-DS-SED-03	SA	SB98147-07	Solid		Х	Χ	Χ
NR-DS-SEDV-03	SA	SB98147-08	Solid	Х			
NR-DS-SED-04	SA	SB98147-10	Solid		Х	Х	Х
NR-DS-SEDV-04	SA	SB98147-11	Solid	Х			
NR-DS-SED-05	SA/MS/MSD	SB98147-13	Solid		Х	Х	Χ
NR-DS-SEDV-05	SA	SB98147-14	Solid	Х			
DUP-4-SOIL	FD	SB98147-16	Solid	Х	Х	Х	Х
DUP-5-SOIL	FD	SB98147-17	Solid	Х	Х	Χ	Х
BB-US-SED-01	SA	SB98147-22	Solid		Х	Χ	Х
BB-US-SEDV-01	SA	SB98147-23	Solid	Х			
BB-US-SED-02	SA	SB98147-25	Solid		Х	Χ	Х
BB-US-SEDV-02	SA	SB98147-26	Solid	Х			
BB-US-SED-03	SA	SB98147-28	Solid		Х	Х	Х
BB-US-SEDV-03	SA	SB98147-29	Solid	Х			
BB-US-SED-04	SA	SB98147-31	Solid		Х	Χ	Χ
BB-US-SEDV-04	SA	SB98147-32	Solid	Х			
BB-US-SED-05	SA	SB98147-34	Solid		Х	Х	Х
BB-US-SEDV-05	SA	SB98147-35	Solid	Х			
BB-US-SED-06	SA	SB98147-37	Solid		Х	Х	Х
BB-US-SEDV-06	SA	SB98147-38	Solid	Х			
BB-US-SED-07	SA	SB98147-40	Solid		Х	Х	Х
BB-US-SEDV-07	SA	SB98147-41	Solid	Х			
BB-US-SED-08	SA	SB98147-43	Solid		Х	Х	Х
BB-US-SEDV-08	SA	SB98147-44	Solid	Х			
NR-DS-SED-06	SA	SB98147-46	Solid		Х	Χ	Χ
NR-DS-SEDV-06	SA	SB98147-47	Solid	Х			
NR-DS-SED-07	SA	SB98147-49	Solid		Х	Х	Х
NR-DS-SEDV-07	SA	SB98147-50	Solid	Х			
NR-DS-SED-08	SA	SB98147-52	Solid		Х	Х	Х
NR-DS-SEDV-08	SA	SB98147-53	Solid	X			
NR-US-SED-01	SA	SB98147-55	Solid		X	X	X
NR-US-SEDV-01	SA	SB98147-56	Solid	X			
NR-US-SED-02	SA	SB98147-58	Solid		X	X	X
NR-US-SEDV-02	SA	SB98147-59	Solid	X			
NR-US-SED-03	SA	SB98147-61	Solid		X	X	X
NR-US-SEDV-03	SA	SB98147-61	Solid	X			
NR-US-SED-04	SA	SB98147-64	Solid	^	X	X	X

					Ana	lyses	
Field ID	Sample Type	Lab ID	Matrix	VOCs	Total Metals	тос	Grain Size/Total Solids
NR-US-SEDV-04	SA	SB98147-65	Solid	Х			
NR-US-SED-05	SA	SB98147-67	Solid		Χ	Χ	Χ
NR-US-SEDV-05	SA	SB98147-68	Solid	Х			
NR-US-SED-06	SA	SB98147-70	Solid		Х	Χ	Χ
NR-US-SEDV-06	SA	SB98147-71	Solid	Х			
NR-US-SED-07	SA	SB98147-73	Solid		Х	Χ	Χ
NR-US-SEDV-07	SA	SB98147-74	Solid	Х			
NR-US-SED-08	SA	SB98147-76	Solid		Χ	Χ	Χ
NR-US-SEDV-08	SA	SB98147-77	Solid	Х			
TB-2-Soil	TB	SB98147-79	Solid	Χ			
TB-3-Soil	TB	SB98147-80	Solid	X			

Sample Type:

SA = Sample

TB = Trip Blank

FD = Field Duplicate

EB = Equipment Blank

--- = Analysis was not performed for this analytical parameter

VOCs = Volatile Organic Compounds by USEPA Method SW-846 8260B by Gas Chromatography/Mass Spectrometry (GC/MS) Medium Level.

Total and Dissolved Metals = Arsenic, Barium, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Sodium, Nickel and Zinc by EPA Method 6010.

General Chemistry = TOC (Total Organic Carbon) by SM5310B

Grain Size by ASTM D422

Total Solids by Standard Method 2540G Modified

Data Package Completeness

Were all items delivered as specified in the QAPP and COC (Chain of Custody)?

Yes, the laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative. The laboratory submitted all required deliverables for SDGSB98147. Preservation requirements were met for all samples. All quality control recoveries were within established laboratory control limits with the exception of the following:

SDG SB98147:

GRAIN SIZE

The relative percent difference (RPD) for duplicate analysis for grain size was outside of the laboratory acceptance range for three samples; BB-US-SED-01, NR-DS-SED-06 and NR-US-SED-05. While the elevated RPD indicates potentially poor precision, this non-conformance does not appear to affect the usability of the data.

TOC ANALYSIS

The percent (%) relative standard deviation (RSD) was above the laboratory control limit of 5% for samples NR-DS-SED-05 and NR-US-SED-01 for TOC analysis. The analytical results are therefore considered estimated values.

The laboratory indicated the result for TOC in sample NR-DS-SED-06 is considered an estimated value because the result exceeded the calibration range of the instrument. This non-conformance however, does not affect the usability of the data.

PERCENT SOLIDS

All –SEDV samples were submitted to the laboratory without an unpreserved sample aliquot which is used to determine dry weight. Therefore the solid weight result from the associated –SED sample location was used to calculate results on a dry weight basis. Since all field soil samples –SED and –SEDV were collected at the same time and same location, this change in reference material likely does not affect the usability or accuracy of the results.

METALS ANALYSIS

The matrix spike recovery for manganese in sample NR-DS-SED-05 (Batch 1424869) was outside laboratory control limits of 75-125% at 150%. The matrix spike duplicate recovery for manganese was within control limits. In addition the RPDs for manganese, zinc, nickel, copper arsenic, chromium, cadmium and lead exceeded the RPD limit of 20%. Likely these non-conformances can be attributed to matrix interferences and the accuracy of manganese and precision of the manganese, zinc, nickel, copper arsenic, chromium, cadmium and lead results associated results may be biased. However, these non-conformances do not affect the usability of the data. In addition, the post digestive spike and LCS recoveries were reported within laboratory control limits which indicate acceptable instrument precision and accuracy for the sample.

The matrix spike recovery for iron in sample NR-DS-SED-05 (Batch 1425332) was outside the laboratory control limits of 75-125% at 1950%. The matrix spike duplicate recovery for iron and barium was outside the laboratory control limits of 75-125% at -2530% and 74%. The RPD for sodium iron and barium was also reported outside laboratory control limits. In addition the post-digestive spike recovery for iron at -628% was outside the laboratory control limit of 80-120%, The parent sample results for sodium, iron and barium were reported at concentrations greater than 4 times the spike concentration were not considered appropriate for evaluating MS/MSD recoveries. These non-conformances do not affect the usability of the data.

The matrix spike recovery for sodium and iron in sample NR-DS-SED-08 was outside the laboratory control limits of 75-125% at 129% and 950% respectively. In addition the post-digestive spike recovery for iron at -464% was outside the laboratory control limit of 80-120%, The parent sample results for sodium and iron were reported at concentrations greater than 4 times the spike concentration were not considered appropriate for evaluating MS/MSD recoveries. These non-conformances do not affect the usability of the data.

Duplicate sample RPD values for lead, nickel, copper, chromium, cadmium and zinc in sample NR-DS-SED-05 (Batch 1424869) were reported above laboratory control limits due to a solid non-homogeneous sample matrix. While the elevated RPDs indicate potentially poor precision, this non-conformance does not appear to affect the usability of the data.

Duplicate sample RPD values for iron and sodium in sample NR-DS-SED-05 (Batch 1425332) were reported above laboratory control limits due to a solid non-homogeneous sample matrix. While the elevated RPDs indicate potentially poor precision, this non-conformance does not appear to affect the usability of the data.

VOC ANALYSIS

Several VOC analyte percent differences for initial calibration verification (ICV) were outside individual acceptance criteria; however the percent recoveries were within overall method allowances. The slightly high results may indicate potentially high bias however these non-conformances do not appear to affect the usability of the data.

Several VOC analyte percent differences for continuing calibration verification (CCV) were outside individual acceptance criteria; however the percent recoveries were within overall method allowances. The slightly high results may indicate potentially high bias however these non-conformances do not appear to affect the usability of the data.

Blank Spike (BS, a.k.a LCS)/BS Duplicate (BSD) batch QC samples were analyzed in association with the VOC analysis of sample NR-DS-SEDV-05 with BSD or BS and BSD recoveries for one compound (hexachlorobutadiene) above QC limits, indicating a potential high analytical bias. As the associated analytical results were non-detect, this non-conformance does not affect the usability of the data.

BS/BSD batch QC samples were analyzed in association with the VOC analyses of 4 samples (NR-DS-SEDV-01, NR-US-SEDV-01, NR-US-SEDV-03 and NR-US-SEDV-08) with BS/BSD recoveries for five compounds (2-butanone, 4-methyl-2-pentanone, acetone, ethanol and tert-butanol/butyl alcohol) above QC limits indicating a potential high analytical bias. As the associated analytical results are all non-detect, this non-conformance does not affect the usability of the data.

Matrix Spike (MS) and MS duplicate (MSD) batch QC samples for sample NR-DS-SEDV-05 were analyzed for VOCs, with MS and/or MSD recoveries outside QC limits for 18 compounds. MS or MSD recoveries were above QC limits for all compounds indicating a potential high analytical bias. As the associated analytical results are all non-detect, this non-conformance does not affect the usability of the data.

Matrix Spike (MS) and MS duplicate (MSD) batch QC samples for sample NR-DS-SEDV-05 (diluted 50x)were analyzed for VOCs, with MS and/or MSD recoveries outside QC limits for 11 compounds and RPDs above the maximum QC limit for one compound. MS or MSD recoveries were above QC limits for all compounds indicating a potential high analytical bias. As the associated analytical results are all non-detect, this non-conformance does not affect the usability of the data. RPDs were above the maximum QC limit for one compound. While the elevated RPD may indicate potentially poor precision, as the associated analytical result was non-detect, this non-conformance does not appear to affect the usability of the data.

Data Usability

It is the opinion of this reviewer that all data for SDG SB98147 is valid and is considered usable for project purposes.

The following table summarizes the field samples and quality control samples submitted to the laboratory which underwent Tier II data validation:

					Ana	lyses	
Field ID	Sample Type	Lab ID	Matrix	VOCs	Total Metals	T0C	Grain Size/Total Solids
SDG: SB98028							
BB-DS-SED-01	SA	SB98028-01	Solid		Х	Х	Х
BB-DS-SEDV-01	SA	SB98028-02	Solid	Х			
BB-DS-SED-02	SA	SB98028-04	Solid		Х	Х	Х
BB-DS-SEDV-02	SA	SB98028-05	Solid	Х			
BB-DS-SED-03	SA	SB98028-07	Solid		X	Х	Χ
BB-DS-SEDV-03	SA	SB98028-08	Solid	Х			
BB-DS-SED-04	SA	SB98028-10	Solid		X	Х	Χ
BB-DS-SEDV-04	SA	SB98028-11	Solid	Х			
BB-DS-SED-05	SA	SB98028-13	Solid		Х	Х	Х
BB-DS-SEDV-05	SA	SB98028-14	Solid	Х			
BB-DS-SED-06	SA	SB98028-16	Solid		X	Х	Χ
BB-DS-SEDV-06	SA	SB98028-17	Solid	Х			
BB-DS-SED-07	SA	SB98028-19	Solid		Х	Х	Χ
BB-DS-SEDV-07	SA	SB98028-20	Solid	Х			
BB-DS-SED-08	SA	SB98028-22	Solid		Х	Х	Χ
BB-DS-SEDV-08	SA	SB98028-23	Solid	Х			
DUP-1-Soil	FD	SB-98028-25	Solid		Х	Х	Х
DUP-2-Soil	FD	SB-98028-26	Solid		Х	Х	Χ
TB-1-Soil	TB	SB-98028-27	Solid	Х			

Sample Type:

TB = Trip Blank SA = Sample --- = Analysis was not performed for this analytical parameter

VOCs = Volatile Organic Compounds by USEPA Method SW-846 8260B by Gas Chromatography/Mass Spectrometry (GC/MS) Medium Level.

EB = Equipment Blank

Total and Dissolved Metals = Arsenic, Barium, Cadmium, Chromium, Copper, Iron, Lead, Manganese,

Sodium, Nickel and Zinc by EPA Method 6010. **General Chemistry** = TOC (Total Organic Carbon) by SM5310B

Grain Size by ASTM D422

Total Solids by Standard Method 2540G Modified

General Overall Assessment:

	Data are usable without qualification.
Χ	Data are usable with qualification (noted below).
	Some or all data are unusable for any purpose (detailed below).

Case Narrative Comments: Any case narrative comments concerning data qualification were noted below.

Data Package Completeness 1.0

FD = Field Duplicate

Were all items delivered as specified in the QAPP and COC (Chain of Custody)?

Yes, the laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

2.0 Laboratory Case Narrative, Sample Preservation and Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated the following:

- **Grain Size** The RPD for one duplicate sample was reported outside of laboratory control limits. See Section 12.0 for further discussion and resultant data qualification.
- General Chemistry The RSD for Total Organic Carbon (TOC) was reported above laboratory control limits. See Section 12.0 for further discussion and resultant data qualification.
- Percent Solids All –SEDV samples were submitted to the laboratory without an
 unpreserved sample aliquot which is used to determine dry weight. Therefore
 the solid weight result from the associated –SED sample location was used to
 calculate results on a dry weight basis. Since all field soil samples –SED and –
 SEDV were collected at the same time and same location, this change in
 reference material likely does not affect the usability or accuracy of the results
 and the issue will not be discussed further in this report.
- Total Metals The MS/MSD or RPD recoveries for several analytes were reported outside laboratory control limits. See Section 7.0 for further discussion and resultant data qualification. Duplicate results exceeded RPD values for several analytes. See Section 9.0 for further discussion and resultant qualification. Several samples required dilution prior to sample analysis due to high concentration of target analytes. See Section 10.0 for further discussion and resultant data qualification.
- VOCs The LCS RPD recovery for one analyte was reported outside of quality control limits. See Section 5.0 for further discussion and resultant qualification. MS/MSD recoveries for several analytes were reported outside laboratory control limits. See Section 7.0 for further discussion and resultant qualification. The MS/MSD or RPD recoveries for several analytes were outside laboratory control limits. Several samples required dilution prior to sample analysis due to high concentration of target analytes. See Section 10.0 for further discussion and resultant data qualification. The ICV and/or CCV analyte percent difference was outside of individual acceptance limits for several analytes. See Section 11.0 for further discussion and resultant data qualification.

Samples were received at the Spectrum Analytical, Inc. laboratory in good condition. Temperature upon receipt of sample batch was 0.4°C. Acceptable temperature range is 2 - 6°C. However, given that the temperature was taken using an Infrared thermometer, which has an error tolerance of +/- 1.0 degrees Celsius, and the laboratory did not note any freezing of the samples, this non-conformance does not affect the usability of the data.

3.0 Technical Holding Times

Were samples extracted/analyzed within method specific holding time requirements?

Yes. All samples were prepared and/or analyzed within method specific required holding times.

4.0 Blank Contamination

Were any analytes detected in the Method Blanks or Trip Blanks?

No analytes were detected in the associated trip and method blanks.

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No. The laboratory control sample (LCS) provides information on the accuracy of the analytical method and on the laboratory performance. The following table summarizes the LCS results that were outside the acceptance limits.

LCS ID	Parameter	Analyte	LCS/LCSD (%)	RPD (%)	LCS/LCSD/ RPD Criteria (Recovery %)
1424512-BS1	8260B	2-Butanone (MEK)	114/83	32	70-130/20

ID = Identification LCS/D = Laboratory Control Sample/Duplicate RPD = Relative Percent Difference % = Percent

Analytical data reported as non-detect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes. Surrogates are added to all volatile samples prior to purging to evaluate the laboratory performance on individual samples. Four volatile surrogates (dibromofluoromethane, 1,2-dichloroethane-d4, toluene-d8, and bromofluorobenzene) were added to each volatile sample. Percent recoveries (%R) for all volatile surrogates in all samples were within laboratory evaluation criteria. Qualification of data was not required.

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

Yes. A matrix spike was performed from a site specific sample for all parameters.

Were MS/MSD recoveries within evaluation criteria?

No. MS/MSD recoveries which were outside acceptance evaluation criteria are summarized in the table below.

Sample ID	Parameter	Analyte	MS/MSD Recovery (%)	RPD (%)	MS/MSD/ RPD Criteria (%)
BB-DS-SEDV-06	8260B	Acrylonitrile	68/ 82	19	70-130/20
BB-DS-SEDV-06	8260B	Bromomethane	64/53	19	70-130/20
BB-DS-SEDV-06	8260B	Hexachlorobutadiene	153/ 126	30	70-130/20
BB-DS-SEDV-06	8260B	sec-Butylbenzene	131/122	7	70-130/20
BB-DS-SEDV-06	8260B	tert-Butylbenzene	133/121	10	70-130/20
BB-DS-SEDV-06	8260B	Trichlorofluoromethane	144/ 116	22	70-130/20
BB-DS-SEDV-06	8260B	1,1,1-Trichloroethane	135/ 116	15	70-130/20
BB-DS-SEDV-06	8260B	Chloroethane	107 /69	43	70-130/20
BB-DS-SEDV-06 (RE)	8260B	Acetone	-0.9/-185	NR	70-130/20
BB-DS-SEDV-06 (RE)	8260B	2-Butanone (MEK)	46/-23	NR	70-130/20
BB-DS-SEDV-06 (RE)	8260B	1,2-Dibromo-3-chloropropane	68/ 88	27	70-130/20
BB-DS-SEDV-06 (RE)	8260B	1,2-Dichlorobenzene	63/ 78	21	70-130/20
BB-DS-SEDV-06 (RE)	8260B	1,3-Dichlorobenzene	66/ 79	19	70-130/20
BB-DS-SEDV-06 (RE)	8260B	1,4-Dichlorobenzene	63/ 76	19	70-130/20
BB-DS-SEDV-06 (RE)	8260B	Hexachlorobutadiene	61/ 75	21	70-130/20
BB-DS-SEDV-06 (RE)	8260B	2-Hexanone	74 /55	30	70-130/20
BB-DS-SEDV-06 (RE)	8260B	Naphthalene	36/38	6	70-130/20
BB-DS-SEDV-06 (RE)	8260B	Styrene	58/ 86	40	70-130/20
BB-DS-SEDV-06 (RE)	8260B	1,2,3-Trichlorobenzene	36/39	9	70-130/20
BB-DS-SEDV-06 (RE)	8260B	1,2,4-Trichlorobenzene	38/42	11	70-130/20
BB-DS-SEDV-06 (RE)	8260B	1,3,5-Trichlorobenzene	53/64	18	70-130/20
BB-DS-SEDV-06 (RE)	8260B	1,4-Dioxane	138/ 126	9	70-130/20
BB-DS-SEDV-06 (RE)	8260B	trans-1,4-Dichloro-2-butene	47/58	22	70-130/20
BB-DS-SEDV-06 (RE)	8260B	Ethanol	87 /52	50	70-130/20
BB-DS-SED-06	6010	Sodium	129/127	4	75-125/20
BB-DS-SED-06 (RD)	6010	Iron	-45/-685	12	75-125/20

MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference % = Percent

Per USEPA National Functional Guidelines data should not be qualified based on MS/MSD results alone. LCS/LCSD recoveries and surrogate recoveries were within laboratory control criteria and indicated effective accuracy and precision for the above analytes. In addition, parent sample results at concentrations greater than 4 times the spike concentration were not considered appropriate for evaluating MS/MSD recoveries. **Qualification of data was not required.**

8.0 Post Spike (Metals only)

Were post spike recoveries within evaluation criteria?

Yes. All post spike recoveries were reported within laboratory criteria.

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples performed as part of this SDG?

Yes, as spiked duplicates, which are discussed in the previous sections. In addition laboratory duplicates were reported for metals and grain size. All metals duplicate RPD values were reported within laboratory criteria. Two preparatory fractional % sieve RPDs were reported outside of the laboratory control limit of 35%; Fractional % Sieve #10 (4750-2000um) at 45% and Fractional % Sieve #200 (150-75um) at 54% for sample DUP-1-Soil. While the elevated RPD indicates potentially poor precision, this non-conformance does not appear to affect the usability of the data.

10.0 Field Duplicate Results

Were field duplicate samples collected as part of the evaluated SDGs?

Yes. The table below summarizes field duplicate pairs.

Field ID	Field Duplicate ID
BB-DS-04	DUP-1-Soil
BB-DS-07	DUP-2-Soil

Were field duplicates within evaluation criteria?

Yes. All RPD's of reported results were less than the acceptance limits of ±50% for solid samples.

11.0 Detects and Calibration Range

For samples that were diluted and nondetect, were undiluted results also reported?

Yes

For samples that were not diluted and detected, were the results within calibration range?

Yes

12.0 Additional Qualifications/Quality Control Outliers

Were additional qualifications applied?

- Several VOC analyte percent recoveries for continuing calibration verification (CCV) were outside individual acceptance criteria of 20%; however the percent recoveries were within overall method allowances. Therefore qualification of data was not required.
- Several VOC analyte percent recovery for initial calibration verification (ICV)
 were outside individual acceptance criteria; however the percent recoveries were
 within overall method allowances therefore qualification of data was not required.

 Several reporting limits were raised to correlate to batch quality control reporting limits. Data users should be aware of these elevated reporting limits when evaluating data usage for comparison to project standards.

13.0 Overall Data Assessment

The data are usable for its intended purpose based on an evaluation of the QC parameters discussed in this report. No qualification of data was required.

Appendix D, Attachment A Data Validation, Accuracy and Precision Analysis

Sample ID	Parameter	Analyte	MS/MSD Recovery (%)	RPD (%)	MS/MSD/ RPD Criteria (%)
NR-DS-SED-05	6010C	Manganese	150/ 83	27	75-125/20
NR-DS-SED-05	6010C	Copper	103/71	34	75-125/20
NR-DS-SED-05	6010C	Chromium	101 /74	33	75-125/20
NR-DS-SED-05	6010C	Zinc	91/ 56	33	75-125/20
NR-DS-SED-05	6010C	Cadmium	98/76	30	75-125/20
NR-DS-SED-05	6010C	Lead	91/ 70	28	75-125/20
NR-DS-SED-05	6010C	Nickel	99/ 71	35	75-125/20
NR-DS-SED-05	6010C	Arsenic	88/ 68	30	75-125/20

The matrix spike (MS) recovery for manganese was above quality control (QC) limits indicating potential high bias for the detected result of manganese in sample NR-DS-SED-05. Matrix spike duplicate (MSD) recoveries for chromium, zinc, lead, nickel and arsenic were below QC limits indicating potential low bias for the detected for chromium, zinc and lead and non-detect result for arsenic. The relative percent difference for all analytes exceeded the QC limits which may indicate poor precision. However, per USEPA National Functional Guidelines data should not be qualified based on MS/MSD results alone. LCS/LCSD recoveries were within laboratory control criteria and indicated effective accuracy and precision for the above analytes. In addition, parent sample results at concentrations greater than 4 times the spike concentration were not considered appropriate for evaluating MS/MSD recoveries. These non-conformances do not affect the usability of the data. **Qualification of data was not required.**

Sample ID	Parameter	Analyte	MS/MSD Recovery (%)	RPD (%)	MS/MSD/ RPD Criteria (%)
NR-DS-SED-08	6010C	Sodium	129/127	0.5	75-125/20
NR-DS-SED-08	6010C	Iron	950/804	2	75-125/20

The matrix spike (MS) recovery for sodium and iron were above quality control (QC) limits indicating potential high bias for the detected results of sodium and iron in sample NR-DS-SED-08. However, per USEPA National Functional Guidelines data should not be qualified based on MS/MSD results alone. LCS/LCSD recoveries were within laboratory control criteria and indicated effective accuracy and precision for the above analytes. In addition, parent sample results at concentrations greater than 4 times the spike concentration were not considered appropriate for evaluating MS/MSD recoveries. These non-conformances do not affect the usability of the data. **Qualification of data was not required.**

Appendix G

Raw Laboratory Data Reports for Samples with Trace Ethanol

Data Path: 0:\Oct2014\VOC\HPV9\1021\

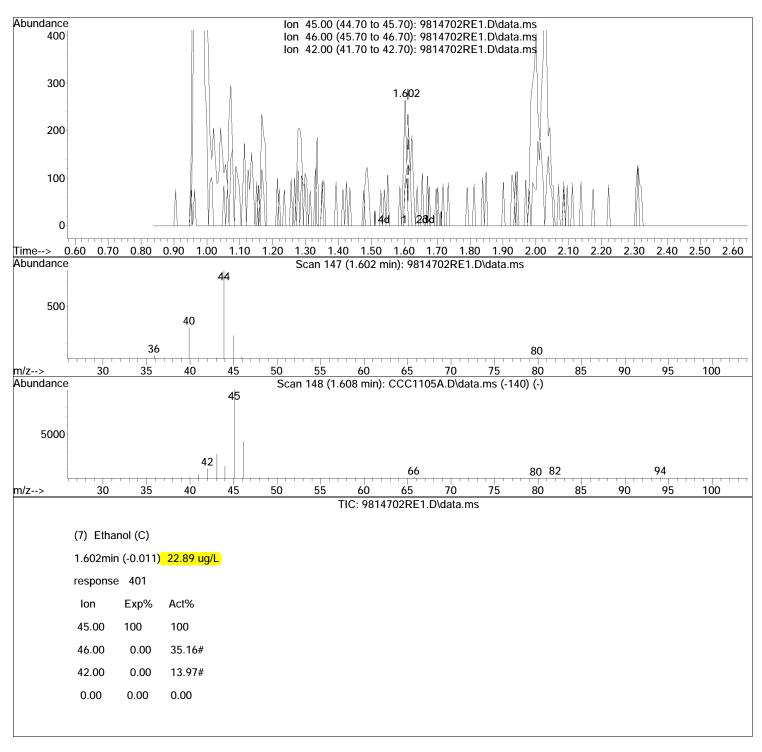
Data File: 9814702RE1.D

Acq On : 21 Oct 2014 11:52 am

Operator : JEG

Sample : SB98147-02RE1 @ NR-DS-SEDV-01 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 9 Sample Multiplier: 1

Quant Time: Oct 22 12:59:40 2014

Quant Method : G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update: Thu Oct 16 08:19:54 2014

Data Path: 0:\Oct2014\VOC\HPV9\1020\

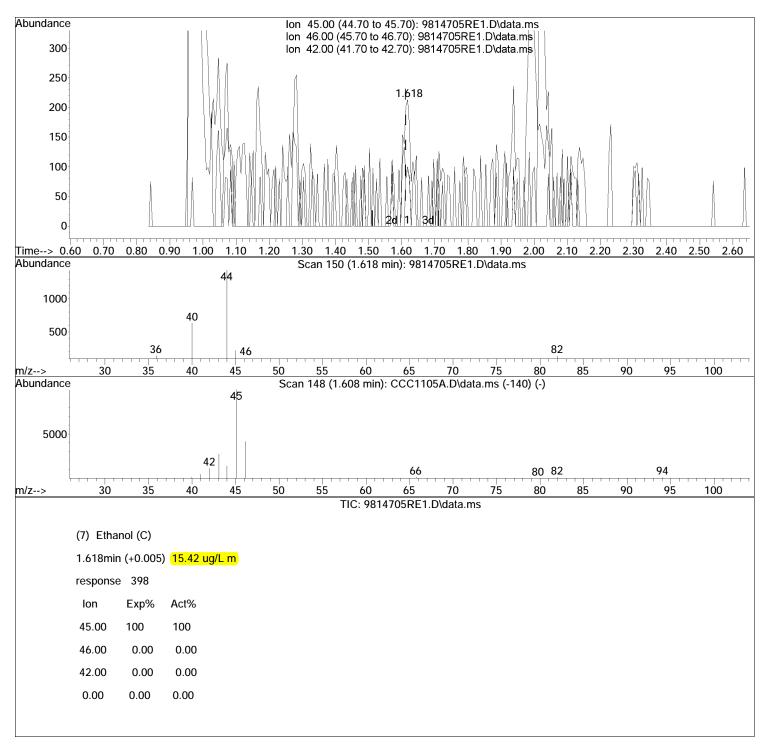
Data File: 9814705RE1.D

Acq On : 20 Oct 2014 12:32 pm

Operator : JEG

Sample : SB98147-05RE1 @ NR-DS-SEDV-02 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 12 Sample Multiplier: 1

Quant Time: Oct 21 11:57:56 2014

Quant Method: G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update: Thu Oct 16 08:19:54 2014

Data Path: 0:\Oct2014\VOC\HPV9\1020\

Data File: 9814708RE1.D

Acq On : 20 Oct 2014 1:51 pm

Operator : JEG

Sample : SB98147-08RE1 @ NR-DS-SEDV-03 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 13 Sample Multiplier: 1

Quant Time: Oct 21 11:58:14 2014

Quant Method : G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update : Thu Oct 16 08:19:54 2014

Data Path : O:\Oct2014\VOC\HPV9\1020\

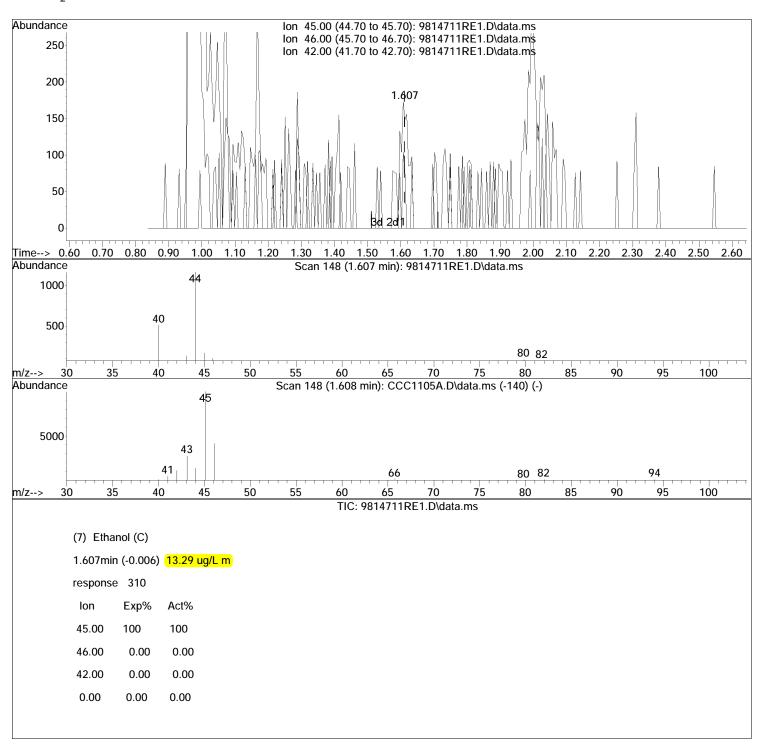
Data File: 9814711RE1.D

Acq On : 20 Oct 2014 2:21 pm

Operator : JEG

Sample : SB98147-11RE1 @ NR-DS-SEDV-04 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial: 14 Sample Multiplier: 1

Quant Time: Oct 21 11:58:28 2014

Quant Method : G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update : Thu Oct 16 08:19:54 2014

Data Path: 0:\Oct2014\VOC\HPV9\1020\

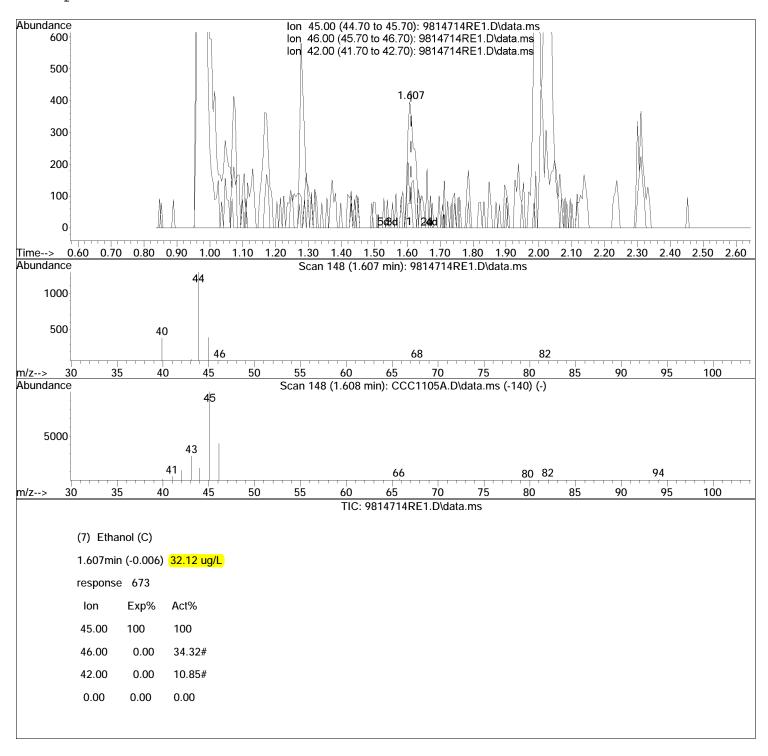
Data File: 9814714RE1.D

Acq On : 20 Oct 2014 2:52 pm

Operator : JEG

Sample : SB98147-14RE1 @ NR-DS-SEDV-05 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 15 Sample Multiplier: 1

Quant Time: Oct 21 11:58:48 2014

Quant Method : G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update : Thu Oct 16 08:19:54 2014

Data Path: 0:\Oct2014\VOC\HPV9\1017B\

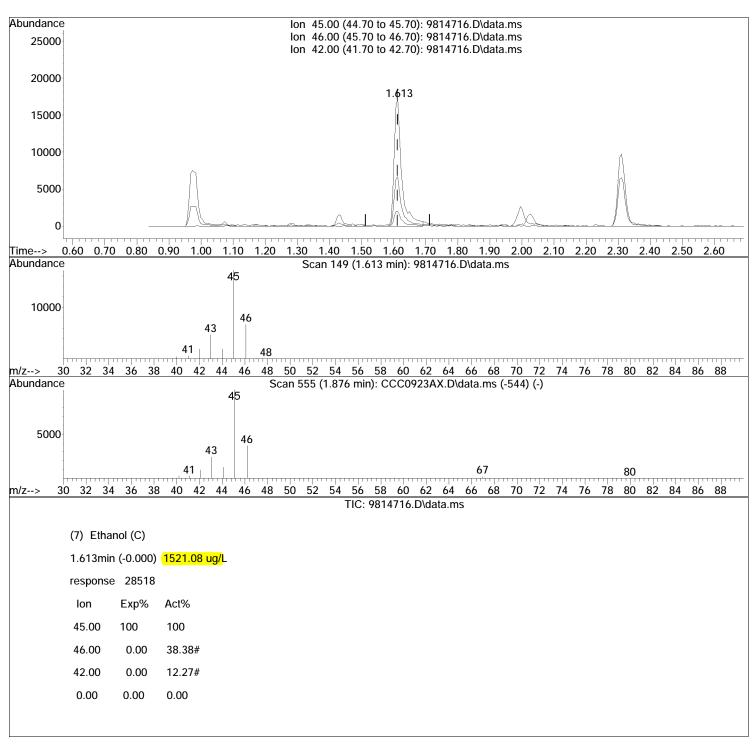
Data File : 9814716.D

Acq On : 18 Oct 2014 6:52 am

Operator : JEG

Sample : SB98147-16 @ DUP-4-Soil 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 44 Sample Multiplier: 1

Quant Time: Oct 20 09:47:34 2014

Quant Method: G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update : Fri Oct 17 11:31:33 2014

Data Path: 0:\Oct2014\VOC\HPV9\1017B\

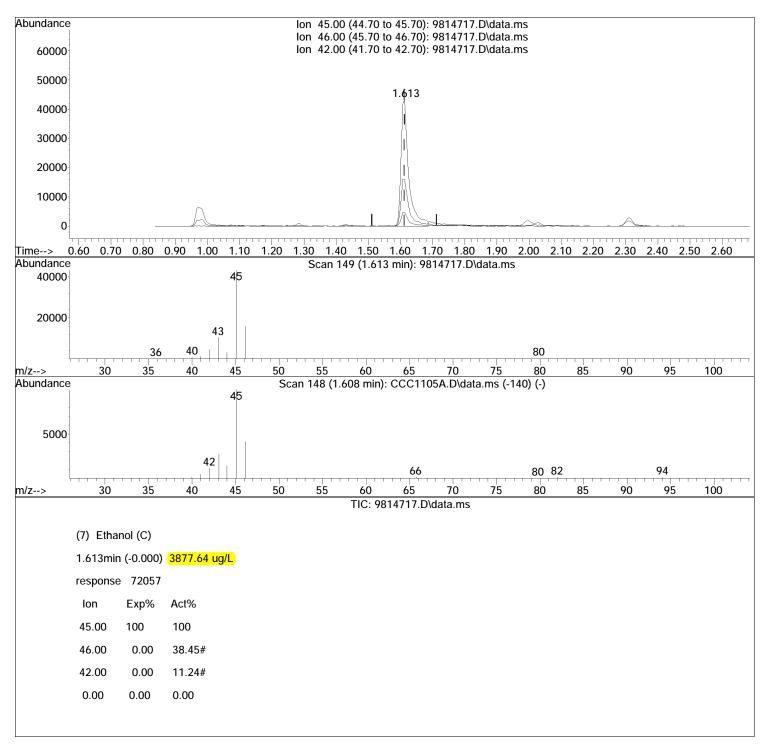
Data File : 9814717.D

Acq On : 18 Oct 2014 7:23 am

Operator : JEG

Sample : SB98147-17 @ DUP-5-Soil 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 45 Sample Multiplier: 1

Quant Time: Oct 20 09:47:46 2014

Quant Method: G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update : Fri Oct 17 11:31:33 2014

Data Path: 0:\Oct2014\VOC\HPV9\1020\

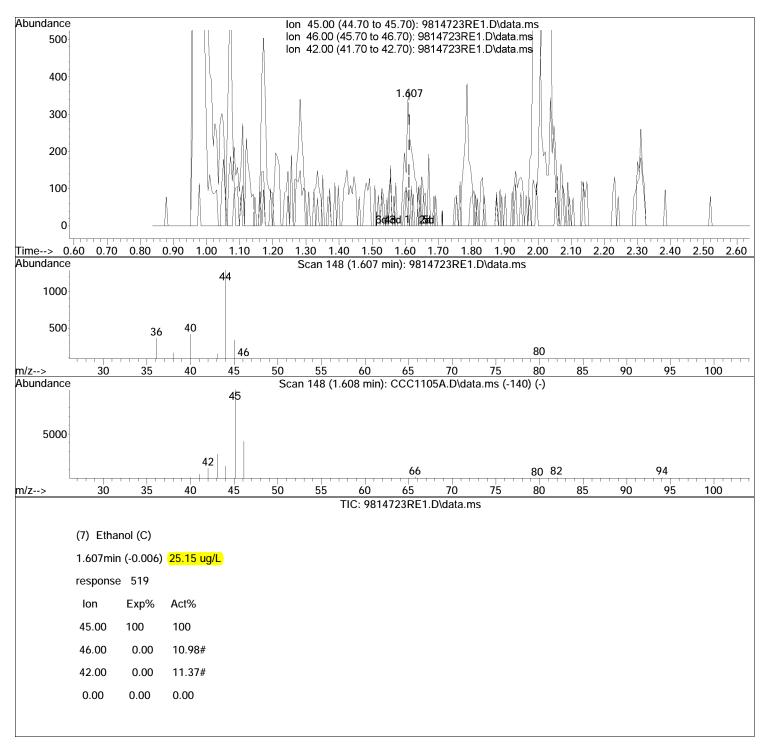
Data File: 9814723RE1.D

Acq On : 20 Oct 2014 4:24 pm

Operator : JEG

Sample : SB98147-23RE1 @ BB-US-SEDV-01 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 18 Sample Multiplier: 1

Quant Time: Oct 21 11:59:28 2014

Quant Method: G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update: Thu Oct 16 08:19:54 2014

Data Path: 0:\Oct2014\VOC\HPV9\1020\

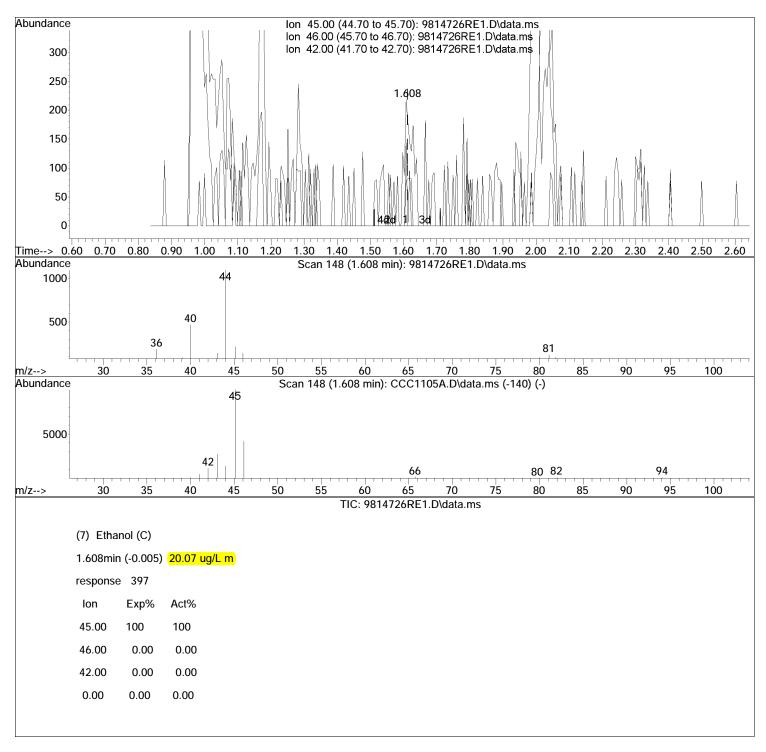
Data File: 9814726RE1.D

Acq On : 20 Oct 2014 4:55 pm

Operator : JEG

Sample : SB98147-26RE1 @ BB-US-SEDV-02 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 19 Sample Multiplier: 1

Quant Time: Oct 21 11:59:48 2014

Quant Method : G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update: Thu Oct 16 08:19:54 2014

Data Path: 0:\Oct2014\VOC\HPV9\1020\

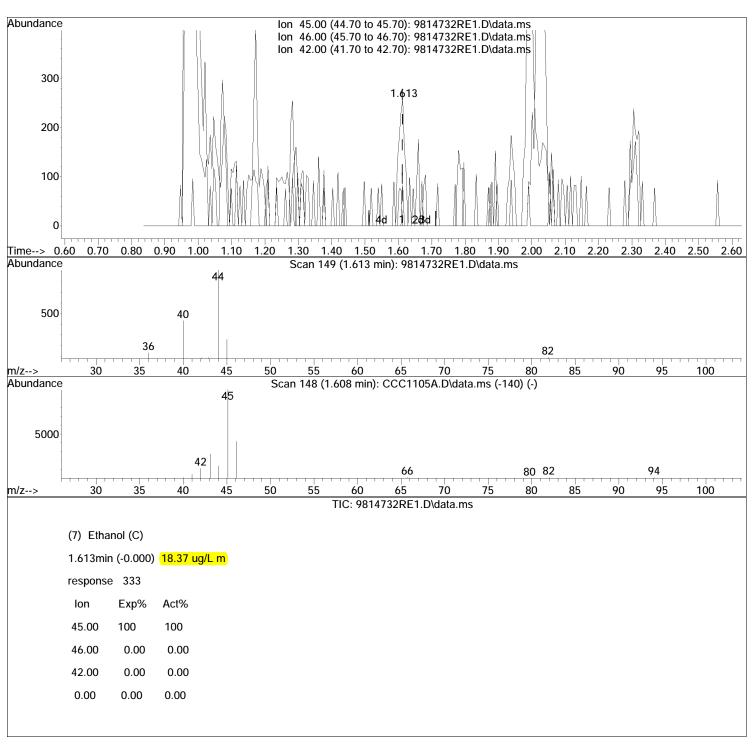
Data File: 9814732RE1.D

Acq On : 20 Oct 2014 5:56 pm

Operator : JEG

Sample : SB98147-32RE1 @ BB-US-SEDV-04 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 21 Sample Multiplier: 1

Quant Time: Oct 21 12:00:12 2014

Quant Method : G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update : Thu Oct 16 08:19:54 2014

Data Path : O:\Oct2014\VOC\HPV9\1020\

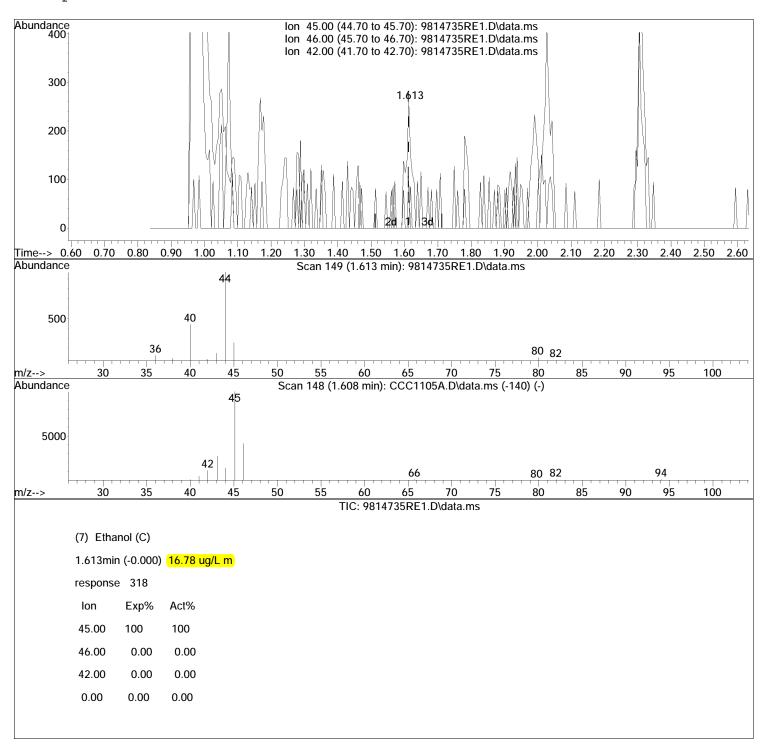
Data File: 9814735RE1.D

Acq On : 20 Oct 2014 6:26 pm

Operator : JEG

Sample : SB98147-35RE1 @ BB-US-SEDV-05 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 22 Sample Multiplier: 1

Quant Time: Oct 21 12:00:26 2014

Quant Method : G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update : Thu Oct 16 08:19:54 2014

Data Path: 0:\Oct2014\VOC\HPV9\1020b\

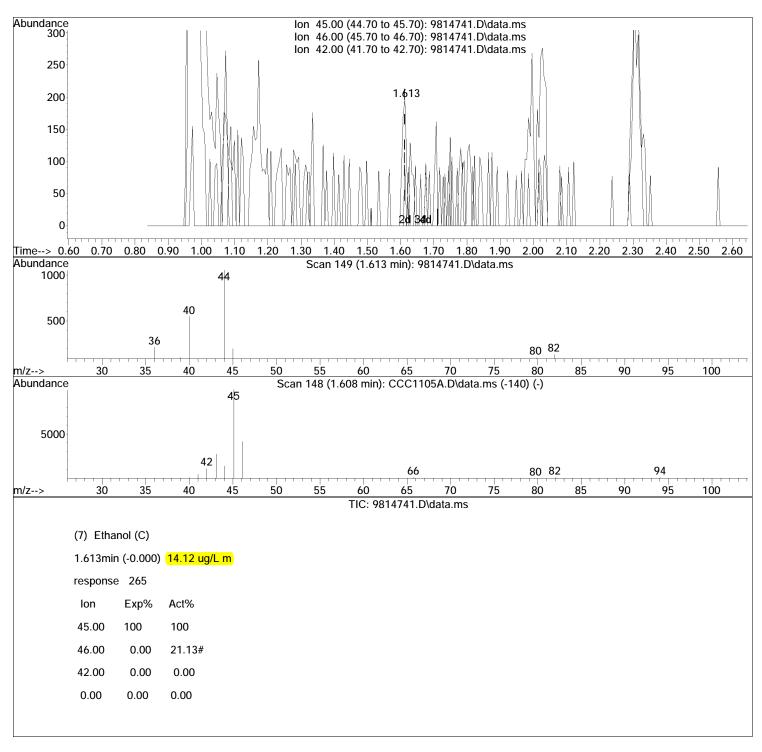
Data File : 9814741.D

Acq On : 21 Oct 2014 12:03 am

Operator : JEG

Sample : SB98147-41 @ BB-US-SEDV-07 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 33 Sample Multiplier: 1

Quant Time: Oct 21 12:03:04 2014

Quant Method: G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update : Thu Oct 16 08:19:54 2014

Data Path: 0:\Oct2014\VOC\HPV9\1020b\

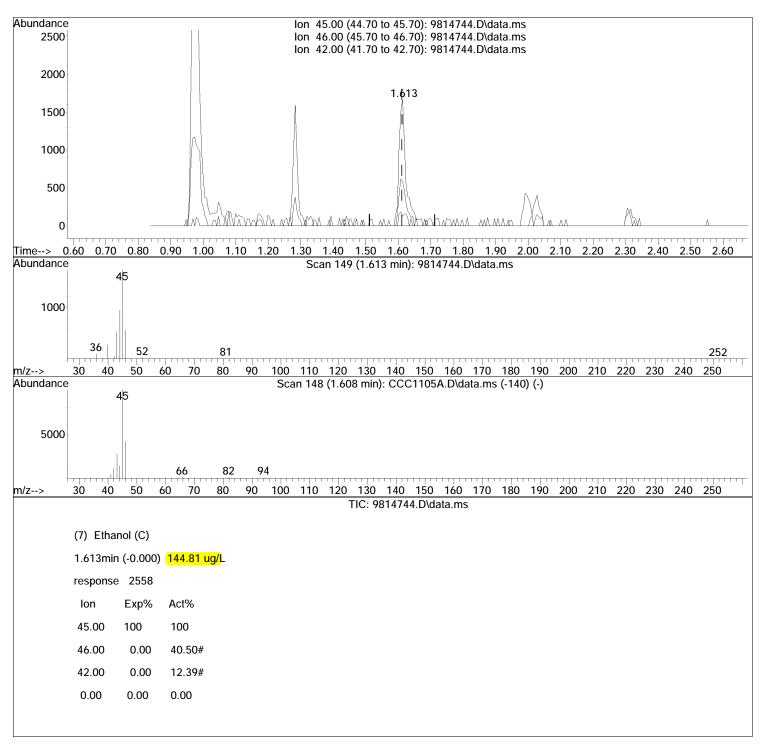
Data File : 9814744.D

Acq On : 21 Oct 2014 12:34 am

Operator : JEG

Sample : SB98147-44 @ BB-US-SEDV-08 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 34 Sample Multiplier: 1

Quant Time: Oct 21 12:03:16 2014

Quant Method : G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update : Thu Oct 16 08:19:54 2014

Data Path : 0:\Oct2014\VOC\HPV9\1020b\

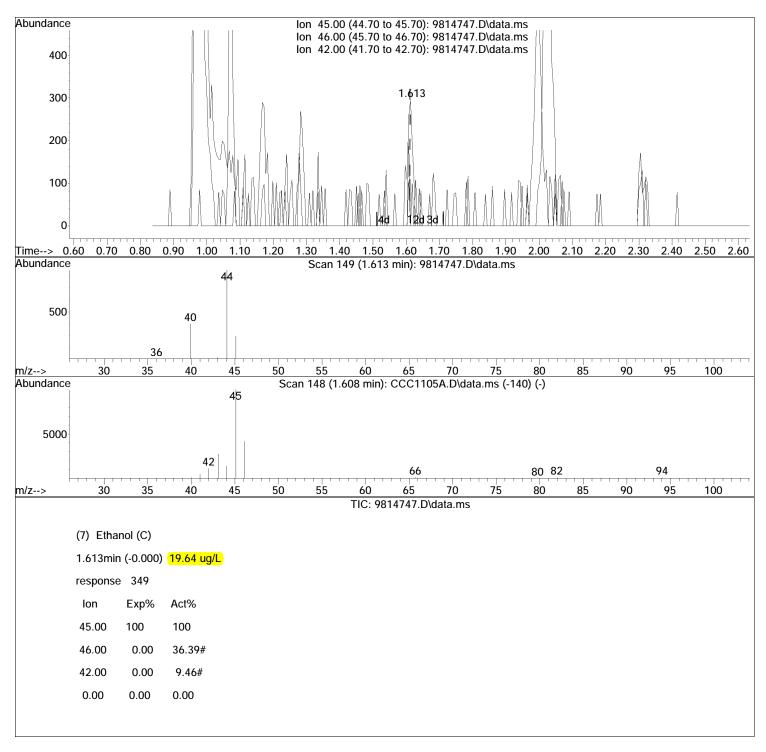
Data File : 9814747.D

Acq On : 21 Oct 2014 1:05 am

Operator : JEG

Sample : SB98147-47 @ NR-DS-SEDV-06 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 35 Sample Multiplier: 1

Quant Time: Oct 21 12:03:32 2014

Quant Method: G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update : Thu Oct 16 08:19:54 2014

Data Path : 0:\Oct2014\VOC\HPV9\1020b\

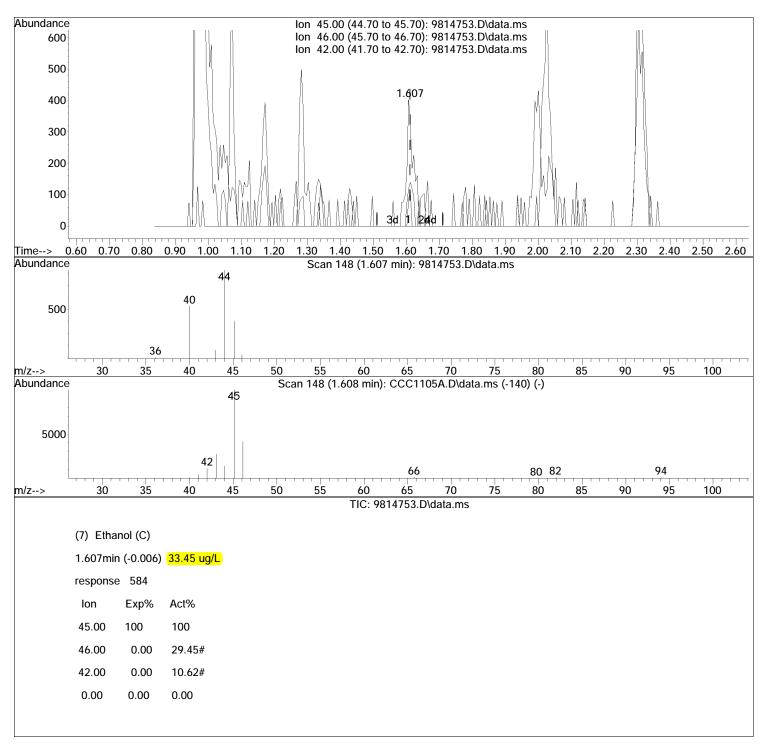
Data File : 9814753.D

Acq On : 21 Oct 2014 2:06 am

Operator : JEG

Sample : SB98147-53 @ NR-DS-SEDV-08 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 37 Sample Multiplier: 1

Quant Time: Oct 21 12:03:56 2014

Quant Method : G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update: Thu Oct 16 08:19:54 2014

Data Path: 0:\Oct2014\VOC\HPV9\1021\

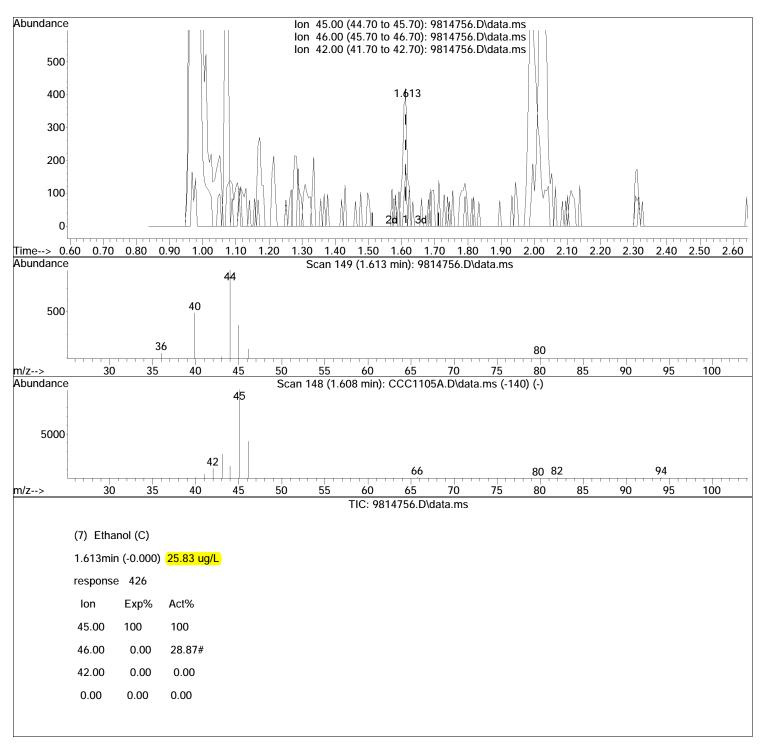
Data File : 9814756.D

Acq On : 21 Oct 2014 12:23 pm

Operator : JEG

Sample : SB98147-56 @ NR-US-SEDV-01 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 10 Sample Multiplier: 1

Quant Time: Oct 22 13:00:00 2014

Quant Method : G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update : Tue Oct 21 13:37:26 2014

Data Path: 0:\Oct2014\VOC\HPV9\1021\

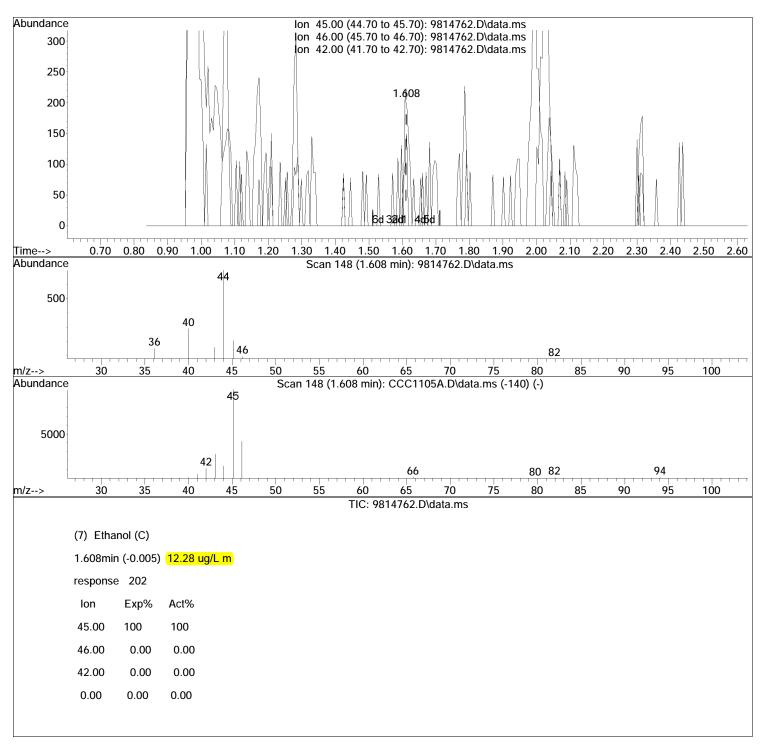
Data File : 9814762.D

Acq On : 21 Oct 2014 12:54 pm

Operator : JEG

Sample : SB98147-62 @ NR-US-SEDV-03 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 11 Sample Multiplier: 1

Quant Time: Oct 22 13:00:22 2014

Quant Method : G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update : Tue Oct 21 13:37:26 2014

Data Path : 0:\Oct2014\VOC\HPV9\1020b\

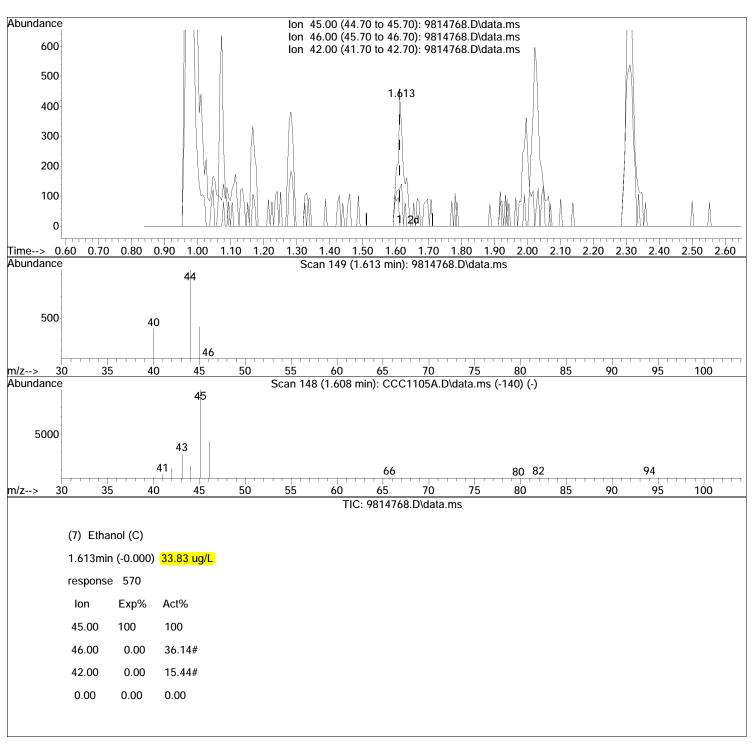
Data File : 9814768.D

Acq On : 21 Oct 2014 4:40 am

Operator : JEG

Sample : SB98147-68 @ NR-US-SEDV-05 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 42 Sample Multiplier: 1

Quant Time: Oct 21 12:05:02 2014

Quant Method : G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update : Thu Oct 16 08:19:54 2014

Data Path : 0:\Oct2014\VOC\HPV9\1020b\

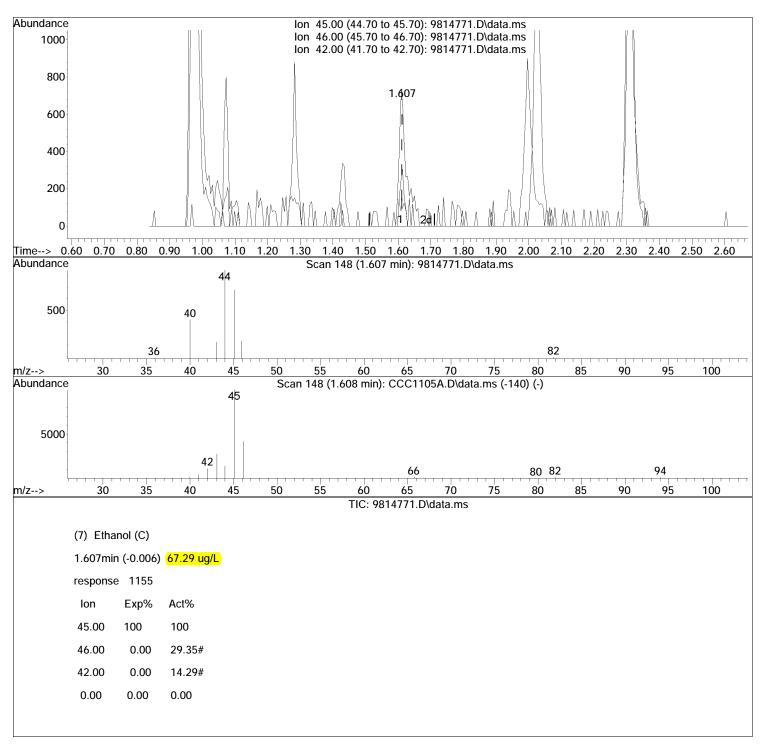
Data File : 9814771.D

Acq On : 21 Oct 2014 5:11 am

Operator : JEG

Sample : SB98147-71 @ NR-US-SEDV-06 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 43 Sample Multiplier: 1

Quant Time: Oct 21 12:05:14 2014

Quant Method : G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update : Thu Oct 16 08:19:54 2014

Data Path : 0:\Oct2014\VOC\HPV9\1021\

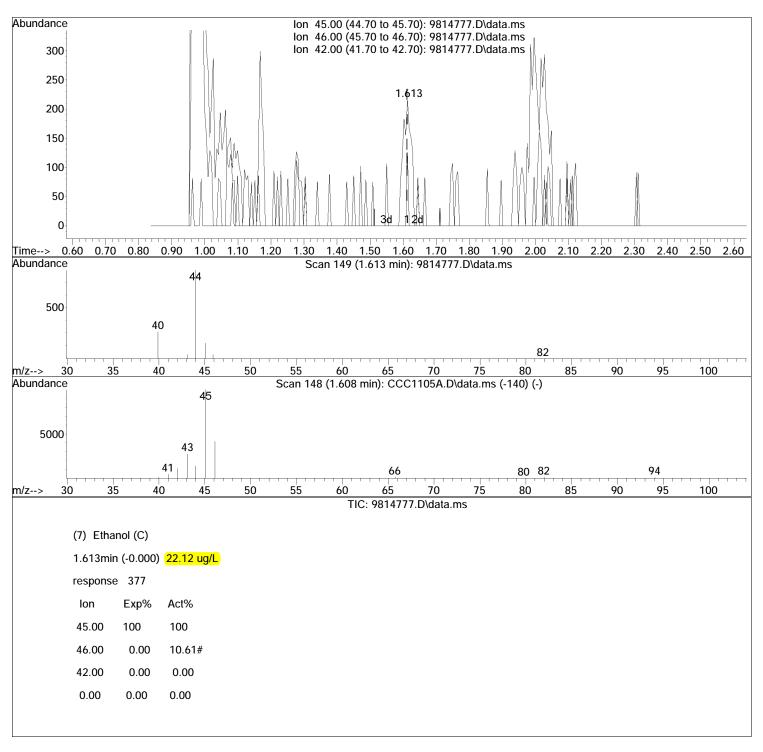
Data File : 9814777.D

Acq On : 21 Oct 2014 1:24 pm

Operator : JEG

Sample : SB98147-77 @ NR-US-SEDV-08 1:1 8260CAMNH Inst : HPV9

Misc : 1


ALS Vial : 12 Sample Multiplier: 1

Quant Time: Oct 22 13:00:34 2014

Quant Method : G:\HPMETHODS\HP9\S9101514.M

Quant Title :

QLast Update : Tue Oct 21 13:37:26 2014

